
Lecture 4
Search

15-122: Principles of Imperative Computation (Fall 2023)
Frank Pfenning

One of the fundamental and recurring problems in computer science is
to find elements in collections, such as elements in sets. An important algo-
rithm for this problem is binary search. We use binary search for an integer
in a sorted array to exemplify it. As a preliminary study in this lecture we
analyze linear search, which is simpler, but not nearly as efficient. Still it is
often used when the requirements for binary search are not satisfied, for
example, when the elements we have to search are not arranged in a sorted
array.

Additional Resources

• Review slides (https://cs.cmu.edu/~15122/handouts/slides/review/04-linsearch.
pdf)

• OLI modules (https://cs.cmu.edu/~15122/handouts/oli/oli-04.shtml)

• Code for this lecture (https://cs.cmu.edu/~15122/handouts/code/04-linsearch.
tgz)

In term of our learning goals, we address the following:

Computational Thinking: Developing contracts (pre- and post-conditions,
assertions, and loop invariants) that establish the safety and correct-
ness of imperative programs.

Evaluating the use of order (sorted data) as a problem-solving tool.

Identifying the difference between specification and implementation.

Algorithms and Data Structures: Describing linear search.

Programming: We will practice deliberate programming together in lectures.
Furthermore, identifying, describing, and effectively using short-circuiting
Boolean operators will play an important role.

LECTURE NOTES c© Carnegie Mellon University 2023

https://cs.cmu.edu/~15122/handouts/slides/review/04-linsearch.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/04-linsearch.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/04-linsearch.pdf
https://cs.cmu.edu/~15122/handouts/oli/oli-04.shtml
https://cs.cmu.edu/~15122/handouts/oli/oli-04.shtml
https://cs.cmu.edu/~15122/handouts/code/04-linsearch.tgz
https://cs.cmu.edu/~15122/handouts/code/04-linsearch.tgz
https://cs.cmu.edu/~15122/handouts/code/04-linsearch.tgz


Lecture 4: Search 2

1 Linear Search in an Unsorted Array

If we are given an array of integers A without any further information and
have to decide if an element x is in A, we just have to search through it,
element by element. We return true as soon as we find an element that
equals x, false if no such element can be found.

1 bool is_in(int x, int[] A, int lo, int hi)
2 //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3 {
4 for (int i = lo; i < hi; i++)
5 //@loop_invariant lo <= i && i <= hi;
6 {
7 if (A[i] == x) return true;
8 }
9 return false;

10 }

We used the statement i++ which is equivalent to i = i+1 to step through
the array, element by element.

The precondition is very common when working with arrays. We pass
an array, and we also pass bounds — typically we will let lo be 0 and hi be
the length of the array. The added flexibility of allowing lo and hi to take
other values will be useful if we want to limit search to the first n elements
of an array and do not care about the others. It will also be useful later
to express invariants such as x is not among the first k elements of A, which
we will write in code as !is_in(x, A, 0, k) and which we will write in
mathematical notation as x /∈ A[0, k).

The loop invariant is also typical for loops over an array. We examine
every element (i ranges from lo to hi − 1). But we will have i = hi after
the last iteration, so the loop invariant which is checked just before the exit
condition must allow for this case.

Could we strengthen the loop invariant, or write a post-condition? We
could try something like

//@loop_invariant !is_in(x, A, lo, i);

where !b is the negation of b. However, it is difficult to make sense of this
use of recursion in a contract or loop invariant so we will avoid it.

This is a small illustration of the general observation that some func-
tions are basic specifications and are themselves not subject to further spec-
ification. Because such basic specifications are generally very inefficient,
they are mostly used in other specifications (that is, pre- or post-conditions,
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loop invariants, general assertions) rather than in code intended to be exe-
cuted.

2 Sorted Arrays

A number of algorithms on arrays would like to assume that they are sorted.
Such algorithms would return a correct result only if they are actually run-
ning on a sorted array. Thus, the first thing we need to figure out is how
to specify sortedness in function specifications. The specification function
is_sorted(A,lo,hi) traverses the array A from left to right, starting at lo
and stopping just before reaching hi , checking that each element is smaller
than or equal to its right neighbor. We need to be careful about the loop
invariant to guarantee that there will be no attempt to access a memory
element out of bounds.

1 bool is_sorted(int[] A, int lo, int hi)
2 //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3 {
4 for (int i = lo; i < hi-1; i++)
5 //@loop_invariant lo <= i;
6 if (!(A[i] <= A[i+1])) return false;
7 return true;
8 }

The loop invariant here does not have an upper bound on i. Fortunately,
when we are inside the loop, we know the loop condition is true so we
know i < hi − 1. That together with lo ≤ i guarantees that both accesses are
in bounds.

We could also try i ≤ hi − 1 as a loop invariant, but this turns out to
be false. It is instructive to think about why. If you cannot think of a good
reason, try to prove it carefully. Your proof should fail somewhere.

Actually, the attempted proof already fails at the initial step. If lo =
hi = 0 (which is permitted by the precondition) then it is not true that 0 =
lo = i ≤ hi − 1 = 0− 1 = −1. We could say i ≤ hi , but that wouldn’t seem
to serve any particular purpose here since the array accesses are already
safe.

Let’s reason through that. Why is the access A[i] safe? By the loop
invariant lo ≤ i and the precondition 0 ≤ lo we have 0 ≤ i, which is the
first part of safety. Secondly, we have i < hi−1 (by the loop condition, since
we are in the body of the loop) and hi ≤ length(A) (by the precondition), so
i will be in bounds. In fact, even i+ 1 will be in bounds, since 0 ≤ lo ≤ i <
i+1 (since i is bounded from above) and i+1 < (hi−1)+1 = hi ≤ length(A).
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Whenever you see an array access, you must have a very good reason
why the access must be in bounds. You should develop a coding instinct
where you deliberately pause every time you access an array in your code
and verify that it should be safe according to your knowledge at that point
in the program. This knowledge can be embedded in preconditions, loop
invariants, or assertions that you have verified.

3 Linear Search in a Sorted Array

Next, we want to search for an element x in an array A which we know is
sorted in ascending order. We want to return −1 if x is not in the array and
the index of the element if it is.

The pre- and post-condition as well as a first version of the function
itself are relatively easy to write.

1 int search(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A,0,n);
4 /*@ensures (\result == -1 && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 {
8 for (int i = 0; i < n; i++)
9 //@loop_invariant 0 <= i && i <= n;

10 if (A[i] == x) return i;
11 return -1;
12 }

This does not exploit that the array is sorted. We would like to exit the
loop and return −1 as soon as we find that A[i] > x. If we haven’t found x
already, we will not find it subsequently since all elements to the right of i
will be greater or equal to A[i] and therefore strictly greater than x. But we
have to be careful: the following program has a bug.
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1 int search(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A,0,n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 {
8 for (int i = 0; A[i] <= x && i < n; i++)
9 //@loop_invariant 0 <= i && i <= n;

10 if (A[i] == x) return i;
11 return -1;
12 }

Can you spot the problem? If you cannot spot it immediately, reason
through the loop invariant. Read on if you are confident in your answer.
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The problem is that the loop invariant only guarantees that 0 ≤ i ≤ n
before the exit condition is tested. So it is possible that i = n and the test
A[i] <= xwill try to access an array element out of bounds: the n elements
of A are numbered from 0 to n− 1.

We can solve this problem by taking advantage of the so-called short-
circuiting evaluation of the boolean operators of conjunction (“and”) && and
disjunction (“or”) ||. If we have condition e1 && e2 (e1 and e2) then we
do not attempt to evaluate e2 if e1 is false. This is because a conjunction
will always be false when the first conjunct is false, so the work would be
redundant.

Similarly, in a disjunction e1 || e2 (e1 or e2) we do not evaluate e2 if
e1 is true. This is because a disjunction will always be true when the first
disjunct it true, so the work would be redundant.

In our linear search program, we just swap the two conjuncts in the exit
test.

1 int search(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A,0,n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 {
8 for (int i = 0; i < n && A[i] <= x; i++)
9 //@loop_invariant 0 <= i && i <= n;

10 if (A[i] == x) return i;
11 return -1;
12 }

Now A[i] <= x will only be evaluated if i < n and the access will be in
bounds since we also know 0 ≤ i from the loop invariant.

Alternatively, and perhaps easier to read, we can move the test into the
loop body.



Lecture 4: Search 7

1 int search(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A,0,n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 {
8 for (int i = 0; i < n; i++)
9 //@loop_invariant 0 <= i && i <= n;

10 {
11 if (A[i] == x) return i;
12 else if (A[i] > x) return -1;
13 }
14 return -1;
15 }

This program is not yet satisfactory, because the loop invariant does
not have enough information to prove the post-condition. We do know
that if we return directly from inside the loop, then A[i] = x and therefore
A[\result] == x holds. But we cannot deduce that !is_in(x, A, 0, n)
if we return -1.

Before you read on, consider which loop invariant you might add to
guarantee that. Try to reason why the fact that the exit condition must
be false and the loop invariant true is enough information to know that
!is_in(x, A, 0, n) holds.
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Did you try to exploit that the array is sorted? If not, then your invariant
is most likely too weak, because the function is incorrect if the array is not
sorted!

What we want to say is that all elements in A to the left of index i are smaller
than x. Just saying A[i-1] < x isn’t quite right, because when the loop is
entered the first time we have i = 0 and we would try to access A[−1]. We
again exploit short-circuiting evaluation, this time for disjunction.

1 int search(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A,0,n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 {
8 for (int i = 0; i < n; i++)
9 //@loop_invariant 0 <= i && i <= n;

10 //@loop_invariant i == 0 || A[i-1] < x;
11 {
12 if (A[i] == x) return i;
13 else if (A[i] > x) return -1;
14 //@assert A[i] < x;
15 }
16 return -1;
17 }

It is easy to see that this invariant is preserved. Upon loop entry, i = 0.
Before we test the exit condition, we just incremented i. We did not return
while inside the loop, so A[i− 1] 6= x and also A[i− 1] ≤ x. From these two
together we have A[i − 1] < x. We have added a corresponding assertion
to the program to highlight the importance of that fact.

Why does the loop invariant imply the post-condition of the function?
If we exit the loop normally, then the loop condition must be false. So i ≥ n.
We know A[n − 1] = A[i − 1] < x. Since the array is sorted, all elements
from 0 to n − 1 are less or equal to A[n − 1] and so also strictly less than x
and x cannot be in the array.

If we exit from the loop because A[i] > x, we also know that A[i−1] < x
so x cannot be in the array since it is sorted.

4 Analyzing the Number of Operations

In the worst case, linear search goes around the loop n times, where n is the
given bound. On each iteration except the last, we perform three compar-
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isons: i < n, A[i] = x and A[i] > x. Therefore, the number of comparisons
is almost exactly 3 × n in the worst case. We can express this by saying
that the running time is linear in the size of the input (n). This allows us to
predict the running time pretty accurately. We run it for some reasonably
large n and measure its time. Doubling the size of the input n′ = 2 × n
means that now we perform 3 × n′ = 3 × 2 × n = 2 × (3 × n) operations,
twice as many as for n inputs.

We will introduce more abstract measurements for the running times in
the next lecture.
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Exercises

Exercise 1 (sample solution on page 13). Given an unsorted, non-empty array
of integers A, the following code returns the index of the maximum element:

1 int find_max(int[] A, int n)
2 //@requires n == \length(A) && n > 0;
3 {
4 int max_index = 0;
5 int max_num = A[0];
6

7 for (int i = 1; i < n; i++)
8 //@loop_invariant 1 <= i && i <= n;
9 {

10 if (A[i] > max_num) {
11 max_index = i;
12 max_num = A[i];
13 }
14 }
15 return max_index;
16 }

1. Give the line number(s) which guarantee that line 5 is safe.

2. Give the line number(s) which guarantee that line 10 is safe.

3. Assume the 4-element array A contains the integer 5 in each position (picto-
rially, A is [5, 5, 5, 5]). What will find_max(A,4) return?

4. Assume the 5-element array B contains the integers 1, 3, 2, 3 and 1 in this
order (pictorially, B is [1, 3, 2, 3, 1]). What will find_max(B,5) return?

5. This function has no postconditions, and therefore it is trivially correct.

• Add a postcondition that allows the caller to use the value returned by
this function safely.

• Describe (without necessarily writing it in code) a postcondition that
assures that this function achieves the desired outcome.

Exercise 2 (sample solution on page 13). Consider the following function

1 void doubling(int[] A, int[] B, int n)
2 //@requires n*2 <= int_max();
3 //@requires \length(A) == n && \length(B) == 2*n;
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4 {
5 for (int i = 0; i < n; i++)
6 //@loop_invariant 0 <= i && i <= n;
7 {
8 B[2*i] = A[i];
9 B[2*i + 1] = A[i];

10 }
11 }

1. The precondition on line 2 may not be as useful as it appears at first sight.
Explain why. Rewrite this precondition so that it actually achieves the in-
tended constraints on the value of n.

2. Use your upgraded precondition to prove the safety of the array access B[2*i+1]
on line 9.

Exercise 3 (sample solution on page 14). Consider the following variant of lin-
ear search that looks for x in the portion of the array A between indices lo included
and hi excluded:

1 int search(int x, int[] A, int lo, int hi)
2 //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3 /*@ensures (\result == -1 && !is_in(x, A, lo, hi))
4 || (lo <= \result && \result < hi && A[\result] == x);
5 @*/
6 {
7 for (int i = lo; i < hi; i++)
8 //@loop_invariant lo <= i && i <= hi;
9 //@loop_invariant !is_in(x, A, lo, i);

10 {
11 if (A[i] == x)
12 return i;
13 }
14 //@assert !is_in(x, A, lo, hi);
15 return -1;
16 }

1. When we return from the function using the statement on line 12, we have to
prove the second part of the postcondition: (lo <= \result &&
\result < hi && A[\result] == x). Prove that this postcondition
is correct.
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2. When we return from the function using the statement on line 15, we know
that \result == -1, so we have to prove the first part of the postcondition:
(\result == -1 && !is_in(x, A, lo, hi)). Based on the way we
wrote our code, this is trivial: we can point to the assertion on line 14, which
tells us exactly what we need to know: !is_in(x, A, lo, hi). We know
that this assertion is safe because of the precondition to search, which tells
us that 0 ≤ lo ≤ hi ≤ \length(A) (in math notation). Prove that the
assertion will always hold true.
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Sample Solutions

Solution of exercise 1

1. In order to know if the array access on line 5 is safe, we need to know
that there is at least one element in the array. This is given by line 2.

2. We need to know that i is non-negative and less than the length of the
array in order to prove that the array access on line 10 is safe. Line 8
guarantees that i is non-negative, and line 7 guarantees that it is less
than n. However, we also need to know that n is actually the length
of the array, which is given by line 2. So we need lines 2, 7 and 8.

3. find_max(A,4) returns 0 since no value in A is larger than what’s
in A[0]. This function returns the first index where the maximum
occurs.

4. find_max(B,5) returns 1.

5. We can provision this function with the following postconditions.

• Since this function returns an array index, the caller will often
access the array A at this index. The desired postcondition is
therefore:

//@ensures 0 <= \result && \result < \length(A);

• The desired outcome is that the value at the returned indeed is
greater than or equal to every value in A. We will learn in the
next lecture about the specification function ge_seg(x,A,lo,hi),
which returns true if the value x is greater than or equal to every
value in A between indices lo included and hi excluded. With
such a function, the requested postcondition is therefore

//@ensures ge_seg(\result, A, 0, \length(A));

For an extra challenge, implement ge_seg(x,A,lo,hi), or check
it out in the next lecture.

Solution of exercise 2

1. The intention behind this precondition is for the function to be able to
allocate the output array, as no array can have more than int_max()
elements. However, every C0 int is less than or equal to int_max().
Therefore, line 2 is always true.
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We can express the intended condition by constraining the input ar-
ray instead. For the output array to have no more than int_max() el-
ements, the input array should have at most int_max()/2 elements.
Thus, we want to replace the given precondition with:

//@requires n <= int_max() / 2;

2. The proof goes as follows:

a. i < n by line 5

b. i <= n-1 by math on (a)

c. 2*(n-1) + 1 <= int_max() by the updated precondition

d. 2*i + 1 <= 2*(n-1) + 1 by math on (b) and (c)

e. <= 2*n - 1 by math on (d)

f. < 2*n by math on (e)

g. \length(B) == 2*n by line 3

h. 2*i + 1 < \length(B) by math on (f) and (g)

i. 0 <= i by line 6

j. 0 <= 2i+1 by math on (i) and (a)

Solution of exercise 3

1. a. lo <= i by line 8

b. \result == i by line 12

c. lo <= \result by math on (a) and (b)

d. i < hi by line 7

e. \result < hi by math on (b) and (c)

f. A[i] == x by line 11

g. A[\result] == x by math on (f) and (b)

h. (lo <= \result && \result < hi

&& A[\result] == x) by (c), (e) and (g)

2. a. i <= hi by line 8

b. i >= hi by line 7

c. i == hi by math on (a) and (b)

d. !is_in(x, A, lo, i) by line 9

e. !is_in(x, A, lo,hi) by math on (c) and (d)
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