
Lecture 19
Introduction to C

15-122: Principles of Imperative Computation (Fall 2023)
Rob Simmons

In this lecture, we begin our transition to C. In many ways, the lecture is
therefore about knowledge rather than principles, a return to the empha-
sis on programming that we had at the very beginning of the semester.
In future lectures, we will explore some deeper issues in the context of C.
Today’s lecture is designed to get you to the point where you can trans-
late a simple C0/C1 program or library (one that doesn’t use arrays, which
we’ll talk about in the next lecture) from C0/C1 to C. An important com-
plement to this lecture is the “C for C0 programmers” tutorial at https:
//bitbucket.org/c0-lang/docs/wiki/From_C0_to_C_-_Basics.

Additional Resources

• Review slides (https://cs.cmu.edu/~15122/handouts/slides/review/19-cintro.
pdf)

• Code for this lecture (https://cs.cmu.edu/~15122/handouts/code/19-cintro.
tgz)

• There are two short videos associated with this lecture:

– Freeing in C (https://youtu.be/J_FzhQAWiJ4)
– Using Valgrind (https://youtu.be/2e_u2eXe7P4)

There are two big ideas you need to know about. First, C has a whole
separate language wrapped around it, the C preprocessor language. The pre-
processor language can be used for a bunch of things: you only need to
understand a couple of ways that it gets used:

• Macro constant definitions: you’ll need to know how these are used in
the <limits.h> and <stdbool.h> libraries.

• Macro function definitions: you’ll need to know how these are used to
implement the "lib/contracts.h" library, and you’ll need to know
why they’re generally a dangerous idea.

LECTURE NOTES c© Carnegie Mellon University 2023

https://bitbucket.org/c0-lang/docs/wiki/From_C0_to_C_-_Basics
https://bitbucket.org/c0-lang/docs/wiki/From_C0_to_C_-_Basics
https://bitbucket.org/c0-lang/docs/wiki/From_C0_to_C_-_Basics
https://cs.cmu.edu/~15122/handouts/slides/review/19-cintro.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/19-cintro.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/19-cintro.pdf
https://cs.cmu.edu/~15122/handouts/code/19-cintro.tgz
https://cs.cmu.edu/~15122/handouts/code/19-cintro.tgz
https://cs.cmu.edu/~15122/handouts/code/19-cintro.tgz
https://youtu.be/J_FzhQAWiJ4
https://youtu.be/J_FzhQAWiJ4
https://youtu.be/2e_u2eXe7P4
https://youtu.be/2e_u2eXe7P4

Lecture 19: Introduction to C 2

• Conditional compilation: you need to know how #ifdef and #ifndef
are used, along with macro constant definitions, to make separate com-
pilation of libraries work in C.

Second, C has a different notion of allocating memory than C0. In particu-
lar, C is not garbage collected, so whenever we allocate memory, we have
to make sure that memory eventually gets freed.

Lecture 19: Introduction to C 3

1 Running Example

Our discussion will center around translating a very simple C0 interface
and implementation, and a little program that uses that interface.

1.1 A simple interface simple.c0

1 #use <util>
2

3 /*** Interface ***/
4 int absval(int x)
5 /*@requires x > int_min(); @*/
6 /*@ensures \result >= 0; @*/ ;
7

8 struct point2d {
9 int x;

10 int y;
11 };
12

13 /*** Implementation ***/
14 int absval(int x)
15 //@requires x > int_min();
16 //@ensures \result >= 0;
17 {
18 int res = x < 0 ? -x : x;
19 return res;
20 }

1.2 A simple test program: test.c0

#use <conio>
int main() {
struct point2d* P = alloc(struct point2d);
P->x = -15;
P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);
print("x coord: "); printint(P->x); println("\n");
return 0;

}

We can compile this program by running: cc0 -d simple.c0 test.c0

Lecture 19: Introduction to C 4

2 Introducing the Preprocessor Language

In C0 programs, just about the only time we typed the ’#’ key was to include
a built-in library like conio by writing: #use <conio>. The C preprocessor
language is built around different directives that all start with ’#’. The first
two you need to know about are #include and #define.

The #include directive is what replaces #use in C0. Here are some
common #include directives you’ll see in C programs:

#include <stdlib.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>

The <stdlib.h> library is related to C0’s <util> library, <stdio.h> is re-
lated to <conio> in C0, and <string.h> is related to <string> in C0.

The <stdbool.h> file is also important: the type bool and the constants
true and false aren’t automatically included in C, so this library includes
them. We’ll talk more about libraries, and in particular the .h extension,
later.

3 Macro Definitions

C0 has a very simple rule: an interface can describe types, structs, and func-
tions. This leads to some weirdnesses, though: the C0 <util> library has to
give you a function, int_max(), for referring to the maximum representable
32-bit two’s complement integer.

The #define macro gives you a way to define this as a constant in C.

#define INT_MAX 0x7FFFFFFF

In C, the directives of the preprocessor language are used by a preprocessor, a
component that gets executed before the C compiler. The preprocessor does
a textual replacement of all macro definitions with the expression they are
defined as. So, whenever the preprocessor sees INT_MAX in your program, it
replaces it with 0x7FFFFFFF. The C compiler itself will never see INT_MAX.

This textual replacement must be done very carefully: for instance, this
is a valid, if needlessly verbose, definition of INT_MIN:

#define INT_MIN -1 ^ 0x7FFFFFFF

Then imagine that later in the program we wrote INT_MIN / 256, which
ought to be equal to −231/28 = −223 = −16777216. This would get ex-
panded by the C preprocessor language to -1 ^ 0x7FFFFFFF / 256, which

Lecture 19: Introduction to C 5

the compiler would happily treat as -1 ^ (0x7FFFFFFF / 256), which is
−8388608. The problem is that the preprocessor doesn’t know or care about
the order of operations in C: it’s just blindly substituting text. Parentheses
would fix this particular problem:

#define INT_MIN (-1 ^ 0x7FFFFFFF)

The best idea is to use #define sparingly and mostly get your macro def-
initions from standard libraries. The definitions INT_MIN and INT_MAX are
already provided by the standard C library <limits.h>.

4 Conditional Compilation

Another very powerful but very-easy-to-get-wrong feature of the macro
language is conditional compilation. Based on whether a symbol is defined or
not, the preprocessor can choose to ignore a whole section of text or choose
between separate sections of text. This is used in a couple of different ways.
Sometimes we use #ifndef (if not defined) to make sure we’re not defining
something twice:

#ifndef INT_MIN
#define INT_MIN (~0x7FFFFFFF)
#endif

We can also use #ifdef and #else to pick between different pieces of
code to define. The code below is very different from C0/C code with a
condition if (version_one) statement, because only one of the two print
statements below will ever even get compiled. The other one will be cut
out of the program by the preprocessor before the compiler even sees it!

#ifdef VERSION_ONE
printf("This is version 1\n");
#else
printf("This is not version 1\n");
#endif

One interesting thing about this example is that we don’t care what
VERSION_ONE is defined to be: we’re just using the information about whether
it is defined or not. We’ll use the DEBUG symbol in some of our C programs
to include certain pieces of code only when DEBUG is defined.

#ifdef DEBUG
printf("Some helpful debugging information\n");
#endif

Lecture 19: Introduction to C 6

5 Macro Functions

A more powerful version of macro definition is the macro function. For ex-
ample:

#define MULT(x,y) ((x)*(y))

Using parentheses defensively is very important here, because otherwise
the precedence issues we described before will only get worse. The only
place we’ll use macro functions in 15-122 is to define something like C0
contracts in C. The macro functions ASSERT, REQUIRES, and ENSURES turn
into assertions when the DEBUG symbol is present, but otherwise they are
replaced by ((void)0), which just tells the compiler to do nothing at all.

#ifndef DEBUG

#define ASSERT(COND) ((void)0)
#define REQUIRES(COND) ((void)0)
#define ENSURES(COND) ((void)0)

#else

#define ASSERT(COND) assert(COND)
#define REQUIRES(COND) assert(COND)
#define ENSURES(COND) assert(COND)

#endif

The code above isn’t something you have to write yourself: it’s pro-
vided for you in the file contracts.h that will be in the lib directory of all
of our C projects in 15-122. Therefore, we write:

#include "lib/contracts.h"

in order to include these macro-defined contracts in our programs. When
we use quotes instead of angle brackets for #include, as we do here, it just
means that we’re looking for a library we wrote ourselves and are using lo-
cally, not a standard library that we expect the compiler will find wherever
it stores its standard library interfaces.

6 C0 Contracts in C

There’s no assertion language in C: everything starting with //@ and every-
thing written inside /*@... @*/ is just a treated as a comment and ignored.

Lecture 19: Introduction to C 7

We’ll still write C0-style contracts in our interfaces, but those contracts are
now just comments, good for documentation, but not for runtime checking.

All contracts, including preconditions and postconditions, have to be
written inside of the function if we want them to be checked at runtime.

int absval(int x) {
REQUIRES(x > INT_MIN);
int res = x < 0 ? -x : x;
ENSURES(res >= 0);
return res;

}

There’s not a good replacement for loop invariants in C; they just have
to be replaced with careful uses of ASSERT.

7 Memory Allocation

In C0, we allocate pointers of a particular type; in C, we allocate pointers of a
particular size: the operator sizeof takes a type and returns the number of
bytes in this type, and it is this size that we pass to the allocation function.
The default way of allocating a struct or integer (or similar) in C is to use
the function malloc, provided in the standard <stdlib.h> library.

C0: int* x = alloc(int);
C: int* x = malloc(sizeof(int));

One quirk with malloc is that it does not initialize memory, so deref-
erencing x before storing some integer into x could return an arbitrary
value. (The computer is able to allocate memory slightly more efficiently if
it doesn’t have to initialize that memory.) This is different from C0, where
allocated memory was always initialized to a default value: NULL for point-
ers, 0 for integers, "" for strings, and so on.

Another quirk with malloc is that it is allowed to return NULL. Ulti-
mately there is only a finite amount of memory accessible to the computer,
and malloc will return NULL when there is no memory left to allocate.
Therefore, we will usually use a 15-122 library "lib/xalloc.h", which
provides the function xmalloc. The xmalloc function provided by this
library works the same way malloc does, except that the result is sure not
to be NULL.

C: int* x = xmalloc(sizeof(int)); // x is definitely not NULL

By replacing allocwith xmalloc and sizeof, we can now translate our
test.c0 file into test.c. The series of print statements has been replaced
by a single function printf.

Lecture 19: Introduction to C 8

1 #include <stdbool.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4 #include <assert.h>
5 #include "lib/xalloc.h"
6

7 int main() {
8 struct point2d* P = xmalloc(sizeof(struct point2d));
9 P->x = -15;

10 P->y = 0;
11 P->y = P->y + absval(P->x * 2);
12 assert(P->y > P->x && true);
13 printf("x coord: %d\n", P->x);
14 return 0;
15 }

We needed an extra line, P->y = 0;, that wasn’t present in the original
file to cope with the fact that the malloc-ed y field isn’t initialized to 0 the
way it was in C0.

8 Compiling

Our code won’t actually compile yet, but we can try to compile it now
that we’ve translated both simple.c and test.c. When we call gcc, the C
compiler, we’ll give it a long series of flags:� �
% gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG ...� �

The flags -Wall, -Wextra, and -Wshadow represent a bunch of optional
compilation Warnings we want to get from the compiler, and -Werror
means that if we get any warnings the code should not be compiled. The
flag -std=c99 means that the version of C we are using is the one that was
written down as the C99 standard, a standard we want to adhere to in a
-pedantic way.

The flag -g keeps information in the compiled program which will
be helpful for the valgrind utility tool (see below after the discussion of
free). The flag -DDEBUG means that we want the preprocessor to run with
the DEBUG symbol Defined. As we talked about before, this means that con-
tracts will actually be checked at runtime: -DDEBUG is the C version of the
-d flag for the C0 compiler and interpreter.

Lecture 19: Introduction to C 9

9 Separate Compilation

If we try to compile the translated C files we have so far, it won’t work:� �
% gcc ...all those flags... lib/*.c simple.c test.c
test.c: In function "main":
test.c:8:38: error: invalid application of sizeof to incomplete type...

struct point2d* P = xmalloc(sizeof(struct point2d));
^

test.c:10:3: error: implicit declaration of function absval...
P->y = P->y + absval(P->x * 2);
^� �

If compiling C worked like compiling C0, test.c would be able to see the
interface from simple.c, which includes the definition of struct point2d
and the type of absval, because simple.c came ahead of test.c on the
command line. However, C doesn’t work this way: every C file is compiled
separately from all the other C files.

To get our code to compile, we want to split up the simple.c file into
two parts: the interface, which will go in the header file simple.h, and
the implementation, which will stay in simple.c and will #include the
interface "simple.h". Then, we can also #include the simple interface in
test.c.

This is actually a good thing from the perspective of respecting the in-
terface: test.c will have access to the interface in simple.h, but couldn’t
accidentally end up relying on extra things defined in simple.c.

Lecture 19: Introduction to C 10

9.1 Interface: simple.h

In addition to containing the interface from simple.c0, the header file con-
taining the simple.h interface, like all C header files, needs to use #ifndef,
#define, and #endif. These three preprocessor declarations, in combina-
tion, make sure that we can only end up including this code one time, even
if we intentionally or accidentally write #include "simple.h" more than
once.

1 #ifndef SIMPLE_H
2 #define SIMPLE_H
3

4 int absval(int x)
5 /*@requires x >= INT_MIN; @*/
6 /*@ensures \result >= 0; @*/ ;
7

8 struct point2d {
9 int x;

10 int y;
11 };
12

13 #endif

9.2 Implementation: simple.c

The C file will include both the necessary libraries and the interface. The
implementation should always #include the interface.

1 #include <limits.h>
2 #include "lib/contracts.h"
3 #include "simple.h"
4

5 int absval(int x) {
6 REQUIRES(x > INT_MIN);
7 int res = x < 0 ? -x : x;
8 ENSURES(res >= 0);
9 return res;

10 }

Lecture 19: Introduction to C 11

9.3 Main file: test.c

1 #include <stdbool.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4 #include <assert.h>
5 #include "lib/xalloc.h"
6 #include "simple.h"
7

8 int main() {
9 struct point2d* P = xmalloc(sizeof(struct point2d));

10 P->x = -15;
11 P->y = 0;
12 P->y = P->y + absval(P->x * 2);
13 assert(P->y > P->x && true);
14 printf("x coord: %d\n", P->x);
15 return 0;
16 }

At this point, compilation will proceed without errors.

10 Memory Leaks

See the short video on Freeing in C at https://www.youtube.com/embed/
J_FzhQAWiJ4.

Unlike C0, C does not automatically manage memory. Thus, programs
have to free the memory they allocate explicitly; otherwise, long-running
or memory-intensive programs are likely to run out of space. For that, the
C standard library provides the function free, declared with

void free(void* p);

The restrictions as to its proper use are

1. It is only called on pointers that were returned from malloc or calloc
(possibly indirectly via the xalloc library).1

2. After memory has been freed, it is no longer referenced by the pro-
gram in any way.

Freeing memory counts as referencing it, so the restrictions imply that you
should not free memory twice. And, indeed, in C the behavior of freeing
memory that has already been freed is undefined and may be exploited

1or realloc, which we have not discussed.

https://www.youtube.com/embed/J_FzhQAWiJ4
https://www.youtube.com/embed/J_FzhQAWiJ4
https://www.youtube.com/embed/J_FzhQAWiJ4

Lecture 19: Introduction to C 12

by an adversary. If these rules are violated, the result of the operations is
undefined. The valgrind tool will catch dynamically occurring violations
of these rules, but it cannot check statically if your code will respect these
rules when executed.

Managing memory in your C programs means walking the narrow way
between two pitfalls: all allocated memory should be freed after it is no
longer used, but no allocated memory should be referenced after it is freed!
Falling into the first pit causes memory leaks, which cause long-running pro-
grams to run out of unallocated memory. Falling into the second one causes
undefined, i.e. unpredictable, behavior.

The golden rule of memory management in C is

You allocate it, you free it!

By inference, if you didn’t allocate it, you are not allowed to free it! But
this rule is tricky in practice, because sometimes we do need to transfer
ownership of allocated memory so that it “belongs” to a data structure.

Binary search trees are one example. When client code adds an element
to the binary search tree, is it in charge of freeing that element, or should
the library code free it when it frees the binary search tree? There are ar-
guments to be made for both of these options. If we want the library code
for the BST to “own” the reference, and therefore be in charge of freeing it,
we can write the following function that frees a binary search tree, given
a function pointer that frees elements. The library can allow this function
pointer to be NULL: if it’s NULL the library code doesn’t own the elements,
and doesn’t do anything to them. We also show the function that frees a
dictionary implemented as a binary search tree.

typedef void entry_free_fn(entry e);

void tree_free(tree *T, entry_free_fn *Fr) {
REQUIRES(is_bst(T));
if (T != NULL) {
if (Fr != NULL) (*Fr)(T->data);
tree_free(T->left, Fr);
tree_free(T->right, Fr);
free(T);

}
return;

}

void dict_free(dict *B, entry_free_fn *Fr) {
REQUIRES(is_dict(B));

Lecture 19: Introduction to C 13

tree_free(B->root, Fr);
free(B);
return;

}

We should never free elements allocated elsewhere; rather, we should
use the appropriate function provided in the interface to free the memory
associated with the data structure. Freeing a data structure, for instance by
calling free(T), is something the client itself cannot do reliably, because
it would need to be privy to the internals of the data structure implemen-
tation. If the client called free(B) on a dictionary it would only free the
header; the tree itself would be irrevocably leaked memory.

11 Detecting Memory Mismanagement

See the short video on Using Valgrind at https://www.youtube.com/embed/
2e_u2eXe7P4.

Memory leaks can be quite difficult to detect by inspecting the code. To
discover whether memory leaks may have occurred at runtime, we can use
the valgrind tool.

For example, our test.c program that allocates but does not free mem-
ory, like this,

int main() {
struct point2d* P = xmalloc(sizeof(struct point2d));
P->x = -15;
P->y = 0;
P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);
printf("x coord: %d\n", P->x);
return 0;

}

gets a report from valgrind like this, indicating a memory leak:� �
% valgrind ./a.out
...
HEAP SUMMARY:
==40284== in use at exit: 8 bytes in 1 blocks
==40284== total heap usage: 1 allocs, 0 frees, 8 bytes allocated
==40284==
==40284== LEAK SUMMARY:
==40284== definitely lost: 8 bytes in 1 blocks

https://www.youtube.com/embed/2e_u2eXe7P4
https://www.youtube.com/embed/2e_u2eXe7P4
https://www.youtube.com/embed/2e_u2eXe7P4

Lecture 19: Introduction to C 14

...� �
If we add code to free P just before the return statement, we get a clean

bill of health from valgrind:� �
...
HEAP SUMMARY:
==41495== in use at exit: 0 bytes in 0 blocks
==41495== total heap usage: 1 allocs, 1 frees, 8 bytes allocated
==41495==
==41495== All heap blocks were freed --- no leaks are possible
...� �

If, on the other hand, we free P at the wrong point in our code, like this:

int main() {
struct point2d* P = xmalloc(sizeof(struct point2d));
...
free(P);
printf("x coord: %d\n", P->x);
return 0;

}

valgrind detects that we have referenced memory after freeing it (this
is our second pitfall):� �
...
==43895== Invalid read of size 4
==43895== at 0x400886: main (test.c:25)
==43895== Address 0x51f6040 is 0 bytes inside a block of size 8 free’d
...� �
valgrind is capable of flagging errors in code that didn’t appear to have
any errors when run without valgrind. It slows down execution, but if
at all feasible you should test all your C code in this manner to uncover
memory problems. For best error messages, you should pass the -g flag to
gcc which preserves some correlation between binary and source code.

Lecture 19: Introduction to C 15

12 Exercises

Exercise 1 (sample solution on page 20). Translate the following C1 stack li-
brary into C, including any contracts, allocations, and the inclusion of any system
libraries it needs. You may assume that the functions seen in class for C0-style con-
tracts and safe allocation are declared in lib/contracts.h and lib/xalloc.h,
respectively. Do not worry about freeing memory.

/**/
/**************************** Client Interface **************************/

typedef void* stackelem; // Element type

/************************* End Client Interface *************************/
/**/

/**/
/************************* BEGIN IMPLEMENTATION *************************/

typedef struct slist_node slist;
struct slist_node { // structure of linked lists
stackelem data;
slist* next;

};

typedef struct stack_header stack;
struct stack_header { // Stacks
slist* top;
slist* bottom;

};

bool stack_empty(stack* S)
//@requires S != NULL;
{
return S->top == S->bottom;

}

stack* stack_new()
//@ensures \result != NULL;
//@ensures stack_empty(\result);
{

Lecture 19: Introduction to C 16

stack* S = alloc(stack);
slist* p = alloc(slist);
S->top = p;
S->bottom = p;
return S;

}

void push(stack* S, stackelem e)
//@requires S != NULL;
//@ensures !stack_empty(S);
{
slist* p = alloc(slist);
p->data = e;
p->next = S->top;
S->top = p;

}

stackelem pop(stack* S)
//@requires S != NULL;
//@requires !stack_empty(S);
{
stackelem e = S->top->data;
S->top = S->top->next;
return e;

}

typedef stack* stack_t;

/************************** END IMPLEMENTATION **************************/
/**/

/**/
/*************************** Library Interface **************************/

// typedef ______* stack_t;

bool stack_empty(stack_t S) /* O(1) */
/*@requires S != NULL; @*/ ;

stack_t stack_new() /* O(1) */
/*@ensures \result != NULL; @*/
/*@ensures stack_empty(\result); @*/ ;

Lecture 19: Introduction to C 17

void push(stack_t S, stackelem x) /* O(1) */
/*@requires S != NULL; @*/
/*@ensures !stack_empty(S); @*/ ;

stackelem pop(stack_t S) /* O(1) */
/*@requires S != NULL; @*/
/*@requires !stack_empty(S); @*/ ;

Exercise 2 (sample solution on page 23). Here is some client code that uses the
C1 stack library in the previous exercise.

#use <conio>

int main() {
// Create a stack of ints
stack_t S = stack_new();

int* elem1 = alloc(int);

*elem1 = 1;
push(S, (void*)elem1);
int* elem2 = alloc(int);

*elem2 = 2;
push(S, (void*)elem2);
int* elem3 = alloc(int);

*elem3 = 3;
push(S, (void*)elem3);

int i = 3;
while (i > 1)
//@loop_invariant 1 <= i && i <= 3;
{
int* elem = (int*)pop(S);
assert(*elem == i);
i--;

}

printf("All tests passed!\n");
return 0;

}

Following the approach seen in this chapter, translate it to C. Also here, do not
worry about freeing memory.

Lecture 19: Introduction to C 18

Exercise 3 (sample solution on page 24). Recall that everything that is malloc’ed
must have a corresponding free. In the last exercise, the stack is never freed. Im-
plement the function

void stack_free(stack_t S, free_elem* f)

that allows a client to free a stack created by stack_new when it is not needed
any more. The last argument, f, can be either NULL to indicate that stack_free
shall not free the data contained in the stack, or a pointer to a function that knows
how to free the data.

Besides implementing stack_free, equip it with any contracts it may need,
define the type free_elem, and describe the changes that need to be made to both
the interface and the implementation files in the previous exercise.

Because this code calls free, we will want to include the header file that
defines it. That’s <stdlib.h>.

Exercise 4 (sample solution on page 26). Update the client code you translated
earlier to free allocated memory before returning.

Exercise 5 (sample solution on page 27). The translated stack library and client
code still leak memory. Run this code using Valgrind and determine where this leak
comes from. (You may call Valgrind with the flag --leak-check=full to locate
the source of the leak). Then fix it.

Exercise 6 (sample solution on page 29). Write the C function stack_copy
that takes in a stack and returns a copy of this stack using the interface functions
in the previous exercises — stack_copy is a client function. Then, write some
test code that use stack_copy. For both parts, make sure to free any memory that
would become unreachable.

One thing we need to remember is to free the temporary stack temp. It
is empty so we pass NULL as the second argument of stack_free. If we do
not free this stack, its header will be leaked.

Exercise 7 (sample solution on page 29). Here’s a main function that uses
stack_copy:

int main() {
int* elem1 = xmalloc(sizeof(int)); // Create some elements

*elem1 = 1;
int* elem2 = xmalloc(sizeof(int));

*elem2 = 2;
int* elem3 = xmalloc(sizeof(int));

*elem3 = 3;

Lecture 19: Introduction to C 19

stack_t S = stack_new(); // Create a stack
push(S, (void*)elem1);
push(S, (void*)elem2);

stack_t S_copy = stack_copy(S); // Make a copy

stack_free(S, &free); // free the stack

int* x = pop(S_copy);
printf("%d\n", *x);
push(S_copy, (void*)elem3);
stack_free(S_copy, &free); // free the copy

printf("All tests passed!\n");
return 0;

}

However, when we run it, it doesn’t seem to work. Valgrind tells us that there is
an invalid read. Valgrind also tells us that there is an invalid free. Why are these
issues occurring and what simple fix we can make them go away?

Lecture 19: Introduction to C 20

Sample Solutions

Solution of exercise 1 As done in this chapter, we split our translation of
this library into two files. We put the interface in a header file (ending in
.h) and the implementation in a .c file. Let’s look at them in turn.

Like all header files, the header file for this library uses a header guard
(controlled by the macro definition STACK_H) to prevent declaring the types
and function prototypes therein multiple times. One difference with the
example seen in this chapter is the way the type stack_t is declared. C
does not support pseudo-typedefs like we had in C0 and, were we to de-
fine stack_t as stack*, the compiler would complain that the type stack
is undefined. C does let us define stack_t as struct stack_header*,
which is what we do. Clearly, this exposes the fact that the implemen-
tation has a type called struct stack_header but it does not reveal the
fields of this struct. We also need to include <stdbool.h> since the func-
tion stack_empty returns a bool. The resulting contents of this header file
is as follows:

Lecture 19: Introduction to C 21

#ifndef STACK_H
#define STACK_H

#include <stdbool.h>

typedef void* stackelem; // Element type

typedef struct stack_header* stack_t;

bool stack_empty(stack_t S) /* O(1) */
/*@requires S != NULL; @*/ ;

stack_t stack_new() /* O(1) */
/*@ensures \result != NULL; @*/
/*@ensures stack_empty(\result); @*/ ;

void push(stack_t S, stackelem x) /* O(1) */
/*@requires S != NULL; @*/
/*@ensures !stack_empty(S); @*/ ;

stackelem pop(stack_t S) /* O(1) */
/*@requires S != NULL; @*/
/*@requires !stack_empty(S); @*/ ;

#endif
Notice that the header file contains both the client and the library por-

tions of our C1 file.
The translation of the implementation of the stack library follows closely

the steps we saw in this chapter. We omit the definition of stack_t since
we defined it in the header file. The rest is standard: we implement the
contracts of each function using REQUIRES and ENSURES inside their body,
and we replace the uses of alloc with xmalloc (and sizeof!).

Lecture 19: Introduction to C 22

#include <stdbool.h>
#include "lib/contracts.h"
#include "lib/xalloc.h"
#include "stack.h"

typedef struct slist_node slist;
struct slist_node { // structure of linked lists
stackelem data;
slist *next;

};

typedef struct stack_header stack;
struct stack_header { // Stacks
slist *top;
slist *bottom;

};

bool stack_empty(stack *S) {
REQUIRES(S != NULL);
return S->top == S->bottom;

}

stack *stack_new() {
stack *S = xmalloc(sizeof(stack));
slist *p = xmalloc(sizeof(slist));
S->top = p;
S->bottom = p;
ENSURES(S != NULL);
ENSURES(stack_empty(S));
return S;

}

void push(stack *S, stackelem e) {
REQUIRES(S != NULL);
slist *p = xmalloc(sizeof(slist));
p->data = e;
p->next = S->top;
S->top = p;
ENSURES(!stack_empty(S));

}

stackelem pop(stack *S) {
REQUIRES(S != NULL);
REQUIRES(!stack_empty(S));
stackelem e = S->top->data;
S->top = S->top->next;
return e;

}

Lecture 19: Introduction to C 23

We include all the system and local libraries needed for this code to
compile: "lib/contracts.h" allows us to use our C0 contract emulation,
"lib/xalloc.h" is for xmalloc, "stack.h" is not strictly necessary but
it is commonplace for a library to include its interface. The system li-
braries <stdbool.h> is not strictly necessary as the it is already imported
by "stack.h". We follow the convention of including a library whenever
a file uses one of its functions, even if we know another library already im-
ports it — the header guards take care of avoiding duplicate declarations.

Solution of exercise 2 There are two things we need to do to translate the
main: the now routine replacement of alloc with xmalloc (and sizeof),
and the more interesting translation of the loop invariant using ASSERT.
Recall that a loop invariant is checked just before the loop guard. Therefore
we need to do so once before the loop guard is checked for the very first
time, and once at the very end of each iteration (just before the loop guard
is checked again).

Our C file begins however by translating the included header files. The
header file that corresponds to <conio> is <stdio.h>. We also need to in-
clude "lib/contracts.h" and "lib/xalloc.h" since our translated code
makes use of xmalloc and contract emulations. And since we call func-
tions from the translated stack library, we need to include its header file
"stack.h".

Lecture 19: Introduction to C 24

#include <stdio.h>
#include "lib/contracts.h"
#include "lib/xalloc.h"
#include "stack.h"

int main() {
// Create a stack of ints
stack_t S = stack_new();

int *elem1 = xmalloc(sizeof(int));

*elem1 = 1;
push(S, (void*)elem1);
int *elem2 = xmalloc(sizeof(int));

*elem2 = 2;
push(S, (void*)elem2);
int *elem3 = xmalloc(sizeof(int));

*elem3 = 3;
push(S, (void*)elem3);

int i = 3;
ASSERT(1 <= i && i <= 3);
while (i > 1) {
int *elem = (int*)pop(S);
assert(*elem == i);
i--;
ASSERT(1 <= i && i <= 3);

}

printf("All tests passed!\n");
return 0;

}

Solution of exercise 3
We need to include the prototype of the function stack_free and the

definition of the type free_elem in the in interface of our translated library:

Lecture 19: Introduction to C 25

#ifndef STACK_H
#define STACK_H

#include <stdbool.h>

typedef void* stackelem; // Element type

typedef void free_elem(stackelem e); // Function to free an element

...

void stack_free(stack_t S, free_elem* f) /* O(n) */
/*@requires S != NULL; @*/ ;

#endif
Although we have a lot of freedom as to where we place them in this

file, a sensible organization is to declare free_elem together with the rest
of the client interface portion of the header file and to declare stack_free
in the library interface part.

The type declaration for free_elem is similar to what we saw in this
chapter. The function stack_free has one precondition, that the stack pa-
rameter not be NULL.

The code for the function stack_free goes in the implementation file.
It can be written in many ways. One organization that helps avoiding mis-
takes is to follow the structure of the types. Since this stack library relies on
list segments, we write the helper function free_slist that frees the nodes
(and possibly the data) of a list segment given its endpoints. Since list seg-
ments are exclusive on the right (their rightmost node is a dummy node),
this function shall not free the dummy node. The function stack_free
calls free_slist to free the segment, it frees the dummy node, and finally
frees the stack header.

Lecture 19: Introduction to C 26

void free_slist(slist *start, slist *end, free_elem *f) {
REQUIRES(start != NULL && end != NULL);
slist *node = start;
while (node != end) {
if (f != NULL)
(*f)(node->data);

slist *copy = node;
node = node->next;
free(copy);

}
}

void stack_free(stack* S, free_elem* f) {
REQUIRES(S != NULL);
free_slist(S->top, S->bottom, f); // free segment
free(S->bottom); // free dummy node
free(S); // free stack

}

Solution of exercise 4 In the client code file, we need to free the stack before
returning. Because the stack is not empty at this point, we need to free the
data remaining in it. We do so by passing the function free as the second
argument of stack_free. We also need to free the elements we popped
since they were allocated with xmalloc. The resulting code is as follows:

Lecture 19: Introduction to C 27

int main() {
// Create a stack of ints
stack_t S = stack_new();

int *elem1 = xmalloc(sizeof(int));

*elem1 = 1;
push(S, (void*)elem1);
int *elem2 = xmalloc(sizeof(int));

*elem2 = 2;
push(S, (void*)elem2);
int *elem3 = xmalloc(sizeof(int));

*elem3 = 3;
push(S, (void*)elem3);

int i = 3;
ASSERT(1 <= i && i <= 3);
while (i > 1) {
int *elem = (int*)pop(S);
assert(*elem == i);
free(elem); // ADDED
i--;
ASSERT(1 <= i && i <= 3);

}
stack_free(S, &free); // ADDED

printf("All tests passed!\n");
return 0;

}
Since this code uses free, we also want to include <stdlib.h>.

Solution of exercise 5 Calling Valgrind with --leak-check=full produces
the following output (yours may look a bit different):

Lecture 19: Introduction to C 28� �
% valgrind --leak-check=full a.out
...

==8978== Command: a.out
==8978==
All tests passed!
==8978==
==8978== HEAP SUMMARY:
==8978== in use at exit: 32 bytes in 2 blocks
==8978== total heap usage: 9 allocs, 7 frees, 1,116 bytes allocated
==8978==
==8978== 32 (16 direct, 16 indirect) bytes in 1 blocks are definitely lost in loss record 2 of 2
==8978== at 0x4C31B0F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==8978== by 0x10889A: xmalloc (xalloc.c:32)
==8978== by 0x10894A: push (stack.c:38)
==8978== by 0x108AEA: main (stack-test.c:19)
==8978==
==8978== LEAK SUMMARY:
==8978== definitely lost: 16 bytes in 1 blocks
==8978== indirectly lost: 16 bytes in 1 blocks
==8978== possibly lost: 0 bytes in 0 blocks
==8978== still reachable: 0 bytes in 0 blocks
==8978== suppressed: 0 bytes in 0 blocks
==8978==
==8978== For counts of detected and suppressed errors, rerun with: -v
==8978== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)� �

The Valgrind output says that there are 32 bytes in two blocks in use at exit.
It then identifies line 19 of the main function (push(S, (void*)elem3);)
and specifically line 38 of push (that’s slist *p = xmalloc(sizeof(slist));)
as where 16 of these 32 bytes are lost. Now, if we think about it, this alloca-
tion is never freed!

Line 38 of push creates the list node that contains the pushed element.
This is the leaked memory! When popping an element from the stack, the
implementation of pop we wrote earlier return the data value but never
frees the node itself (remember that we told you not to worry about freeing
memory in that exercise. . .).

Our code creates a 3-node list, and yet Valgrind identifies only line 19
(pushing elem3) as the culprit. What about the other two nodes? Line 38
accounts for the 16 bytes in 1 block that are definitely lost. Line 17
(pushing elem2) accounts for the 16 bytes in 1 block that are indirectly lost.
This adds up to 32, which is the total amount of leaked memory. However,
elem1 is not leaked: this is because we never pop it and therefore it is freed
when we call stack_free.

We fix this problem by freeing the node when popping from the stack.
The revised code for pop is as follows:

Lecture 19: Introduction to C 29

stackelem pop(stack *S) {
REQUIRES(S != NULL);
REQUIRES(!stack_empty(S));
stackelem e = S->top->data;
slist *tmp = S->top; // ADDED
S->top = S->top->next;
free(tmp); // ADDED
return e;

}

Solution of exercise 6 The code for stack_copy moves all items in its input
stack S into a temporary stack, and them moves them back both in S and in
the stack to be returned. The resulting code is as follows:

stack_t stack_copy(stack_t S) {
REQUIRES(S != NULL);
stack_t temp = stack_new();

while (!stack_empty(S))
push(temp, pop(S));

stack_t copy = stack_new();
while (!stack_empty(temp)) {
stackelem e = pop(temp);
push(S, e);
push(copy, e);

}
stack_free(temp, NULL);
ENSURES(copy != NULL);
return copy;

}

Solution of exercise 7 When running the compiled code, it either prints a
number that doesn’t look a bit like what we put in elem2 (2) or it aborts
execution with a segmentation fault.

Valgrind reveals that there is an invalid read on the line where we print
x. This suggest that x, the data element we just popped from S_copy is
invalid. Valgrind further informs us that the call to free on the next line is
invalid. A good reason for this to be the case is if that the top element of
S_copy had already been freed (we would then have a double-free). The
only thing we free up to this point of the execution is S. This is the issue! We
call stack_free with free as its second argument. This frees the stack and

Lecture 19: Introduction to C 30

all the elements it contains. Since S_copy contains aliases to these elements,
any attempt to dereference them will result in an invalid read, and any
attempt to free them will result in a invalid free.

The fix is to call stack_free with NULL as its second argument:

stack_free(S, NULL);

	Running Example
	A simple interface simple.c0
	A simple test program: test.c0

	Introducing the Preprocessor Language
	Macro Definitions
	Conditional Compilation
	Macro Functions
	C0 Contracts in C
	Memory Allocation
	Compiling
	Separate Compilation
	Interface: simple.h
	Implementation: simple.c
	Main file: test.c

	Memory Leaks
	Detecting Memory Mismanagement
	Exercises

