
Lecture 11
Unbounded Arrays

15-122: Principles of Imperative Computation (Fall 2023)
Rob Simmons, Frank Pfenning

Arrays have efficient O(1) access to elements given an index, but their size
is set at allocation time. This makes storing an unknown number of ele-
ments problematic: if the size is too small we may run out of places to put
them, and if it is too large we will waste memory. Linked lists do not have
this problem at all since they are extensible, but accessing an element is
O(n). In this lecture, we introduce unbounded arrays, which like lists can
hold an arbitrary number of elements, but also allow these element to be
retrieved in O(1) time? What gives? Adding (and removing) an element to
the unbounded array has cost either O(1) or O(n), but in the long run the
average cost of each such operation is constant — the challenge will be to
prove this last statement!

Additional Resources
• Review slides (https://cs.cmu.edu/~15122/handouts/slides/review/11-uba.

pdf)
• Code for this lecture (https://cs.cmu.edu/~15122/handouts/code/11-uba.

tgz)
• There is one short video associated with this lecture:

– Amortized Analysis (https://youtu.be/L8cXZ_4RHt8)

This maps to our learning goals as follows

Programming: We introduce unbounded arrays and operations on them.

Algorithms and Data Structures: Analyzing them requires amortized anal-
ysis, a particular way to reason about sequences of operations on data
structures.

Computational Thinking: We also briefly talk again about data structure
invariants and interfaces, which are crucial computational thinking con-
cepts.

But first, let’s introduce the idea of amortized analysis on a simpler exam-
ple.

LECTURE NOTES c© Carnegie Mellon University 2023

https://cs.cmu.edu/~15122/handouts/slides/review/11-uba.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/11-uba.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/11-uba.pdf
https://cs.cmu.edu/~15122/handouts/code/11-uba.tgz
https://cs.cmu.edu/~15122/handouts/code/11-uba.tgz
https://cs.cmu.edu/~15122/handouts/code/11-uba.tgz
https://youtu.be/L8cXZ_4RHt8
https://youtu.be/L8cXZ_4RHt8

Lecture 11: Unbounded Arrays 2

1 The n-bit Counter

A simple example we use to illustrate amortized analysis is the idea of a
binary counter that we increment by one at a time. If we have to flip each bit
individually, flipping n bits takes O(n) time.

Obviously, if we have an n-bit counter, the worst case running time of an
single increment operation is O(n). But does it follow that the worst case
running time of k operations is O(kn)? Not necessarily. Let’s look more
carefully at the cases where the operation we have to perform is the most
expensive operation we’ve yet considered:

We can observe two things informally. First, the most expensive operations
get further and further apart as time goes on. Second, whenever we reach a
most-expensive-so-far operation at step k, the total cost of all the operations
up to and including that operation is 2k − 1. Can we extend this reasoning
to say that the total cost of performing k operations will never exceed 2k?

One metaphor we frequently use when doing this kind of analysis is
banking. It’s difficult to think in terms of savings accounts full of microsec-
onds, so when we use this metaphor we usually talk about tokens, repre-
senting an abstract notion of cost. With a token, we can pay for the cost
of a particular operation; in this case, the constant-time operation of flip-
ping a bit. If we reserve (or budget) two tokens every time we perform any
increment, putting any excess into a savings account, then we see that after
the expensive operations we’ve looked out, our savings account contains 1
token. Our savings account appears to never run out of money.

Lecture 11: Unbounded Arrays 3

This is good evidence, but it still isn’t a proof. To offer something like a
proof, as always, we need to talk in terms of invariants. And we can see a
very useful invariant: the number of 1 bits always matches the number in
our savings account! This observation leads us to the last trick that we’ll
use when we perform amortized analysis in this class: we associate one to-
ken with each 1 in the counter as part of a meta data structure invariant. Like
normal data structure invariants, this meta data data structure invariant
should hold before and after carrying out an operation on the data struc-
ture. Differently from normal data structure invariants, it is not captured
in code — it resides in our minds only.

2 Amortized Analysis With Data Structure Invariants

Whenever we increment the counter, we’ll always flip some number (maybe
zero) of lower-order 1’s to 0, and then we’ll flip exactly one 0 to 1 (un-
less we’re out of bits in the counter). For example, incrementing the 8-bit
counter 10010011 yields 10010100: the two rightmost 1’s got flipped to 0’s,
the rightmost 0 was flipped into a 1, and all other bits were left unchanged.
We can explain budgeting two tokens for each increment as follows: one
token is used to pay for flipping the rightmost 0 in the current operation,
and one token is saved for when the resulting 1 will need to be flipped into
a 0 as part of a future increment. So, how do we pay for flipping the right-
most 1’s in this example? By using the tokens that were saved when they
got flipped from a 0 into the current 1.

No matter how many lower-order 1 bits there are, the flipping of those
low-order bits is paid for by the tokens associated with those bits. Then,
because we’re always gaining 2 tokens whenever we perform an increment,
one of those tokens can be used to flip the lowest-order 0 to a 1 and the
other one can be associated with that new 1 in order to make sure the data
structure invariant is preserved. Graphically, any time we increment the
counter, it looks like this:

(Well, not every time: if the counter is limited to n bits and they’re all 1, then
we’ll flip all the bits to 0. In this case, we can just throw away or lose track
of our two new tokens, because we can restore the data structure invariant
without needing the two new tokens. In the accounting or banking view,

Lecture 11: Unbounded Arrays 4

when this happens we observe that our savings account now has some
extra savings that we’ll never need.)

Now that we’ve rephrased our operational argument about the amount
of savings as a data structure invariant that is always preserved by the in-
crement operation, we can securely say that, each time we increment the
counter, it suffices to reserve exactly two tokens. This means that a series
of k increments of the n-bit counter, starting when the counter is all zeroes,
will take time in O(k). We can also say that each individual operation has
an amortized running time of 2 bit flips, which means that the amortized cost
of each operation is in O(1). It’s not at all contradictory for bit flips to have
an amortized running time in O(1) and a worst-case running time in O(n).

In summary: to talk about the amortized running time (or, more gener-
ally, the amortized cost) of operations on a data structure, we:

1. Invent a notion of tokens that stand in for the resource that we’re in-
terested in (usually time — in our example, a token is spent each time
a bit is flipped);

2. Specify, for any instance of the data structure, how many tokens need
to be held in reserve as part of the data structure invariant (in our
example, one token for each 1-bit);

3. Assign, for each operation we might perform on the data structure,
an amortized cost in tokens (in our example, two tokens for each in-
crement);

4. Prove that, for any operation we might perform on the data structure,
the amortized cost plus the tokens held in reserve as part of the data
structure invariant suffices to restore the data structure invariant.

This analysis proves that, for any sequence of operations on a data structure,
the cumulative cost of that sequence of operations will be less than or equal
to the sum of the amortized cost of those operations. Even if some of the
operations in that sequence have high cost (take a long time to run), that
will be at least paid for by other operations that have low cost (take a short
time to run).

This form of amortized analysis is sometimes called the potential method.
It is a powerful mathematical technique, but we’ll only use it for relatively
simple examples in this class.

3 What amortized analysis means

Tokens aren’t real things, of course! They are stand-ins for the actual re-
sources we’re interested in. Usually, the resource we are concerned about

Lecture 11: Unbounded Arrays 5

is time, so we match up tokens to the (frequently constant-time) operations
we have to do on our data structure. In the current example, we might be
storing the counter as an array of bool values, in which case it would take
a constant-time array write to flip one of the bits in the counter. (Tokens
will also correspond to array writes in the unbounded array example we
consider next.)

We do amortized analysis in order to prove that the inexpensive opera-
tions early on suffice to pay for any expensive operations that happen later.
There’s no uncertainty with amortized analysis: we know that, if we calcu-
late our overall time as if each increment costs two bit flips, we will never
underestimate the total cost of our computation.

This is different than average case analysis for quicksort, where we
know that sometimes the total cost of sorting could be higher than pre-
dicted (if we get unlucky in our random pivot selection). There’s no luck
in our amortized analysis: we know that the total cost of k increments is
in O(k), even though the worst case cost of a single increment operation is
O(n) bit flips.

4 Unbounded Arrays

In a previous homework assignment, you were asked to read in some files
such as the Collected Works of Shakespeare, the Scrabble Players Dictionary, or
anonymous tweets collected from Twitter. What kind of data structure do
we want to use when we read the file? In later parts of the assignment we
want to look up words, perhaps sort them, so it is natural to want to use an
array of strings, each string constituting a word. A problem is that before
we start reading we don’t know how many words there will be in the file

Lecture 11: Unbounded Arrays 6

so we cannot allocate an array of the right size! One solution uses either a
queue or a stack.

A non-sorting variant of the self-sorting array interface that we dis-
cussed before doesn’t seem like it would work, because it requires us to
bound the size of the array — to know in advance how much data we’ll
need to store. Let’s call this unsorted variant uba_t and rename the rest of
the interface accordingly:

// typedef ______* uba_t;

int uba_len(uba_t A)
/*@requires A != NULL; @*/
/*@ensures \result >= 0; @*/ ;

uba_t uba_new(int size)
/*@requires 0 <= size; @*/
/*@ensures \result != NULL; @*/
/*@ensures uba_len(\result) == size; @*/;

string uba_get(uba_t A, int i)
/*@requires A != NULL; @*/
/*@requires 0 <= i && i < uba_len(A); @*/;

void uba_set(uba_t A, int i, string x)
/*@requires A != NULL; @*/
/*@requires 0 <= i && i < uba_len(A); @*/;

It would work, however, if we had an extended interface of unbounded ar-
rays, where the uba_add(A,x) function increases the array’s size to add x
to the end of the array. There’s a complementary operation, uba_rem(A),
that decreases the array’s size by 1.

Lecture 11: Unbounded Arrays 7

void uba_add(uba* A, string x)
/*@requires A != NULL; @*/;

string uba_rem(uba* A)
/*@requires A != NULL; @*/
/*@requires 0 < uba_len(A); @*/;

We’d like to give all the operations in this extended array interface a run-
ning time in O(1).1 It’s not practical to give uba_add(A,x) a worst case
running time in O(1), but with a careful implementation we can show that
is possible to give the function an amortized running time in O(1).

5 Implementing Unbounded Arrays

Our original implementation of an interface for self-sorting arrays had a
struct with two fields: the data field, an actual array of strings, and a
length field, which contained the length of the array. This value, which
we will call the limit when talking about unbounded arrays, was what we
returned to the users when they asked for the length of the array.

While it wouldn’t work to have a limit that was less than the array
length we are reporting to the user, we can certainly have an array limit
that is greater: we’ll store the potentially smaller number that we report in
the size field.

typedef struct uba_header uba;
struct uba_header {
int size; /* 0 <= size && size < limit */
int limit; /* 0 < limit */
string[] data; /* \length(data) == limit */

};
typedef uba* uba_t;

int uba_len(uba* A)
//@requires is_uba(A);
//@ensures 0 <= \result && \result <= \length(A->data);
{
return A->size;

}

1It’s questionable at best whether we should think about uba_new being O(1), because
we have to allocate O(n) space to get an array of length n and initialize all that space to
default values. The operating system has enough tricks to get this cost down, however, that
we usually think of array allocation as a constant-time operation.

Lecture 11: Unbounded Arrays 8

If we reserve enough extra room, then most of the time when we need to
use uba_add to append a new item onto the end of the array, we can do
it by just incrementing the size field and putting the new element into an
already-allocated cell in the data array.

The images to the left above represent how the data structure is actually
stored in memory, and the images in the thought bubbles to the right rep-
resent how the client of our array library can think about the data structure
after an uba_add operation.

The data structure invariant sketched out in comments above can be
turned into an is_uba function like this:

bool is_uba_expected_length(string[] A, int limit) {
//@assert \length(A) == limit;
return true;

}

bool is_uba(uba* A) {
return A != NULL
&& 0 <= A->size && A->size < A->limit
&& is_uba_expected_length(A->data, A->limit);

}

Because we require that the size be strictly less than the limit, we can always
implement uba_add by storing the new string in A->data[A->size] and
then incrementing the size. But after incrementing the size, we might vio-
late the data structure invariant! We’ll use a helper function, uba_resize,
to resize the array in this case.

void uba_add(uba* A, string x)

Lecture 11: Unbounded Arrays 9

//@requires is_uba(A);
//@ensures is_uba(A);
{
A->data[A->size] = x;
(A->size)++;
uba_resize(A);

}

The uba_resize() function works by allocating a new array, copying the
old array’s contents into the new array, and replacing A->data with the
address of the newly allocated array.

void uba_resize(uba* A)
//@requires A != NULL && \length(A->data) == A->limit;
//@requires 0 < A->size && A->size <= A->limit;
//@ensures is_uba(A);
{
if (A->size == A->limit) {
assert(A->limit <= int_max() / 2); // Can’t handle bigger
A->limit = A->size * 2;

} else {
return;

}

//@assert 0 <= A->size && A->size < A->limit;
string[] B = alloc_array(string, A->limit);

for (int i = 0; i < A->size; i++)
//@loop_invariant 0 <= i && i <= A->size;
{
B[i] = A->data[i];

}

A->data = B;
}

The assertion assert(A->limit <= int_max() / 2) is there because, with-
out it, we have to worry that doubling the limit in the next line might over-
flow. Hard asserts like this allow us to safely detect unlikely failures that
we can’t exclude with contracts but that we don’t want to encode into our
interface.

Lecture 11: Unbounded Arrays 10

6 Amortized Analysis for Unbounded Arrays

Doubling the size of the array whenever we resize it allows us to give an
amortized analysis concluding that every uba_add operation has an amor-
tized cost of three array writes. Because array writes are our primary notion
of cost, we say that one token allows us to write to an array one time.

Here’s how the analysis works: our data structure invariant for tokens
is that every cell in use in the second half of the array (i.e., each cell at index
i in [limit/2, size)) and the corresponding cell in the first half of the array
(at index i− limit/2) will have one token associated with it. For clarity, we
color tokens in the first half of the array in blue and tokens in the second
half in gold. Each time we add an element to the array (at index size), we
use one token to perform that very write, store one gold token with this
element for copying it next time we double the size the array in a future
resize, and store one blue token for copying the corresponding element in
the first half of the array (at index size − limit/2) on that same resize. Thus,
budgeting three tokens for each uba_add operation suffices to preserve the
data structure invariant in every case that doesn’t cause the array to become
totally full. We therefore assign an amortized cost of three tokens to the add
operation.

In the cases where the addition does completely fill the array, we need to
copy over every element in the old array into a new, larger array in order to
preserve the A->size < A->limit data structure invariant. This requires
one write for every element in the old array. We can pay for each one of
those writes because we now have one gold token for each element in the
second half of the old array (at indices [limit/2, limit)) and one blue token
for each element in the first half of that array (at indices [0, limit/2)) —
which is the same as having one token for each cell in the old array.

Lecture 11: Unbounded Arrays 11

After the resize, exactly half the array is full, so our data structure invariant
for tokens doesn’t require us to have any tokens in reserve. This means that
the data structure invariant is preserved in this case as well. In general, the
number of tokens associated with an unbounded array is 2× size − limit .

This establishes that the amortized cost of uba_add is three array writes.
We do things that aren’t array writes in the process of doing uba_add, but
the cost is dominated by array writes, so this gives the right big-O notion
of (amortized) cost.

7 Shrinking the array

In the example above, we only resized our array to make it bigger. We could
also call uba_resize(A) in our uba_rem function, and allow that function
to make the array either bigger or smaller.

string uba_rem(uba* A)
//@requires is_uba(A);
//@requires 0 < uba_len(A);
//@ensures is_uba(A);
{
(A->size)--;
string x = A->data[A->size];
uba_resize(A);
return x;

}

If we want uba_rem to take amortized constant time, it will not work to
resize the array as soon as A is less than half full. An array that is exactly
half full doesn’t have any tokens in reserve, so it wouldn’t be possible to

Lecture 11: Unbounded Arrays 12

pay for halving the size of the array in this case. In order to make the
constant-time amortized cost work, the easiest thing to do is only resize
the array when it is less than one-quarter full. If we make this change, it’s
possible to reflect it in the data structure invariant, requiring that A->size
be in the range [A->limit/4, A->limit) rather than the range [0, A->limit)
that we required before.

In order to show that this deletion operation has the correct amortized
cost, we must extend our data structure invariant to also store tokens for
every unused cell in the left half of the array. (See the exercises below.)
Once we do so, we can conclude that any valid sequence of n operations
(uba_add or uba_rem) that we perform on an unbounded array will take
time in O(n), even if any single one of those operations might take time
proportional to the current length of the array.

Lecture 11: Unbounded Arrays 13

8 Exercises

Exercise 1 (sample solution on page 15). Here’s the code for uba_new:

53 uba* uba_new(int size)
54 //@requires 0 <= size;
55 //@ensures is_uba(\result);
56 //@ensures uba_len(\result) == size;
57 {
58 uba* A = alloc(uba);
59 int limit = size == 0 ? 1 : size*2;
60 A->data = alloc_array(string, limit);
61 A->size = size;
62 A->limit = limit;
63

64 return A;
65 }

Line 59 initializes limit to 1 if size is equal to 0, and to size*2 otherwise —
do you see why?

Let’s update our notion of cost to say that, in addition to each array write
costing one token (like earlier), allocating an array of n elements costs n tokens.
With this new cost model, what is the worst-case cost of uba_add? How many
tokens would we need to budget for each uba_add operation in order to prove that
it has a constant amortized cost?

Exercise 2 (sample solution on page 17). How would our amortized analysis
change if we increased the size of the array by 75% instead of 100%? What if we
increased it by 300%? You are allowed to have a cost in fractions of a token.

Exercise 3 (sample solution on page 17). From the previous exercise, we see
that resizing with larger factors costs fewer tokens than resizing with smaller fac-
tors. Why might we choose nonetheless to resize by a smaller factor rather than a
larger factor?

Exercise 4 (sample solution on page 17). You have recently opened a coffee
shop. So far, your coffee shop is still little known, and you have one coffee machine
to serve your (few) customers in a timely fashion. You notice that each customer
drinks one coffee a day, and they always come back the next day since your coffee
is so good. One coffee machine is enough to keep up with 50 people a day. Then,
one day, you get 50 people and buy a new machine to serve them. To celebrate, you
give a free coffee to all the old customers. And more customers come! You realize
that this business model, giving a free coffee to all previous customers each time
you expand, will make your coffee shop very popular very quickly!

Lecture 11: Unbounded Arrays 14

The price of a coffee machine is $100 and it costs you $2 to brew each cup of
coffee. If you throw a party each time you get a new machine, how much should
you charge your customers for this idea to be profitable? Is there a better strategy?

Exercise 5 (sample solution on page 18). If we only add to an unbounded array,
then we’ll never have less than half of the array full. If we want uba_rem to be able
to make the array smaller, we’ll need to reserve tokens when the array is less than
half full, not just when the array is more than half full. What is the precise data
structure invariant we need? How many tokens (at minimum) do we need to per
uba_rem operation in order to preserve it? What is the resulting amortized cost
(in terms of array writes) of uba_rem?

Exercise 6. When removing elements from the unbounded array, we resize if the
limit grossly exceeds its size. Namely when L->size <= L->limit/4. Your
first instinct might have been to already shrink the array when L->size <= L->limit/2.
We have argued by example why that does not give us constant amortized cost
O(n) for a sequence of n operations. We have also sketched an argument why
L->size <= L->limit/4 gives the right amortized cost. At which step in that
argument would you notice that L->size <= L->limit/2 is the wrong choice?

Lecture 11: Unbounded Arrays 15

Sample Solutions

Solution of exercise 1
Were line 59 to be simply int limit = size*2, then limit would remain
at 0 whenever size == 0.

Assume the array has limit n and size n − 1. The next uba_add will
trigger a resize. We will write the new element (which costs one token),
allocate a new array of length 2n (which costs 2n tokens), and copy the
elements of the old array to the new array (which costs n tokens). The total
cost is therefore 3n+ 1 tokens, which is in O(n).

To compute the amortized complexity of uba_add, let’s follow our method-
ology:

• Draw a short sequence of operations.

• Write the cost of each operation.

• Flag the most expensive

• For each operation, compute the total cost up to it.

• Divide the total cost of the most expensive operations by the opera-
tion number in the sequence.

• Round up — that’s the candidate amortized cost.

The following picture starts with no tokens in reserve, and a length-2 array
containing one element. It goes through eight calls to uba_add.

Lecture 11: Unbounded Arrays 16

For clarity, we split the cost of each operation into the array writing part
(which is identical to what we saw earlier) and the allocation part. On
this short run, we see that the total cost of the most expensive operations
divided by the operation number is 7. This is is the amortized number of
tokens we pretend each call to uba_add costs.

To show that this number is remains correct for longer runs, assume we
have zero tokens in reserve after resizing the array from size k to 2k. Since
each call to uba_add writes to the array, we will use one of the 7 tokens
obtained from the user right away, leaving a surplus of 6 tokens. Let’s see
what happens at step k + i for 0 < i ≤ k:

• If 0 < i < k, we simply save these surplus tokens. Right after step
k + i, we will have 6i tokens in reserve.

• When i = k, we need to resize. As seen earlier, we will need to per-
form one write to the old array, allocate a new array of size 4k and
copy all 2k elements from the old array to the new array. Altogether,
we need 6k+1 tokens. We have 6(k−1) tokens in reserve and receive 7
additional tokens from this call to uba_add. Now, 6(k−1)+7 = 6k+1,
which is exactly what we need for this step. We are left with zero to-
kens in reserve as we start the next cycle.

Lecture 11: Unbounded Arrays 17

Solution of exercise 2
In both cases, we begin our analysis right after an array resize and assume
that we have no reserve tokens leftover.

Resize by 75%: Suppose the array contains k elements on the last resize.
After this resize, the length of the array (limit) is k + 75%k = 7k/4.
The next resize will happen when once we fill this new array, i.e., after
3k/4 more calls to uba_add. To resize it, we need to copy over all 7k/4
elements into the larger array. So for each of the 3k/4 added elements,
we must receive at least (7k/4)/(3k/4) = 7/3 tokens from the caller to
have enough tokens to pay for copying all 7k/4 elements to the new
array. We also need one additional token for writing each of the 3k/4
added elements in the first place into the old array. In total, we need
to charge 7/3 + 1 = 10/3 tokens for each uba_add operation.

Resize by 300%: If the array contains k elements on the last resize, it’s
length is 4k. So we will resize it again after 3k uba_add operations.
Then, we will copy over all 4k elements into the larger array. Thus, for
each of the 3k elements we add, we need to receive at least 4k/3k =
4/3 tokens from the caller. We also use another token for writing each
of the 3k added elements to the old array. In total, we need to charge
4/3 + 1 = 7/3 tokens for each uba_add operation.

Solution of exercise 3
Resizing by a larger factor requires allocating more memory which will
remain unused longer. For example, if we resize a length k array by a factor
of 2, the new array will contain k empty positions and it will take k calls to
uba_add to fill the last position. On average, k/2 positions will be empty
during this time, which amounts to a quarter of the resized array being
empty. If we resize by a larger factor, say 4, the new array will contain 3k
empty positions and it will take 3k calls to fill the last position. On average,
3k/2 positions will be empty during this time, i.e., 3/8 of the array will be
empty on average.

If space usage is the only consideration, smaller resize factors are prefer-
able. However, if space is not too much of a concern for some niche appli-
cation but we want resizes to be infrequent, then using a larger resize factor
may be beneficial.

Solution of exercise 4
Suppose you have n coffee machines and have just reached 50n customers:
you buy a new machine ($100) and give all 50n customers free coffee (this
costs you $100n). You will expand again once you get 50 more new cus-
tomers, which means that these 50 customers must bring in enough income

Lecture 11: Unbounded Arrays 18

to pay for the new machine ($100), the expansion party ($100n) and the cof-
fee you are brewing for them $2×50 = $100). Thus, these next 50 customers
must be charged ($100 + $100n + $100)/50, i.e., $(4 + 2n) for each cup of
coffee. This depends on n and therefore can get very expensive! Your new
business is not likely to go very far if you charge this much for coffee!

You need to throw fewer parties. Inspired by unbounded arrays, let’s
see what happens if throw a party each time you double your number of
coffee machines? If you have n coffee machines and 50n customers, you
purchase n additional coffee machines (at a cost of $100n), give free coffee
to your old 50n customer (which costs you $100n). But now, it will take 50n
new customers before you need to buy new machines (and throw a party).
These next 50n customers will need to bring in enough income to pay for
the machines ($100n), the party ($100n) and the coffee they will be drinking
themselves ($2 × 50n = $100n). To cover these costs, you need to charge
each of them ($100n+ $100n+ $100n)/50n = $6.

You may have noticed that this second scenario matches closely the
analysis of uba_add for unbounded arrays: each new customer corresponds
to adding an element to the array, and each coffee corresponds to a token.

Solution of exercise 5
We assume a cost model where only array writes incur a cost. If our array
has length k, uba_add resizes it by doubling its length to 2k when adding
a new element makes it completely full. Instead, uba_rem resizes the array
to half its size, k/2 once it becomes a quarter full, i.e., once it contains k/4
elements. In both cases, we need to have enough tokens in reserve to copy
all the elements from the old array to the new array: that’s k and k/4 tokens
respectively. Notice that there is no inherent cost to uba_rem when we are
not resizing the array since nothing gets written in the array in this case.

We can show that uba_rem has O(1) amortized cost by charging one
token for this operation (each call to uba_add continues to cost three tokens)
— the amortized cost is constant since the number of tokens charged is
constant too.

Let’s first look at our worst possible situation: uba_add just doubled the
length of the array from k to 2k and let’s assume that copying the elements
to the new array consumed all the tokens in reserve. At this point (with
k elements and 0 saved tokens), we make a series of k/2 calls to uba_rem:
after the last one, the array will contain k/2 elements which is a quarter of
its length, 2k, and therefore it will cause the array to be resized down back
to length k. Starting our sequence of uba_rem with 0 tokens in reserve,
each call adds one token in the savings. So, once the get to the k/2-th call,
we have k/2 tokens in reserve, which is exactly what we need to pay for
copying the remaining k/2 elements to the new array in the accompanying

Lecture 11: Unbounded Arrays 19

resize. We are left with 0 tokens in reserve.
Were we to carry out only uba_add or uba_rem between resizes, this

would be the end of our analysis. But a generic run will intermix them.
In this more general setting, we may not consume all saved tokens when
resizing the array, but we will always have enough tokens in reserve to pay
for copying its elements.

To see this, let’s modify the above scenario by inserting one call to
uba_add followed by one call to uba_rem in the sequence of uba_rem. By
the end of this extended sequence and just before resizing the array, our
savings will contain k/2 tokens from our original k/2 calls to uba_rem,
but also 2 tokens from calling uba_add and 1 token from the additional
uba_rem. That’s 3 tokens more than we need to copy the array elements to
resize it.

In general, we may end up with an arbitrary number of surplus to-
kens in reserve. For example, if right after a resize up we alternate calling
uba_add and uba_rem k times each, we will have accumulated 3k tokens in
reserve and yet we are far from needing to resize the array.

	The n-bit Counter
	Amortized Analysis With Data Structure Invariants
	What amortized analysis means
	Unbounded Arrays
	Implementing Unbounded Arrays
	Amortized Analysis for Unbounded Arrays
	Shrinking the array
	Exercises

