
Lecture 6
Binary Search

15-122: Principles of Imperative Computation (Fall 2023)
Frank Pfenning

One of the fundamental and recurring problems in computer science is to
find elements in collections, such as elements in sets. An important algo-
rithm for this problem is binary search. We use binary search to look for an
integer in a sorted array to exemplify it. We started in a previous lecture by
discussing linear search and giving some background on the problem. This
lecture clearly illustrates the power of order in algorithm design: if an array
is sorted we can search through it very efficiently, much more efficiently
than when it is not ordered.

We will also once again see the importance of loop invariants in writing
correct code. Here is a note by Jon Bentley about binary search:

I’ve assigned [binary search] in courses at Bell Labs and IBM. Profes-
sional programmers had a couple of hours to convert [its] description
into a program in the language of their choice; a high-level pseudo-code
was fine. At the end of the specified time, almost all the programmers
reported that they had correct code for the task. We would then take
thirty minutes to examine their code, which the programmers did with
test cases. In several classes and with over a hundred programmers,
the results varied little: ninety percent of the programmers found bugs
in their programs (and I wasn’t always convinced of the correctness of
the code in which no bugs were found).

I was amazed: given ample time, only about ten percent of profes-
sional programmers were able to get this small program right. But
they aren’t the only ones to find this task difficult: in the history in
Section 6.2.1 of his Sorting and Searching, Knuth points out that
while the first binary search was published in 1946, the first published
binary search without bugs did not appear until 1962.

—Jon Bentley, Programming Pearls (1st edition), pp.35–36

I contend that what these programmers are missing is the understanding
of how to use loop invariants in composing their programs. They help

LECTURE NOTES c© Carnegie Mellon University 2023

Lecture 6: Binary Search 2

us to make assumptions explicit and clarify the reasons why a particular
program is correct. Part of the magic of pre- and post-conditions as well as
loop invariants and assertions is that they localize reasoning. Rather than
having to look at the whole program, or the whole function, we can focus
on individual statements tracking properties via the loop invariants and
assertions.

Additional Resources

• Review slides (https://cs.cmu.edu/~15122/handouts/slides/review/06-binsearch.
pdf)

• OLI modules (https://cs.cmu.edu/~15122/handouts/oli/oli-06.shtml)

• Code for this lecture (https://cs.cmu.edu/~15122/handouts/code/06-binsearch.
tgz)

The learning goals for this lecture are as follows:

Computational Thinking: Obtaining an exponential speed-up by parti-
tioning the problem space — a prelude to a more general technique
called divide-and-conquer.

Algorithms and Data Structures: Binary search.

Programming: Using loop invariants as a design tool for programs.

1 Binary Search

Can we do better than searching through the array linearly? If you don’t
know the answer already it might be surprising that, yes, we can do signif-
icantly better! Perhaps almost equally surprising is that the code is almost
as short! However, this will require the array to be sorted.

Before we write the code, let us describe the algorithm. We start search-
ing for x by examining the middle element of the sorted array. If it is smaller
than x, then x must be in the upper half of the array (if it is there at all); if
it is greater than x, then x must be in the lower half. Now we continue by
restricting our attention to either the upper or lower half, again finding the
middle element and proceeding as before.

We stop if we either find x, or if the size of the subarray shrinks to zero,
in which case x cannot be in the array.

Before we write a program to implement this algorithm, let us analyze
the running time. Assume for the moment that the size of the array is a
power of 2, say 2k. Each time around the loop, when we examine the mid-
dle element, we cut the size of the subarrays we look at in half. So before
the first iteration the size of the subarray of interest is 2k. After the first

https://cs.cmu.edu/~15122/handouts/slides/review/06-binsearch.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/06-binsearch.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/06-binsearch.pdf
https://cs.cmu.edu/~15122/handouts/oli/oli-06.shtml
https://cs.cmu.edu/~15122/handouts/oli/oli-06.shtml
https://cs.cmu.edu/~15122/handouts/code/06-binsearch.tgz
https://cs.cmu.edu/~15122/handouts/code/06-binsearch.tgz
https://cs.cmu.edu/~15122/handouts/code/06-binsearch.tgz

Lecture 6: Binary Search 3

iteration (i.e., just before the second), it is of size 2k−1, then 2k−2, etc. After
k iterations it will be 2k−k = 1, so we stop after the next iteration. Al-
together we can have at most k + 1 iterations. Within each iteration, we
perform a constant amount of work: computing the midpoint, and a few
comparisons. So, overall, when given a size of array n we perform c×log2 n
operations (for some constant c).1

If the size n is not a power of 2, then we can round n up to the next
power of 2, and the reasoning above still applies. For example, if n = 13
we round it up to 16 = 24. The actual number of steps can only be smaller
than this bound, because some of the actual subintervals may be smaller
than the bound we obtained when rounding up n.

The logarithm grows much more slowly than the linear function that
we obtained when analyzing linear search. As before, suppose we double
the size of the input, n′ = 2× n. Then the number of operations will be c×
log(2×n) = c×(log 2+log n) = c×(1+log n) = c+c×log n. So the number of
operations increases only by a constant amount c when we double the size
of the input. Considering that the largest representable positive number in
32-bit two’s complement representation is 231 − 1 (about 2 billion) binary
search even for unreasonably large arrays will only traverse the loop 31
times!

2 Implementing Binary Search

The specification for binary search is the same as for linear search.

1 int binsearch(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 ;

We declare two variables, lo and hi, which hold the lower and upper end
of the subinterval in the array that we are considering. We start with lo
as 0 and hi as n, so the interval includes lo and excludes hi. This often
turns out to be a convenient choice when computing with arrays (but see
Exercise 1).

1In general in computer science, we are mostly interested in logarithm to the base 2
so we will just write logn for log to the base 2 from now on unless we are considering a
different base.

Lecture 6: Binary Search 4

The for loop from linear search becomes a while loop, exiting when
the interval has size zero, that is, lo == hi. We can easily write the first
loop invariant, relating lo and hi to each other and the overall bound of
the array.

1 int binsearch(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 {
8 int lo = 0;
9 int hi = n;

10 while (lo < hi)
11 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
12 {
13 // ...??...
14 }
15 return -1;
16 }

In the body of the loop, we first compute the midpoint mid . By elemen-
tary arithmetic it is indeed between lo and hi .

Next in the loop body we check if A[mid] = x. If so, we have found the
element and return mid .

1 int binsearch(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 {
8 int lo = 0;
9 int hi = n;

10 while (lo < hi)
11 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
12 //@loop_invariant ...??...;
13 {
14 int mid = lo + (hi-lo)/2;
15 //@assert lo <= mid && mid < hi;
16 if (A[mid] == x) return mid;
17 // ...??...

Lecture 6: Binary Search 5

18 }
19 return -1;
20 }

Now comes the hard part. What is the missing part of the invariant?
The first instinct might be to say that x should be in the interval from A[lo]
to A[hi]. But that may not even be true when the loop is entered the first
time.

Let’s consider a generic situation in the form of a picture and collect
some ideas about what might be appropriate loop invariants. Drawing
diagrams to reason about an algorithm and the code that we are trying
to construct is an extremely helpful general technique.

The red box around elements 2 through 5 marks the segment of the ar-
ray still under consideration. This means we have ruled out everything to
the right of (and including) hi and to the left of (and not including) lo. Ev-
erything to the left is ruled out, because those values have been recognized
to be strictly less than x, while the ones on the right are known to be strictly
greater than x, while the middle is still unexplored.

We can depict this as follows:

We can summarize this by stating that A[lo− 1] < x and A[hi] > x. This
implies that x cannot be in the segments A[0..lo) and A[hi ..n) because the
array is sorted (so all array elements to the left of A[lo − 1] will also be less
than x and all array elements to the right of A[hi] will also be greater than
x). For an alternative, see Exercise 2.

We can postulate these as invariants in the code.

Lecture 6: Binary Search 6

1 int binsearch(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 {
8 int lo = 0;
9 int hi = n;

10 while (lo < hi)
11 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
12 //@loop_invariant A[lo-1] < x;
13 //@loop_invariant A[hi] > x;
14 {
15 int mid = lo + (hi-lo)/2;
16 if (A[mid] == x) return mid;
17 // ...??...
18 }
19 return -1;
20 }

Now a very powerful programming instinct should tell you something
is fishy. Can you spot the problem with the new invariants even before
writing any more code in the body of the loop?

Lecture 6: Binary Search 7

Whenever you access an element of an array, you must have good
reason to know that the access will be in bounds!

In the code we blithely wrote A[lo − 1] and A[hi] because they were
in the middle of the array in our diagram. But initially (and potentially
through many iterations) this may not be the case. Fortunately, it is easy to
fix, following what we did for linear search. Consider the following picture
when we start the search.

In this case all elements of the array have to be considered candidates.
All elements strictly to the left of 0 (of which there are none) and to the right
of n (of which there are none) have been ruled out. As in linear search, we
can add this to the our invariant using disjunction.

1 int binsearch(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 {
8 int lo = 0;
9 int hi = n;

10 while (lo < hi)
11 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
12 //@loop_invariant (lo == 0 || A[lo-1] < x);
13 //@loop_invariant (hi == n || A[hi] > x);
14 {
15 int mid = lo + (hi-lo)/2;
16 if (A[mid] == x) return mid;
17 // ...??...
18 }
19 return -1;
20 }

Lecture 6: Binary Search 8

At this point, let’s check if the loop invariant is strong enough to imply
the post-condition of the function. If we return from inside the loop because
A[mid] = x we return mid , so A[\result] == x as required.

If we exit the loop because lo < hi is false, we know lo = hi , by the first
loop invariant. Now we have to distinguish some cases.

1. If A[lo − 1] < x and x < A[hi], then x < A[lo] (since lo = hi). Because
the array is sorted, x cannot be in it.

2. If lo = 0, then hi = 0. By the third loop invariant, then either n = 0
(and so the array has no elements and we must return−1), or A[hi] =
A[lo] = A[0] > x. Because A is sorted, x cannot be in A if its first
element is already strictly greater than x.

3. If hi = n, then lo = n. By the second loop invariant, then either n = 0
(and so we must return −1), or A[n− 1] = A[hi − 1] = A[lo − 1] < x.
Because A is sorted, x cannot be in A if its last element is already
strictly less than x.

Notice that we could verify all this without even knowing the complete
program! As long as we can finish the loop to preserve the invariant and
terminate, we will have a correct implementation! This would again be a
good point for you to interrupt your reading and to try to complete the
loop, reasoning from the invariant.

We have already tested if A[mid] = x. If not, then A[mid] must be less or
greater than x. If it is less, then we can keep the upper end of the interval as
is, and set the lower end to mid+1. Now A[lo−1] < x (because A[mid] < x
and lo = mid +1), and the condition on the upper end remains unchanged.

If A[mid] > x we can set hi to mid and keep lo the same. We do not
need to test this last condition, because the fact that the tests A[mid] = x
and A[mid] < x both failed implies that A[mid] > x. We note this in an
assertion.

Lecture 6: Binary Search 9

1 int binsearch(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 { int lo = 0;
8 int hi = n;
9 while (lo < hi)

10 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
11 //@loop_invariant (lo == 0 || A[lo-1] < x);
12 //@loop_invariant (hi == n || A[hi] > x);
13 {
14 int mid = lo + (hi-lo)/2;
15 //@assert lo <= mid && mid < hi;
16 if (A[mid] == x) return mid;
17 else if (A[mid] < x) lo = mid+1;
18 else /*@assert(A[mid] > x);@*/
19 hi = mid;
20 }
21 return -1;
22 }

Lecture 6: Binary Search 10

Let’s set up the proof of the loop invariants more schematically.

Init: When the loop is first reached, we have lo = 0 and hi = n, so the first
loop invariant follows from the precondition to the function. Further-
more, the first disjunct in loop invariants two (lo == 0) and three
(hi == n) is satisfied.

Preservation: Assume the loop invariants are satisfied and we enter the
loop:

0 ≤ lo ≤ hi ≤ n (Inv 1)
(lo = 0 or A[lo − 1] < x) (Inv 2)
(hi = n or A[hi] > x) (Inv 3)
lo < hi (loop condition)

We compute mid = lo+b(hi−lo)/2c. Now we distinguish three cases:

A[mid] = x: In that case we exit the function, so we don’t need to
show preservation. We do have to show the post-condition, but
we already considered this earlier in the lecture.

A[mid] < x: Then
lo′ = mid + 1
hi ′ = hi

The first loop invariant 0 ≤ lo′ ≤ hi ′ ≤ n follows from the for-
mula for mid , our assumptions, and elementary arithmetic.
For the second loop invariant, we calculate:

A[lo′ − 1] = A[(mid + 1)− 1] since lo′ = mid + 1
= A[mid] by arithmetic
< x this case A[mid] < x

The third loop invariant is preserved, since hi ′ = hi .

A[mid] > x: Then
lo′ = lo
hi ′ = mid

Again, by elementary arithmetic, 0 ≤ lo′ ≤ hi ′ ≤ n.
The second loop invariant is preserved since lo′ = lo.
For the third loop invariant, we calculate

A[hi ′] = A[mid] since hi ′ = mid
> x since we are in the case A[mid] > x

Lecture 6: Binary Search 11

3 Termination

Does this function terminate? If the loop body executes, that is, lo < hi ,
then the interval from lo to hi is non-empty. Moreover, the intervals from
lo to mid and from mid + 1 to hi are both strictly smaller than the original
interval. Unless we find the element, the difference between hi and lo must
eventually become 0 and we exit the loop.

4 One More Observation

You might be tempted to calculate the midpoint with

13 int mid = (lo + hi)/2;

but that is in fact incorrect. Consider this change and try to find out why
this would introduce a bug.

Lecture 6: Binary Search 12

Were you able to see it? It’s subtle, but somewhat related to other prob-
lems we had. When we compute (lo + hi)/2; we could actually have an
overflow, if lo + hi > 231 − 1. This is somewhat unlikely in practice, since
231 = 2G, about 2 billion, so the array would have to have at least 1 billion
elements. This is not impossible, and, in fact, a bug like this in the Java
libraries2 was actually exposed.

Fortunately, the fix is simple: because lo < hi , we know that hi − lo > 0
and represents the size of the interval. So we can divide that in half and
add it to the lower end of the interval to get its midpoint.

13 int mid = lo + (hi-lo)/2; // as shown in binary search
14 //@assert lo <= mid && mid < hi;

Let us convince ourselves why the assert is correct. The division by two will
round to zero, down to 0 here, because hi − lo > 0. Thus, 0 ≤ (hi − lo)/2 <
hi − lo, because dividing a positive number by two will make it strictly
smaller. Hence,

mid = lo + (hi − lo)/2 < lo + (hi − lo) = hi

Since dividing positive numbers by two will still result in a non-negative
number, the first part of the assert is correct as well.

mid = lo + (hi − lo)/2 ≥ lo + 0 = lo

Other operations in this binary search take place on quantities bounded
from above by the int n and thus cannot overflow.

Why did we choose to look at the middle element and not another el-
ement at all? Because, whatever the outcome of our comparison to that
middle element may be, we maximize how much we have learned about
the contents of the array by doing this one comparison. If we find the ele-
ment, we are happy because we are done. If the middle element is smaller
than what we are looking for, however, we are happy as well, because we
have just learned that the lower half of the array has become irrelevant.
Similarly, if the middle element is bigger, then we have made substantial
progress by learning that we never need to look at the upper half of the
array anymore. There are other choices, however, where binary search will
also still work in essentially the same way.

5 Some Measurements

Algorithm design is an interesting mix of mathematics and an experimental
science. Our analysis above, albeit somewhat preliminary in nature, allow

2See Joshua Bloch’s Extra, Extra blog entry.

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

Lecture 6: Binary Search 13

us to make some predictions of running times of our implementations. We
start with linear search. We first set up a file to do some experiments. We
assume we have already tested our functions for correctness, so only tim-
ing is at stake. See the file search-time.c0 in the code directory for this
lecture. We compile this file, together with our implementation from this
lecture, with the cc0 command below. We can get an overall end-to-end
timing with the Unix time command. Note that we do not use the -d flag,
since that would dynamically check contracts and completely throw off our
timings.� �
% cc0 find.c0 find-time.c0
% time ./a.out� �
When running linear search 2000 times (1000 times with x in the array, and
1000 times with random x) on 218 elements (256 K elements) we get the
following answer� �
Timing 1000 times with 2^18 elements
0
4.602u 0.015s 0:04.63 99.5% 0+0k 0+0io 0pf+0w� �
which indicates 4.602 seconds of user time.

Running linear search 2000 times on random arrays of size 218, 219 and
220 we get the timings on our MacBook Pro

array size time (secs)
218 4.602
219 9.027
220 19.239

The running times are fairly close to doubling consistently. Due to mem-
ory locality effects and other overheads, for larger arrays we would expect
larger numbers.

Running the same experiments with binary search we get

array size time (secs)
218 0.020
219 0.039
220 0.077

which is much, much faster but looks suspiciously linear as well.
Reconsidering the code we see that the time might increase linearly be-

cause we actually must iterate over the whole array in order to initialize it
with random elements!

Lecture 6: Binary Search 14

We comment out the testing code to measure only the initialization
time, and we see that for 220 elements we measure 0.072 seconds, as com-
pared to 0.077 which is insignificant. Effectively, we have been measuring
the time to set up the random array, rather than to find elements in it with
binary search!

This is a vivid illustration of the power of divide-and-conquer. Loga-
rithmic running time for algorithms grow very slowly, a crucial difference
to linear-time algorithms when the data sizes become large.

Lecture 6: Binary Search 15

6 Exercises

Exercise 1 (sample solution on page 17). Rewrite the body of the binary search
function so that both lower and upper bounds of the interval examined in the loop
are inclusive. Make sure to update the loop invariants appropriately. Finally,
prove the validity of the updated loop invariants.

Exercise 2 (sample solution on page 20). Rewrite the invariants of the binary
search function to use is_in(x, A,lo,hi) which returns true if and only if
there is an i such that x == A[i] for lo <= i < u. The function is_in(x, A,lo,hi)
assumes that 0 <= lo <= hi <= \length(A).

Then prove the new loop invariants, and verify that they are strong enough
to imply the function’s post-condition. As you do so you may assume obvious
properties of is_in.

Exercise 3. Binary search as presented here may not find the leftmost occurrence
of x in the array in case the occurrences are not unique. Given an example demon-
strating this.

Now change the binary search function and its loop invariants so that it will
always find the leftmost occurrence of x in the given array (if it is actually in the
array, −1 as before if it is not).

Prove the loop invariants and the post-conditions for this new version, and
verify termination.

Exercise 4 (sample solution on page 22). If you were to replace the midpoint
computation by

int mid = (lo + hi)/2;

then which part of the contract will alert you to a flaw in your thinking? Why?
Give an example showing how the contracts can fail in that case.

Exercise 5 (sample solution on page 22). Because computing the midpoint of
an array segment as (lo + hi)/2 can cause an overflow, it is tempting to define
it instead as

int mid = lo/2 + hi/2;

Show that, in regular integer arithmetic (where overflows never occur), the two
expression lo

2 + hi
2 and lo+hi

2 do not always produce the same result (note that we
are asking about in integer arithmetic, where for example 1

2 = 0).

Exercise 6 (sample solution on page 23). Because computing the midpoint of
an array segment as (lo + hi)/2 can cause an overflow, we defined it instead as

int mid = lo + (hi - lo)/2;

Lecture 6: Binary Search 16

Show that, in regular integer arithmetic (where overflows never occur), the two
expression lo + hi−lo

2 and lo+hi
2 always produce the same result (note that we are

asking about in integer arithmetic, where for example 1
2 = 0).

Exercise 7 (sample solution on page 24). In lecture, we used design-by-invariant
to construct the loop body implementation from the loop invariant that we have
identified before. We could also have maintained the loop invariant by replacing
the whole loop body just with

// loop_invariant elided
{
lo = lo;
hi = hi;

}

Prove the loop invariants for this loop body. What is wrong with this choice?
Which part of our proofs fail, thereby indicating why this loop body would not
implement binary search correctly?

Lecture 6: Binary Search 17

Sample Solutions

Solution of exercise 1 For the upper bound to be inclusive, we need to
initialize the variable hi to n-1. Most of our original code for binary search
remain unchanged, but a few parts need to be modified. Let’s the resulting
code:

1 int binsearch_inclusive(int x, int[] A, int n)
2 //@requires n == \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result <= n) && A[\result] == x); @*/
6 {
7 int lo = 0;
8 int hi = n-1;
9

10 while (lo < hi)
11 //@loop_invariant 0 <= lo && lo <= hi+1 && hi < n;
12 //@loop_invariant gt_seg(x, A, 0, lo);
13 //@loop_invariant lt_seg(x, A, hi+1, n);
14 {
15 int mid = lo + (hi-lo)/2;
16 //@assert lo <= mid && mid < hi;
17 if (A[mid] == x) return mid;
18 else if (A[mid] < x)
19 lo = mid+1;
20 else /*@assert(A[mid] > x);@*/
21 hi = mid;
22 }
23 //@assert lo == hi || lo == hi+1;
24

25 if (lo == hi && x == A[lo])
26 return lo;
27

28 return -1;
29 }

Surprisingly maybe, the loop itself doesn’t change. However, we need
to be careful with the loop invariants. Since the loop guard is still lo < hi,
we would expect lo <= hi as a loop invariant. This would be incorrect:
consider what happens when calling binsearch_inclusive on the empty
array: then n == 0, which means that hi == -1. We avoid this trap by us-
ing lo <= hi+1 as our loop invariant. Other changes are more immediate:

Lecture 6: Binary Search 18

since we set hi to n-1, a sufficient loop invariant relating these two vari-
ables is hi < n. Finally, the call to lt_seg of our original code is adapted
by simply using hi+1 in place of hi as the third argument.

Now, because the loop invariant relating lo and hi is now lo <= hi+1,
there are two possibilities once we exit the loop:

• lo == hi: since our segments are inclusive, there is an element we
haven’t examined at A[lo]. We return lo if this element is precisely
x, and -1 otherwise.

• lo == hi+1: this can happen only if A was the empty array. Then, we
return -1.

We now prove that the updated loop invariants are valid, i.e., that they
hold initially and are preserved by an arbitrary iteration of the loop. Let’s
start with lo <= hi+1 && hi < n.

INIT We need to show that the loop invariant on line 11 is true initially.
The first conjunct is unchanged, so we will focus on the other two
conjuncts.

To Show: lo <= hi+1 && hi < n is true initially

a. n == \length(A) by line 2
b. n >= 0 by postcondition of \length
c. hi == n-1 by line 8
d. hi < n by math on (b) and (c)
e. lo == 0 by line 7
f. lo <= hi+1 by math on (b), (c) and (e)

PRES We need to show that the loop invariant on line 11 is preserved by
an arbitrary iteration of the loop. Again, we focus on the other two
conjuncts. We take the assertion on line 16 to be true as it and the loop
guard on line 10 are exactly as in our original code.

Assume: lo <= hi+1 && hi < n

To Show: lo‘ <= hi‘+1 && hi‘ < n

We shall consider the cases where A[mid] < x and A[mid] > x. We
ignore the case where A[mid] == x as the function returns immedi-
ately.

Case A[mid] < x:

a. lo‘ = mid+1 by lines 18 and 19
b. hi‘ = hi by (unchanged)

Lecture 6: Binary Search 19

c. hi‘ < n by assumption
d. mid < hi by line 16
e. mid+1 <= hi by math on (d)
f. mid+1 <= hi+1 by math on (c) and (e)
g. lo‘ <= hi‘+1 by (a), (b) and (f)

Case A[mid] > x:

a. lo‘ = lo by (unchanged)
b. hi‘ = mid by lines 20 and 21
c. mid < n by line 16 and assumption
d. hi‘ < n by (b) and (c)
e. lo‘ <= hi‘ by line 16, (a) and (b)
f. lo‘ <= hi+1‘ by math on (c) and (e)

The proof that lt_seg(x, A, hi+1, n) is a valid loop invariant re-
mains largely unchanged. This is because the change in the lower bound
of the segment to hi+1 instead of hi is offset by the fact that we initialized
hi to n-1 instead of n.

INIT We need to show that the loop invariant on line 13 is true initially.

To Show: x < A[hi+1,n) is true initially

a. x < A[n,n) by definition of lt_seg
b. hi == n-1 by line 8
c. hi+1 == n by math on (b)
d. x < A[hi+1,n) by math on (a) and (c)

PRES We need to show that the loop invariant on line 13 is preserved by
an arbitrary iteration of the loop.

Assume: x < A[hi+1,n)

To Show: x < A[hi‘+1,n)

The only situation where hi changes is when A[mid] > x. We can
limit ourselves to proving just this case.

a. A[0,n) sorted by line 3
b. x < A[hi+1,n) by assumption
c. 0 <= mid+1 by math on lines 11 and 16
d. mid+1 <= hi by math on line 16
e. x < A[mid+1,n) by math on (a), (b), (c) and (d)
f. hi‘ = mid by lines 20 and 21
g. x < A[hi‘,n) by math on (f)

Lecture 6: Binary Search 20

Solution of exercise 2
To implement this variant of binary search, we simply update the code

seen in this lecture to use !is_in(x, A,0,lo) and !is_in(x, A,hi,n) as
the loop invariants concerning lo and hi, respectively. Here’s the updated
code, where the included key reasoning steps (see below) as assertions.

1 int search(int x, int[] A, int n)
2 //@requires n == \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (\result == -1 && !is_in(x, A, 0, n))
5 || (0 <= \result && \result < n && A[\result] == x); @*/
6 {
7 int lo = 0;
8 int hi = n;
9

10 while (lo < hi)
11 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
12 //@loop_invariant !is_in(x, A,0,lo);
13 //@loop_invariant !is_in(x, A,hi,n);
14 {
15 int mid = lo + (hi - lo)/2;
16 //@assert lo <= mid && mid < hi;
17

18 if (A[mid] == x) return mid;
19 if (A[mid] < x) {
20 //@assert mid + 1 <= hi;
21 //@assert !is_in(x, A,0,mid+1);
22 lo = mid+1;
23 } else { //@assert A[mid] > x;
24 //@assert !is_in(x, A,mid,n);
25 hi = mid;
26 }
27 }
28 //@assert lo == hi;
29 //@assert !is_in(x,A,0,n);
30 return -1;
31 }

Let’s prove that the new loop invariants support the correctness of this
code. We will start with the EXIT assuming that these loop invariants are
valid.

The function exits in two place, on lines 18 and 30. The first of this
returns is proved exactly as for the code seen in this lecture, in particular

Lecture 6: Binary Search 21

it hits the second disjunct of the postcondition (on line 5). We will instead
focus on the second return statement, on line 30, for which we need to
prove the first disjunct (on line 4), and specifically that !is_in(x, A,0,n).

To Show: !is_in(x, A,0,n)

a. lo == hi by lines 10 and 11

b. !is_in(x, A,0,lo) by line 12

c. !is_in(x, A,hi,n) by line 13

d. !is_in(x, A,0,n) by math on (a), (b) and (c)

Next, let’s prove that the new loop invariants (on lines 12 and 13) are
valid. We start with the loop invariant on line 12.

INIT We need to show that the loop invariant on line 12 is true initially.

To Show: !is_in(x, A,0,lo) is true initially

a. !is_in(x, A,0,0) by definition of is_in
b. lo == 0 by line 7
c. !is_in(x, A,0,lo) by math on (a) and (b)

PRES We need to show that the loop invariant on line 12 is preserved by
an arbitrary iteration of the loop.

Assume: !is_in(x, A,0,lo)

To Show: !is_in(x, A,0,lo‘)

The only situation where lo changes is when A[mid] < x. We can
limit ourselves to proving just this case.

a. A[0,n) sorted by line 3
b. !is_in(x, A,0,lo) by assumption
c. 0 <= mid+1 by math on lines 11 and 16
d. mid+1 <= n by math on line 16
e. x < A[mid] by line 19
f. !is_in(x, A,0,mid+1) by math on (a), (b), (c), (d) and (e)
g. lo‘ = mid+1 by lines 19 and 22
h. !is_in(x, A,0,lo‘) by math on (g)

The proof that the loop invariant on line 13 is valid is similar.

INIT We need to show that the loop invariant on line 13 is true initially.

To Show: !is_in(x, A,hi,n) is true initially

Lecture 6: Binary Search 22

a. !is_in(x, A,n,n) by definition of is_in
b. hi == n by line 8
c. !is_in(x, A,hi,n) by math on (a) and (b)

PRES We need to show that the loop invariant on line 13 is preserved by
an arbitrary iteration of the loop.

Assume: !is_in(x, A,hi,n)

To Show: !is_in(x, A,hi‘,n)

The only situation where hi changes is when A[mid] > x. We can
limit ourselves to proving just this case.

a. A[0,n) sorted by line 3
b. !is_in(x, A,hi,n) by assumption
c. mid < hi by line 16
d. hi <= n by line 11
e. x > A[mid] by line 23
f. !is_in(x, A,mid,n) by math on (a), (b), (c), (d) and (e)
g. hi‘ = mid by lines 23 and 25
h. !is_in(x, A,hi‘,n) by math on (g)

Solution of exercise 4 Computing mid as (lo + hi)/2 will result in a neg-
ative value whenever lo + hi overflows. For example, if lo == 1 and
hi == int_max(), then lo + hi == int_min() and therefore lo + hi is
equal to int_min() (i.e., -1073741824).

Most immediately, this would be caught by the assertion lo <= mid && mid < hi
right after the calculation of mid.

Were we to remove this assertion, the issue would manifest when eval-
uating A[mid] since the index mid is negative. The program would abort
trying to evaluate this expression.

Solution of exercise 5 These two expressions will produce different result
whenever both lo and hi are odd. Assume for example that both are equal
to 1.

Then
lo

2
+

hi

2
=

1

2
+

1

2
= 0 + 0 = 0

But
lo + hi

2
=

1 + 1

2
=

2

2
= 1

Lecture 6: Binary Search 23

Solution of exercise 6 Just like in binary search, we shall assume that 0 ≤
lo ≤ hi , and therefore that we are dealing exclusively with non-negative
quantities.

First a reminder about regular integer arithmetic:

• If a is an even number 2b, then a
2 = b = a+1

2 .

• If a is an odd number 2b+ 1, then a
2 = b = a−1

2 .

To prove that lo + hi−lo
2 is equal to lo+hi

2 in integer arithmetic, we need
to distinguish cases on whether lo and hi are even or odd. That’s a total of
of four cases.

lo and hi are both even Then, lo = 2m for some m and hi = 2n for some
n.

Observe that, in this case, lo+hi
2 = m+ n.

Then,

lo + hi−lo
2 = 2m+ 2n−2m

2

= 2m+ (n−m)22

= 2m+ (n−m)

= m+ n

= 2m+2n
2

= lo+hi
2

lo is even and hi is odd Then, lo = 2m for some m and hi = 2n + 1 for
some n.

Observe that, in this case, lo+hi
2 = m+ n.

Then,

lo + hi−lo
2 = 2m+ 2n+1−2m

2

= 2m+ (n−m)22 + 1
2

= 2m+ (n−m) + 0

= m+ n

= 2m
2 + 2n+1

2

= 2m+2n+1
2

= lo+hi
2

Lecture 6: Binary Search 24

lo is odd and hi is even Then, lo = 2m + 1 for some m and hi = 2n for
some n.

Observe that, in this case, lo+hi
2 = m+ n.

Then,

lo + hi−lo
2 = 2m+ 1 + 2n−(2m+1)

2

= 2m+ 1 + 2n−(2m+2)+1
2

= 2m+ 1 + (n−m− 1)22 + 1
2

= 2m+ 1 + (n−m− 1) + 0

= m+ n

= 2m+1
2 + 2n

2

= 2m+1+2n
2

= lo+hi
2

lo and hi are both odd Then, lo = 2m + 1 for some m and hi = 2n + 1 for
some n.

Observe that, in this case, lo+hi
2 = m+ n+ 1.

Then,

lo + hi−lo
2 = 2m+ 1 + 2n+1−(2m+1)

2

= 2m+ 1 + 2n−2m
2

= 2m+ 1 + (n−m)22

= 2m+ 1 + (n−m) + 0

= m+ n+ 1

= 2m+2n+2
2

= 2m+1+2n+1
2

= lo+hi
2

Solution of exercise 7 Since the only changes involve the body of the loop,
the initialization proofs (INIT) remain unchanged with respect to what was
examined in the lecture.

Because lo and hi remain unchanged, the proofs of preservation (PRES)
become trivial as the conclusion is identical to the conclusion.

Lecture 6: Binary Search 25

The proof of correctness would fail when we consider termination: since
lo and hi never change, and the loop guard compares lo and hi, the loop
will never terminate whenever lo != hi initially, i.e., whenever n != 0.

	Binary Search
	Implementing Binary Search
	Termination
	One More Observation
	Some Measurements
	Exercises

