Lecture 10
Linked Lists

15-122: Principles of Imperative Computation (Fall 2023)
Frank Pfenning, Rob Simmons, André Platzer, Iliano Cervesato

In this lecture we discuss the use of linked lists to implement the stack and
queue interfaces that were introduced in the last lecture. The linked list
implementation of stacks and queues allows us to handle work lists of any
length.

Additional Resources

o Review slides (https://cs.cmu.edu/~15122/handouts/slides/review/10- linkedlist.
pdf)

e OLI modules (https://cs.cmu.edu/~15122/handouts/oli/oli-10.shtml)

e Code for this lecture (https://cs.cmu.edu/~15122/handouts/code/10- linkedlist.
tgz)

This fits as follows with respect to our learning goals:

Computational Thinking: We discover that arrays contain implicit infor-
mation, namely the indices of elements, which an be made explicit as
the addresses of the nodes of a linked list. We also encounter the no-
tion of trade-off, as arrays and linked lists have different advantages
and drawbacks and yet achieve similar purposes.

Algorithms and Data Structures: We explore linked lists, a data structure
used pervasively in Computer Science, and examine some basic algo-
rithms about them.

Programming: We see that programming algorithms for linked lists can
be tricky, which exposes once more the power of stating and checking
invariant. We use linked lists to implement stacks and queues.

1 Linked Lists

Linked lists are a common alternative to arrays in the implementation of
data structures. Each item in a linked list contains a data element of some
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type and a pointer to the next item in the list. It is easy to insert and delete
elements in a linked list, which are not natural operations on arrays, since
arrays have a fixed size. On the other hand access to an element in the
middle of the list is usually O(n), where n is the length of the list.

An item in a linked list consists of a struct containing the data element
and a pointer to another linked list. In CO we have to commit to the type
of element that is stored in the linked list. We will refer to this data as
having type elem, with the expectation that there will be a type definition
elsewhere telling CO what elem is supposed to be. Keeping this in mind
ensures that none of the code actually depends on what type is chosen.
These considerations give rise to the following definition:

struct list_node {
elem data;
struct list_nodex next;
b
typedef struct list_node list;

This definition is an example of a recursive type. A struct of this type
contains a pointer to another struct of the same type, and so on. We usually
use the special element of type t*, namely NULL, to indicate that we have
reached the end of the list. Sometimes (as will be the case for our use of
linked lists in stacks and queues), we can avoid the explicit use of NULL and
obtain more elegant code. The type definition is there to create the type
name list, which stands for struct list_node, so that a pointer to a list
node will be List*. We could also have written these two statements in the
other order, to make better use of the type definition:

typedef struct list_node list;
struct list_node {
elem data;
list* next;
¥
There are some restriction on recursive types. For example, a declara-
tion such as

struct infinite {
int x;
struct infinite next;

}

would be rejected by the CO compiler because it would require an infinite
amount of space. The general rule is that a struct can be recursive, but
the recursion must occur beneath a pointer or array type, whose values are
addresses. This allows a finite representation for values of the struct type.
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We don’t introduce any general operations on lists; let’s wait and see
what we need where they are used. Linked lists as we use them here are
a concrete type which means we do not construct an interface and a layer of
abstraction around them. When we use them we know about and exploit
their precise internal structure. This is in contrast to abstract types such as
queues or stacks whose implementation is hidden behind an interface, ex-
porting only certain operations. This limits what clients can do, but it al-
lows the author of a library to improve its implementation without having
to worry about breaking client code. Concrete types are cast into concrete
once and for all.

2 List segments

A lot of the operations we'll perform in the next few lectures are on segments
of lists: a series of nodes starting at start and ending at end.

data next data next data next data next

« | <X

\ /

start

This is the familiar structure of an “inclusive-lower, exclusive-upper” bound:
we want to talk about the data in a series of nodes, ignoring the data in
the last node. That means that, for any non-NULL list node pointer 1, a
segment from [ to [ is empty (contains no data). Consider the following
structure:

data next data next data next data next

3 7 3 12 __|.|.

al
a2
a3
a4

According to our definition of segments, the data in the segment from a1 to
a4 is the sequence 3, 7, 3, the data in the segment from a2 to a3 contains the
sequence 7, and the data in the segment from a1 to al is the empty sequence.
Note that, if we compare the pointers a1 and a3, CO will tell us they are not



Lecture 10: Linked Lists 4

equal — even though they point to locations that contain the same data, a1
and a3 point to different locations in memory.

Given an inclusive beginning point start and an exclusive ending point
end, how can we check whether we have a segment from start to end? The
simple idea is to follow next pointers forward from start until we reach end.
If we reach NULL instead of end then we know that we missed our desired
endpoint, so that we do not have a segment. (We also have to make sure
that we say that we do not have a segment if either start or end is NULL, as
that is not allowed by our definition of segments above.) We can implement
this simple idea in all sorts of ways:

Recursively:

bool is_segment(listx start, listx end) {
if (start == NULL) return false;
if (start == end) return true;
return is_segment(start->next, end);

}

Using a while loop:

bool is_segment(listx start, listx end) {
listx 1 = start;
while (1 !'= NULL) {
if (1 == end) return true;
1 = 1->next;
}

return false;

}

Using a for loop:

bool is_segment(listx start, list*x end) {
for (listx p = start; p != NULL; p = p->next) {
if (p == end) return true;
}
return false;

}

However, every one of these implementations of is_segment has the same
problem: if given a circular linked-list structure, the specification function
is_segment may not terminate.

It’s quite possible to create structures like this, intentionally or uninten-
tionally. Here’s how we could create a circular linked list in Coin:
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--> listx start alloc(list);

--> start->data = 3;

--> start->next alloc(list);

--> start->next->data = 7;

--> start->next->next = alloc(list);

--> start->next->next->data = 3;

--> start->next->next->next = alloc(list);
--> start->next->next->next->data = 12;
--> start->next->next->next->next = start->next;
--> listx end alloc(list);

--> end->data = 18;

--> end->next = NULL;

--> is_segment(start, end);

and this is what it would look like:

data next data next data next data next
3 —"’Ti 7 S 3 12
start
data next

end > 18 __|+

Whenever possible, our specification functions should return true or false
rather than not terminating or raising an assertion violation. We do treat
it as strictly necessary that our specification functions should always be
safe — they should never divide by zero, access an array out of bounds, or
dereference a null pointer.
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3 Checking for Circularity

In order to make sure the is_segment function correctly handle the case of
cyclic loops, let’s write a function to detect whether a list segment is cyclic.
We can call this function before we call is_segment, and then be confident
that is_segment will always terminate.

Our cycle detection function makes use of two pointers, a fast and a
slow one. Let’s name them h for hare and t for tortoise. The slow pointer
t traverses the list in single steps. Fast h, on the other hand, skips two
elements ahead for every step taken by t. If the faster & starts out ahead of
t and ever reaches the slow ¢, then it must have gone in a cycle. Let’s try it
on our list. We show the state of ¢ and h on every iteration.

data next
1 > 2 > 3 > 4
] A
t h
6 5
data next
1 > 2 > 3 > 4
A T
h
t
6 5
data next
1 - 2 > 3 > 4
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data next

1 —> 2 > 3 —>

In code:

bool is_acyclic(listx start) {

if (start == NULL) return true;

list*x h = start->next; // hare

listx t = start; // tortoise

while (h '= t) {
if (h == NULL || h->next == NULL) return true;
h = h->next->next;
//@assert t != NULL; // faster hare hits NULL quicker
t = t->next;

}

//@assert h == t;

return false;

A few points about this code: in the condition inside the loop we exploit
the short-circuiting evaluation of the logical or “| |” so we only follow the
next pointer for ~ when we know it is not NULL. Guarding against trying to
dereference a NULL pointer is an extremely important consideration when
writing pointer manipulation code such as this. The access to h->next and
h->next->next is guarded by the NULL checks in the if statement.

This algorithm is a variation of what has been called the tortoise and the
hare and is due to Floyd 1967.

4 Queues with Linked Lists

Here is a picture of the queue data structure the way we envision imple-
menting it, where we have elements 1, 2, and 3 in the queue.
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data next

1 > 2 > 3 >

A A
front back

A queue is implemented as a struct with a front and back field. The
front field points to the front of the queue, the back field points to the back
of the queue. We need these two pointers so we can efficiently access both
ends of the queue, which is necessary since dequeue (front) and enqueue
(back) access different ends of the list.

It is convenient to have the back pointer point to one element past the
end of the queue. Therefore, there is always one extra element at the end
of the queue which does not have valid data or next pointer. We call it the
dummy node and we have indicated it in the diagram by writing X.

The above picture yields the following definition.

typedef struct queue_header queue;
struct queue_header {

listx front;

list* back;
b

We call this a header because it doesn’t hold any elements of the queue, just
pointers to the linked list that really holds them. The type definition allows
us to use queue_t as a type that represents a pointer to a queue header. We
define it this way so we can hide the true implementation of queues from
the client and just call it an element of type queue_t.

typedef queuex queue_t;

When does a struct of this type represent a valid queue? In fact, when-
ever we define a new data type representation we should first think about
the data structure invariants. Making these explicit is important as we
think about and write the pre- and postconditions for functions that im-
plement the interface.

What we need here is if we follow front and then move down the
linked list we eventually arrive at back. We called this a list segment. We
also want both front and back not to be NULL so it conforms to the pic-
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ture, with one element already allocated even if the queue is empty; the
is_segment function we already wrote enforces this.

bool is_queue(queuex Q) {
return Q !'= NULL
&& is_acyclic(Q->front)
&& is_segment(Q->front, Q->back);

To check if the queue is empty we just compare its front and back. If
they are equal, the queue is empty; otherwise it is not. We require that we
are being passed a valid queue. Generally, when working with a data struc-
ture, we should always require and ensure that its invariants are satisfied
in the pre- and post-conditions of the functions that manipulate it. Inside
the function, we will generally temporarily violate the invariants.

bool queue_empty(queuex Q)
//@requires is_queue(Q);
{

return Q->front == Q->back;

}

To obtain a new empty queue, we just allocate a list struct and point both
front and back of the new queue to this struct. We do not initialize the list
element because its contents are irrelevant, according to our representation.
Said this, it is good practice to always initialize memory if we care about
its contents, even if it happens to be the same as the default value placed
there.

queuex queue_new()
//@ensures is_queue(\result);
//@ensures queue_empty(\result);

{
queuex Q = alloc(queue); // Create header
list* dummy = alloc(list); // Create dummy node
Q->front = dummy; // Point front
Q->back = dummy; // and back to dummy node
return Q;

}

To enqueue something, that is, add a new item to the back of the queue,
we just write the data into the extra element at the back, create a new back
element, and make sure the pointers are updated correctly. You should
draw yourself a diagram before you write this kind of code. Here is a
before-and-after diagram for inserting 3 into a list. The new or updated
items are dashed in the second diagram.
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data next

1

N N

v
N
A4

front back

data next

1

In code:

void enq(queuex Q, elem x)

//@requires is_queue(Q);

//@ensures is_queue(Q);

{
list* new_dummy = alloc(list); // Create a new dummy node
Q->back->data = x; // Store x in old dummy node
Q->back->next = new_dummy;
Q->back = new_dummy;

}

Finally, we have the dequeue operation. For that, we only need to
change the front pointer, but first we have to save the dequeued element
in a temporary variable so we can return it later. In diagrams:
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data next
1 > 2 — —
K
front back
data next
1 - 2 —> —>
9
Frmmm————— J
1
1
1
1
]
1
front back

And in code:

elem deq(queuex Q)
//@requires is_queue(Q);
//@requires !queue_empty(Q);
//@ensures is_queue(Q);
{
elem x = Q->front->data;
Q->front = Q->front->next;
return x;

}



Lecture 10: Linked Lists 12

Let’s verify that our pointer dereferencing operations are safe. We have
Q->front->data

which entails two pointer dereference. We know is_queue(Q) from the
precondition of the function. Recall:

bool is_queue(queue Q) {
return Q !'= NULL
&8 is_acyclic(Q->front)
&8 is_segment (Q->front, Q->back);

}

We see that Q->front is okay, because by the first test we know thatQ != NULL
is the precondition holds. By the third test we see that both Q->front and
Q->back are not null, and we can therefore dereference them.

We also make the assignment Q->front = Q->front->next. Why does
this preserve the invariant? Because we know that the queue is not empty
(second precondition of deq) and therefore Q->front != Q->back. Be-
cause Q->front to Q->back s a valid non-empty segment, Q->front->next
cannot be null.

An interesting point about the dequeue operation is that we do not ex-
plicitly deallocate the first element. If the interface is respected there cannot
be another pointer to the item at the front of the queue, so it becomes un-
reachable: no operation of the remainder of the running programming could
ever refer to it. This means that the garbage collector of the C0O runtime sys-
tem will recycle this list item when it runs short of space.

5 Stacks with Linked Lists

For the implementation of stacks, we can reuse linked lists and the basic
structure of our queue implementation, except that we read off elements
from the same end that we write them to. We call the pointer to this end
top. Since we do not perform operations on the other side of the stack,
we do not necessarily need a pointer to the other end. For structural rea-
sons, and in order to identify the similarities with the queue implementa-
tion, we still decide to remember a pointer floor to a dummy node right
after the last element (or bottom) of the stack. With this design decision,
the validation function is_stack, internal to the library implementation,
and the client operations stack_empty and stack_new are implemented
identically to what we saw for queues. The floor pointer of the stack is
otherwise unused. A typical stack then has the following form:
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data next

3 > 2 > 1 >

A A
top floor

Here, 3 is the element at the top of the stack.
We define:

typedef struct stack_header stack;
struct stack_header {

list*x top;

listx floor;

}

bool is_stack(stackx S) {
return S != NULL
&& is_acyclic(S->top)
&& is_segment(S->top, S->floor);

Popping from a stack requires taking an item from the front of the
linked list, which is much like dequeuing.

elem pop(stackx S)
//@requires is_stack(S);
//@requires !stack_empty(S);
//@ensures is_stack(S);

{
elem x = S->top->data;
S->top = S->top->next;
return x;

}

To push an element onto the stack, we create a new list item, set its data
field and then its next field to the current top of the stack — the opposite
end of the linked list from the queue. Finally, we need to update the top
field of the stack to point to the new list item. While this is simple, it is still
a good idea to draw a diagram. We go from
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data next
3 > 2 > 1 >
3 N
top floor
to
data next data next
NEEE N Ny -
e
1
1
1
L m e
1
1
T
I
top floor
In code:

void push(stackx S, elem x)
//@requires is_stack(S);
//@ensures is_stack(S);

{
list* p = alloc(list); // Allocate a new top node
p->data = x;
p->next = S->top;
S->top = p;
}

The client-side type stack_t is defined as a pointer to a stack_header:
typedef stackx stack_t;

This completes the implementation of stacks.

6 Sharing

We observed in the last section that the floor pointer of a stack_header
structure is unused other than for checking that a stack is empty. This sug-
gests a simpler representation, where we take the empty stack to be NULL
and do without the floor pointer. This yields the following declarations
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typedef struct stack_header stack;
struct stack_header {

list* top;
b

bool is_stack(stackx S) {
return S !'= NULL && is_acyclic(S->top);
}

and pictorial representation of a stack:

data next

3 > 2 > 1| —ll

top

But, then, why have a header at all? Can’t we define the stack simply to be
the linked list pointed by top instead?

Eliminating the header would lead to a redesign of the interface and
therefore to changes in the code that the client writes. Specifically,

1. NULL is now a valid stack — it represents the empty stack. Therefore,
we would have to remove all those NULL checks from the interface.
(Alternatively, we can bring back the dummy node, but this time with
a mandatory NULL pointer in the next field.)

2. More dramatically, we need to change the type of push and pop. Con-
sider performing the operation push(S, 4) where S contains the ad-
dress of the stack from the caller’s perspective:

data next

3 2 1 | —ll

This call would result in the following stack:
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P S

\data next data next

4 l ~t==e 3 2 1 | =il

_______________

where p is a pointer to the newly allocated list node. Note that the
stack has not changed from the point of view of the caller! In fact,
from the caller’s standpoint, S still points to the node containing 3.
The only way for the caller to access the updated stack is that the
pointer p be given back to it. Thus, push must now return the updated
stack. Therefore, we need to change its prototype to

stack_t push(stack_t S, elem x);
The same holds for pop, with a twist: pop already returns the value

at the top of the stack. It now needs to return both this value and the
updated stack.

With such header-less stacks, the client has the illusion that push and pop
produces a new stack each time they are invoked. However, the underlying
linked lists share many of the same elements. Consider performing the
following operations on the stack S above:

stack_t S1 = push(S, 4);
stack_t S2 = push(S, 5);

This yields the following memory layout:

S
S1

data next data next

4 3 2 1 | —ll
\ data next )

All three stacks share nodes 3, 2 and 1. Observe furthermore that the second
call to push operated on S, which remained unchanged after the first call.
At this point, a pop on S would result in a fourth stack, say S3, which points
to node 2.

Sharing is an efficient approach to maintaining multiple versions of a
data structure as a sequence of operations is performed on them. Sharing is
not without its perils, however. As an exercise, consider an implementation
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of queues such that enq and deq return to their caller a pair of pointers
to the front and back of the underlying linked list (maybe packaged in a
struct). A carefully chosen series of enq and deq operations will break the
queue (or more precisely its representation invariant).
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7 Exercises

Exercise 1 (sample solution on page 22). Define the function
bool is_sum(listx start, listx end, int sum);

that checks that the sum of all nodes in the segment from start to end is equal
to sum. You may assume that the data contained in each node is an integer. How
should it behave if the segment is empty?

Exercise 2 (sample solution on page 22). Define the function

int lseg_len(listx start, listx end)
/*@requires is_segment(start, end); @x/ ;

that returns the number of elements in the list segment [start,end).

Exercise 3 (sample solution on page 22). Define the function

elem ith(listx 1, int 1)
/*@requires i >= 0; @*/ ;

that returns the data in i-th elements in list U (counting from 0). If there are fewer
than 1 elements before encountering a NULL pointer, an assertion should fail.

What is the asymptotic complexity of calling ith(1,1) on a list 1 with n
elements, assuming 0 <=1 < n?

Exercise 4 (sample solution on page 23). Define the following specification
functions on list segments with integer elements:

bool is_in_lseg(int x, listx start, listx end)
/*@requires is_segment(start, end); @x/ ;

bool is_sorted_lseg(listx start, listx end)
/*@requires is_segment(start, end); @x/ ;

The first returns true if x occurs in the list segment [start,end) and false
otherwise. The second returns true if the input list segment is sorted in ascending
order.

Exercise 5 (sample solution on page 24). The function ith(1, 1) you defined
in an earlier exercise works just like an array access A[1], except that it does
so on a linked list. Using it and other functions you wrote for previous exercises,
implement a version of binary search that operates on list segments. For simplicity,
you may assume that the type elem of data elements has been defined to be int.
Here's the function prototype.
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int lseg_binsearch(int x, listx start, listx end)
//@requires is_segment(start, end);
//@requires is_sorted_lseg(l, start, end);
/*@ensures (\result == -1 || !is_in_lseg(x, start, end))
|| (0 <= \result && \result < lseg_len(start, end) &&
ith(start, \result) == x);
@x/ ;

What is the asymptotic complexity of calling 1seg_binsearch(x, start, end)
on a list segment [start, end) with n elements?

Exercise 6 (sample solution on page 24). Recall the tortoise-and-hare imple-
mentation of circularity checking:

bool is_acyclic(listx start) {

if (start == NULL) return true;

listx h = start->next; // hare

listx t = start; // tortoise

while (h I=t) {
if (h == NULL || h->next == NULL) return true;
h = h->next->next;
//@assert t != NULL; // hare is faster and hits NULL quicker
t = t->next;

}
//@assert h == t;
return false;
}
We cannot proved the assertion t != NULL on line 8 with the given loop invari-

ants. Why? What loop invariants would allow us to prove that this assertion
holds? Can we write loop invariants that allow us to prove, when the loop exits,
that we have found a cycle?

Exercise 7 (sample solution on page 26). Here’s a simple idea to check that a
linked list is acyclic: first, we make a copy p of the start pointer. Then when we
advance p we run through an auxiliary loop to check if its next element is already
in the list. The code would be something like this:

bool bad_is_acyclic(listx start) {
for (listx p = start; p != NULL; p = p->next)
//@loop_invariant is_segment(start, p);

{
if (p == NULL) return true;

for (listx q = start; q != p; q = q->next)
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//@loop_invariant is_segment(start, q);
//@loop_invariant is_segment(q, p);
{
if (q == p->next) return false; /* circular =/
}
}
return true;

}

This code has however an issue. Can you find it?

Exercise 8 (sample solution on page 26). In this chapter, we validated a seg-
ment from nodes start to end by first calling is_acyclic(start) to make sure
there is no cycle starting at start, and then by calling is_segment (start, end)
to make sure start is connected to end. There is one situation however where this
approach does not return the expected result. What is this situation? Once you
have identified it, write a specification function is_definite_segment that is
immune from this issue, thereby returning true on all valid segments and false
on all invalid segments.

Exercise 9 (sample solution on page 27). Consider what would happen if we
pop an element from the empty stack when contracts are not checked in the linked
list implementation? When does an error arise?

Exercise 10 (sample solution on page 27). Complete the implementations of
stack as defined at the beginning of Section 6, dispensing with the floor pointer,
terminating the list with NULL instead.

Exercise 11 (sample solution on page 28). Consider an implementation of
queues as linked list such that enq and deq return to their caller a new header
to the front and back of the underlying linked list each time they are called. Engi-
neer a series of enq and deq operations that, starting from a valid queue, will result
in a data structure that does not satisfy the representation invariant of queues (i.e.,
result in a broken queue).

Exercise 12 (sample solution on page 29). We say “on the i iteration of our
naive is_segment loop, we know that we can get from start to p by following
exactly i pointers.” Write a function

is_reachable_in(listx start, listx end, int numsteps)
/*@requires numsteps >= 0; @/ ;

This function should return true if we can get from start to end in exactly
numsteps steps. Use this function as a loop invariant for is_segment.
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Exercise 13 (sample solution on page 30). What happens when we swap the
order of the last two lines in the enq function and why? For reference, here’s our
original code:

void enq(queuex Q, string s)
//@requires is_queue(Q);
//@ensures 1is_queue(Q) && !queue_empty(Q);
{
listx 1 = alloc(list);
Q->back->data = s;
Q->back->next = 1;
Q->back = 1;
}

Exercise 14. Write an interface and implementation of a double-ended queue
where we can add and remove elements at both ends. Make sure that all operations
you specify can be implemented in constant time.
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Sample Solutions

Solution of exercise 1

The sum of all the elements in a list (or array) segment would be defined
recursively as the first element plus the sum of the rest of the segment.
Then, it is natural to define the sum of an empty segment to be zero. Thus,
is_sum(start, end, n) onanemptysegment would return true exactly
whenn ==

bool is_sum(list* start, listx end, int sum)
//@requires is_segment(start, end);
{
listx 1 = start;
int n = 0;
while (1 !'= end) {
n += l->data;
1 = 1->next;
}

return n == sum;

}

Solution of exercise 2
The function 1seg_len is defined as follows:

int lseg_len(listx* start, listx end)
//@requires is_segment(start, end);
{

int n = 0;

for (listx p = start; p != end; p = p->next)

//@loop_invariant p != NULL;

{

n++;
}

return n;

}

Solution of exercise 3

For a change, we will assume the elements of the list have type elem, which
we could have defined as anything. We implement the function ith as
follows:
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elem ith(listx 1, int 1)
//@requires i >= 0;

{
for (listx p = 1; p != NULL; p = p->next) {
if (i == 0) return p->data;
i--3
}
assert(false); // i is greater than the length of 1
return p->data; // possibly unsafe but unreachable
}

For an n-element list 1, the asymptotic complexity of ith(1,1) is O(n).

Solution of exercise 4
Sample implementations of is_in_lseg and is_sorted_lseg are as fol-
lows:

bool is_in_lseg(int x, listx start, list*x end)
//@requires is_segment(start, end);

{
for (listx p = start; p != end; p = p->next)
//@loop_invariant p !'= NULL;
{
if (p->data == x) return true;
}
return false;
}

bool is_sorted_lseg(list* start, listx end)
//@requires is_segment(start, end);
{
if (start == end) // empty list segment
return true;

int x = start->data;

for (listx p = start->next; p != end; p = p->next)
//@loop_invariant p !'= NULL;
{

if (x > p->data) return false;
X = p->data;
}

return true;
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Solution of exercise 5

Here is the code for 1seg_binsearch. It differs from the code for binary
search on arrays in that we use ith(start, i) in all places where our orig-
inal code used A[i], and for the use of the adaptations of some of the
arrayutil specification functions.

int lseg_binsearch(int x, listx start, listx end)
//@requires is_sorted_lseg(start, end);
/*@ensures (\result == -1 || !is_in_lseg(x, start, end))
[| (0 <= \result & \result < lseg_len(start, end) &&
ith(start, \result) == x); @/

int lo
int hi

0;
lseg_len(start, end);

while (lo < hi)
//@loop_invariant 0 <= lo && lo <= hi && hi <= lseg_len(start, end);
{

int mid = 1o + (hi - l0)/2;

//@assert lo <= mid && mid < hi;

int mid_data = ith(start, mid);
if (mid_data == x) return mid;
if (mid_data < x) {

lo = mid+1;
} else { //@assert mid_data > x;

hi = mid;
}
}
//@assert !is_in_lseg(x,start,end);
return -1;

}

The complexity of 1seg_binsearch on a list segment of length n is
O(nlogn): it makes log n accesses to the list (just like binary search on ar-
rays) but each access now costs O(n).

Solution of exercise 6

We cannot prove the assertion t !'= NULL because we do not have anything
to point to about the value of t.
One natural candidate loop invariant is t != NULL. Proving that this

candidate loop invariant holds initially is immediate by lines 2 and 4. We
stumble on preservation however: knowing that t !'= NULL at the start of
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an arbitrary iteration of the loop does not allow us to conclude anything
about the value of t->next, which is the value of t at the end of this itera-
tion.

The crucial loop invariant we are missing is the information that the
tortoise t will be able to travel to the current position of the hare h by fol-
lowing next pointers. Of course, the hare will have moved on then, but
at least there is a chain of next pointers from the current position of the
tortoise to the current position of the hare. This is represented by adding
the loop invariant is_segment(t,h) in is_acyclic:

bool is_acyclic(listx start) {
if (start == NULL) return true;

if (start->next == NULL) return true;
list* h = start->next; // hare
listx t = start; // tortoise

while (h != t)

//@loop_invariant is_segment(t, h);

{
if (h->next == NULL || h->next->next == NULL) return true;
h = h->next->next;
t = t->next;

}

//@assert h == t;

return false;

}

Proving the validity of our added loop invariant is routine at this point,
and we leave it as an extra exercise.

Note that the version of is_segment we wrote in this chapter does not
have is_acyclic as a precondition. Had we provided such a precondi-
tion, these two specification functions would be mutually recursive, which
would greatly complicate proving the validity of our added loop invariant,
or make the proof impossible if this could trigger an infinite recursion. For-
tunately, an infinite recursion cannot happen. The key insight comes from
complexity analysis: the hare and the tortoise will never be farther apart
than the size of the cycle. This is not a point-to proof however.

The added loop invariant implies that t is not NULL since, whenever
is_segment(start,end) is true, neither start nor end can be NULL.

At the end of the loop, we know that h == t by the loop guard. This is
not sufficient to prove that there the node they point to is part of a cycle: any
empty segment has its start pointer equal to its end pointer whether there
is cycle or not. For a cycle to be present, we need to know that we can reach
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t from t->next. But observe that we set up the loop so that t->next ==
and each iteration sets these pointers further apart. This suggests adding
is_segment(t->next,h) as an additional loop invariant. Together with
the loop guard, it allows us to prove that we can reach t from t->next.

Solution of exercise 7
The code does not work when the input-list is a self-loop, as in the follow-
ing example:

int main() {

list* a = alloc(list);

a->next = a; // self loop

assert(bad_is_acyclic(a));

return 0;
}

As the first execution of the outer loop is executed, the loop guard of

the inner loop is immediately false. Since p->next is equal to p, the outer
loop runs for ever.

Solution of exercise 8
Consider a list segment that contains a cycle past its end pointer. Here’s an
example:

stfrt end
(o] o0 [ e[ V]
data  next data  next data  next

The call is_acyclic(start) will reject this list right away although there
is a valid segment from start to end.

We can fix this issue modifying is_acyclic to check if end has been
reached. To do so, we add end as an additional argument to our function
(renamed is_definite_segment) and return true if start is end or if the
hare passes or reaches end. We also need to modify the NULL cases to return
false instead of true as they do not identify the desire segment.
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bool is_definite_segment(listx start, listx end) {

if (start == NULL || end == NULL) return false; // MODIFIED
if (start == end) return true; // ADDED
listx h = start->next; // hare
listx t = start; // tortoise
while (h !'= t) {
if (h == NULL) return false; // MODIFIED
if (h == end || h->next == end) return true; // ADDED
if (h->next == NULL) return false; // ADDED

h = h->next->next;
//@assert t != NULL; // hare is faster and hits end quicker
t = t->next;

}

//@assert h == t;

return false;

}

This enhanced version of is_acyclic subsumes our original is_segment:
we do not need it anymore.

Solution of exercise 9

In the implementation of pop, we return the data element in node pointed
to by the top field of the stack header. Assuming this empty stack is valid,
the node that top points to is the same that the floor field points to, which
is a dummy node. This pop would have two problems:

1. The element returned is the value of the dummy node, which is un-
specified. The stack being empty, it is certainly a value that is not
contained in the stack.

2. In addition to returning the data element at the top of the stack, pop
sets top to top->next. This pointer too is unspecified. One of two
things can happen as execute this instruction:

e top->next is NULL, which entails that the next call to pop will
dereference the NULL pointer, thereby aborting the program.

e top->next is not NULL, in which case the next pop will produce
another element that is not in the stack.

In both cases, the stack would be invalid. Were contracts enabled, this
would be caught by the call to is_segment within is_stack.

Solution of exercise 10
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We only display the changes with respect to the implementation of stacks
shown earlier in this chapter

typedef struct stack_header stack;
struct stack_header {

list*x top;
b

bool is_stack(stackx S) {
return S !'= NULL && is_acyclic(S->top);
}

stackx stack_new()
//@ensures is_stack(\result);
{
stackx S = alloc(stack);
return S;

}

bool stack_empty(stack *S)
//@requires is_stack(S);
{
return S->top == NULL;
}

A first change of note is in the specification function is_stack: we do
not use is_segment since we are not using list segments in this implemen-
tation (there is no end-of-segment to check). We need however to check
that the underlying list is NULL-terminated. This equivalent to requiring
that it does not contain a cycle. In fact, a linked list is acyclic if and only if
it is NULL-terminated.

The remaining changes have to do with the end-of-list terminator. Since
NULL represents the empty (NULL-terminated) list, we check that a stack is
empty by simply testing whether the underlying list is NULL. The function
stack_new may at first appear like it is missing some instructions: recall
however that the default pointer value is NULL. Therefore, the top field of
the returned stack S has implicitly been initialized to the empty linked list.

Solution of exercise 11
Let’s start with the following 1-element queue Q1, with 1 as its data:
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Qi->front Q1l->back

L1 [ —4—D<DX]
data  next data  next

Next, let’s enqueue 2 into Q1. We get back the queue Q2 which point to the
front and back of the updated underlying list segment. Note that the front
and back pointers of Q1 still point to it’s original list segment

Q1->front Q1->back
|1 [ o] 2 [ —P<<]
data next data next data next
Q2->front Q2->back

So far so good: we have two queues in memory, which share two nodes.

Next, let’s enqueue 3 into Q1. We write this value into the data field of
the dummy node of Q1, which happens to be the node containing the value
of Q2 we just added. We also point the next field of that node to a new
dummy node. The resulting memory layout is as follows:

Q3->front Q3->back

Q1->front Q1l->back

data  next

\
1] e—f{s [ 7] XX
/ data  next data  next data  next

Q2->front Q2->back

But note that this last step destroyed Q2: the start and end nodes of Q2 are
not connected by a valid segment any more.
Sharing works wonderfully for stacks, but not for queues.

Solution of exercise 12
The code for is_reachable_in can be written in many ways. Here is one:
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bool is_reachable_in(list =*start, list*x end, int numsteps)
//@requires numsteps >= 0;
{
for (list %1 = start; 1 !'= end; 1 = 1->next) {
if (1 == NULL) return false;
numsteps--;
}
if (numsteps == 0) return true;
return false;
}

Having written this function, we can write an iterative variant of is_segment
that increments a counter at each iteration of the main loop. We can then
provide a loop invariant that uses is_reachable_in with the start node,
the current node and this counter as arguments. The code is as follows:

bool is_segmentC(list* start, listx end) {
int numsteps = 0;
for (listx p = start; p != NULL; p = p->next)
//@loop_invariant is_reachable_in(start, p, numsteps);
{
if (p == end) return true;
numsteps++;

}

return false;

}

Solution of exercise 13

The first two lines of enq create a new dummy node and store the element
to enqueue into the old dummy node. In the last two lines of eng, we
assign the pointers so that the old dummy node points to the new dummy
node and reassign the new back pointer of the queue to this new dummy
node. If we swap the order of the last two lines, we first assign Q->back
to the new dummy node. However, by doing so, we lost access to the old
dummy node, where the element we just enqueued is stored, and cannot
reassign its next pointer to the new dummy node (without traversing the
entire queue).
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