Contracts

A Mystery Function

1

The Story

Your first task at your new job is to debug this code written by your predecessor, who was fired for being a poor programmer.

This is all you are given

How do you go about this "friendly" challenge?

The Language

This code is written in CO The language we will use for most of this course

- This is also valid **C** code
 - For the most part, C0 programs are valid C programs
 - We will use C0 as a gentler language to
 - learn to write complex code that is correct
 - learn to write code in C itself
- But what does this function do?

```
int f(int x, int y) {
    int r = 1;
    while (y > 1) {
        if (y % 2 == 1) {
            r = x * r;
        }
        x = x * x;
        y = y / 2;
    }
    return r * x;
}
```

The Programmer

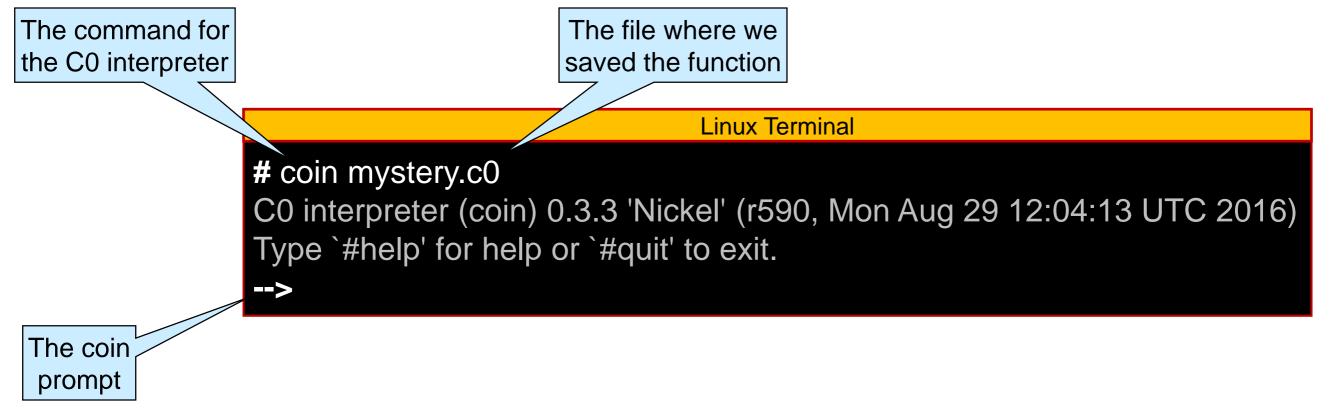
- Is this good code?
 there are no comments
 the names are non-descript
 the function is called f
 the variables are called x, y, r
- No wonder your predecessor was fired as a programmer!

```
int f(int x, int y) {
    int r = 1;
    while (y > 1) {
        if (y % 2 == 1) {
            r = x * r;
        }
        x = x * x;
        y = y / 2;
    }
    return r * x;
}
```

But what does this function do?

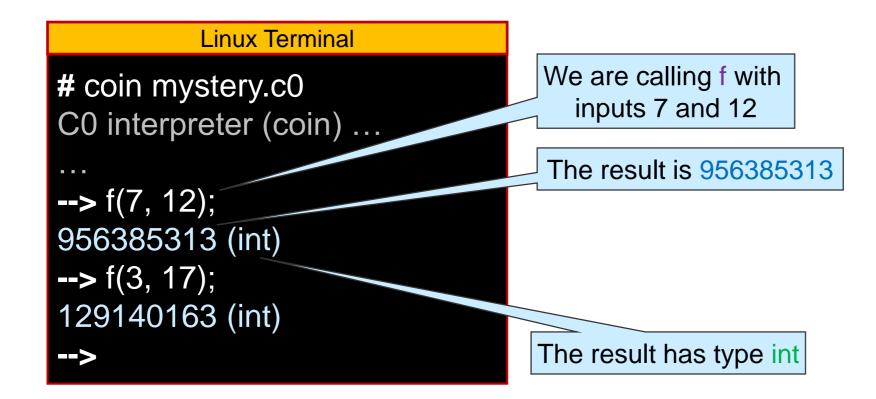
The Function

- But what does this function do?
- We can run experiments
 call f with various inputs and observe the outputs
- We do so by loading it in the C0 interpreter coin



Running Experiments

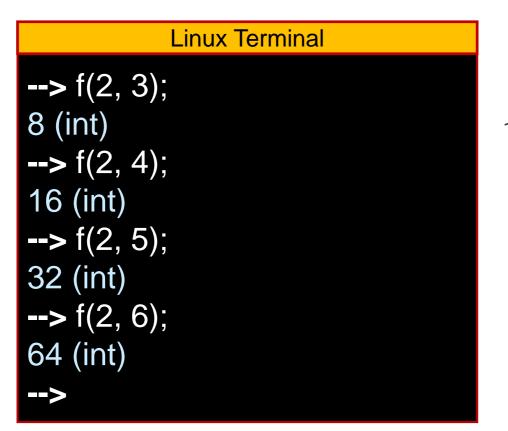
• Call f with various inputs and observe the outputs

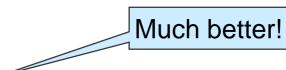


These are not very good experiments
 they don't help us understand what f does

Running Experiments

Call f with various inputs and observe the outputs
 o we are better off calling f with small inputs
 o and vary them by just a little bit so we can spot a pattern

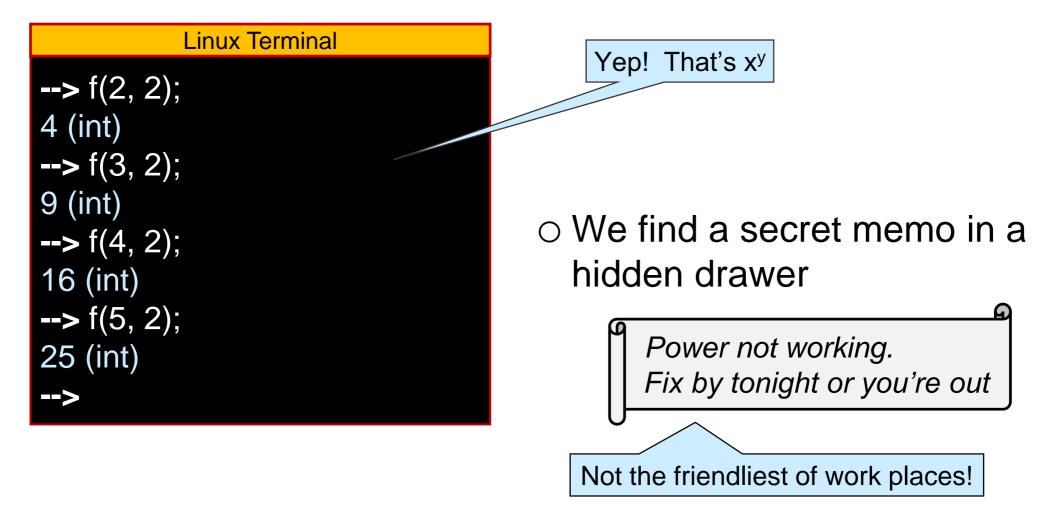




It looks like f(x, y) computes x^y
 Let's confirm with more experiments

Confirming the Hypothesis

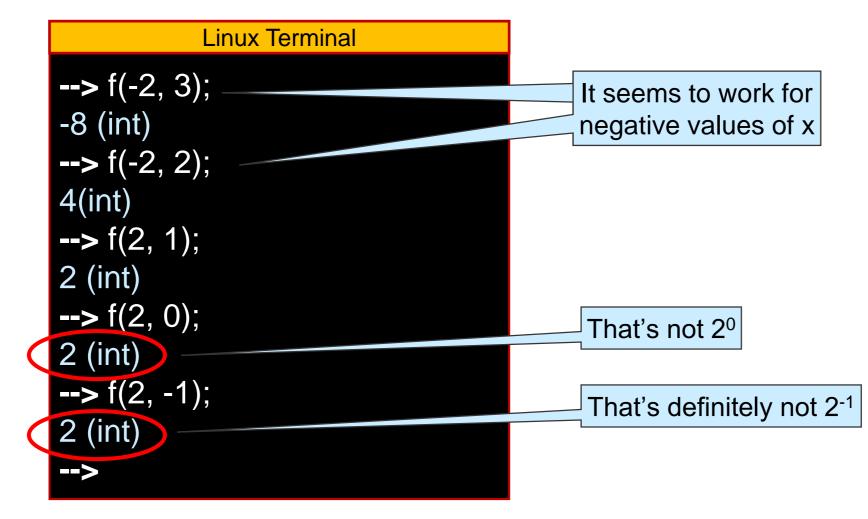
- It looks like f(x, y) computes x^y
- Let's confirm with more experiments



• Let's run a few more experiments to identify the problem

Discovering the Bug

- f(x, y) is meant to computes x^y
 but it doesn't
- Let's find where it fails with more experiments



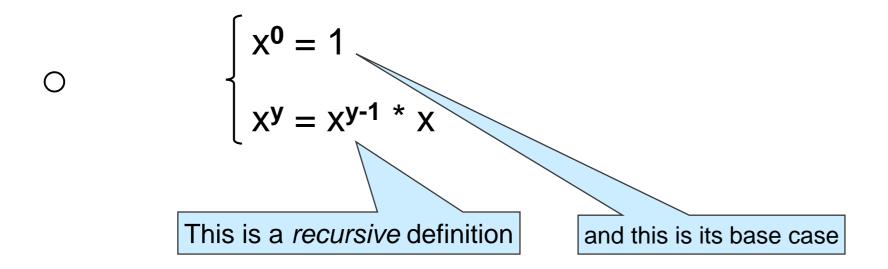
• Now we have something to chew on

Preconditions

• What does it mean to be the power function x^y?

> Yes, but that's not very precise

• Let's write a *mathematical* definition



• What does it mean to be the power function x^y ?

$$\begin{cases} x^0 = 1 \\ x^y = x^{y-1} * x \end{cases}$$

○ What happens if y is negative?

➤ we never reach the base case ...

• The power function x^y on integers is **undefined** if y < 0

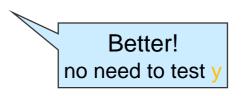
$$\begin{cases} x^{0} = 1 & \text{This defines } x^{y} \text{ for } y \ge 0 \text{ only} \\ x^{y} = x^{y-1} * x & \text{if } y > 0 \end{cases}$$

• What does it mean to be the power function x^y?

$$\begin{cases} x^0 = 1 \\ x^y = x^{y-1} * x & \text{if } y > 0 \end{cases}$$

To implement the power function, f must disallow negative exponents
 It can raise an error

 \bigcirc It can tell the caller that the exponent should be ≥ 0



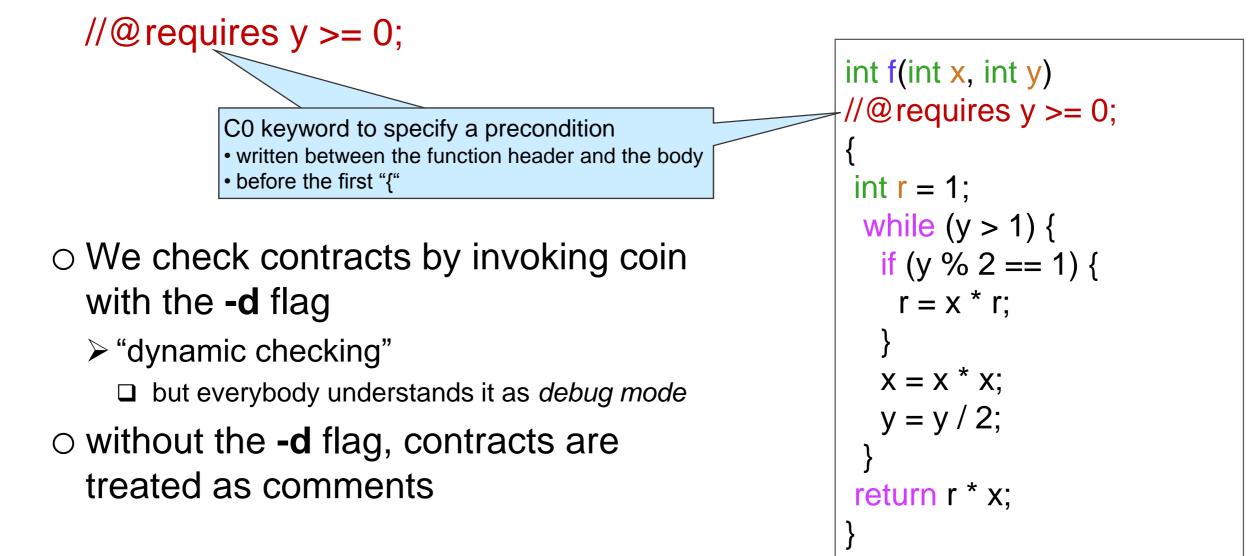
Preconditions

- Disallow negative exponents
 by telling the caller that the exponent should be ≥ 0
- A restriction on the admissible inputs to a function is called a precondition
 - We need to impose a precondition on f
- In most languages, we are limited to writing a comment
 - and hope the caller reads it

// y must be greater than or equal to 0
int f(int x, int y) {
 int r = 1;
 while (y > 1) {
 if (y % 2 == 1) {
 r = x * r;
 }
 x = x * x;
 y = y / 2;
 }
 return r * x;
}

Preconditions in C0

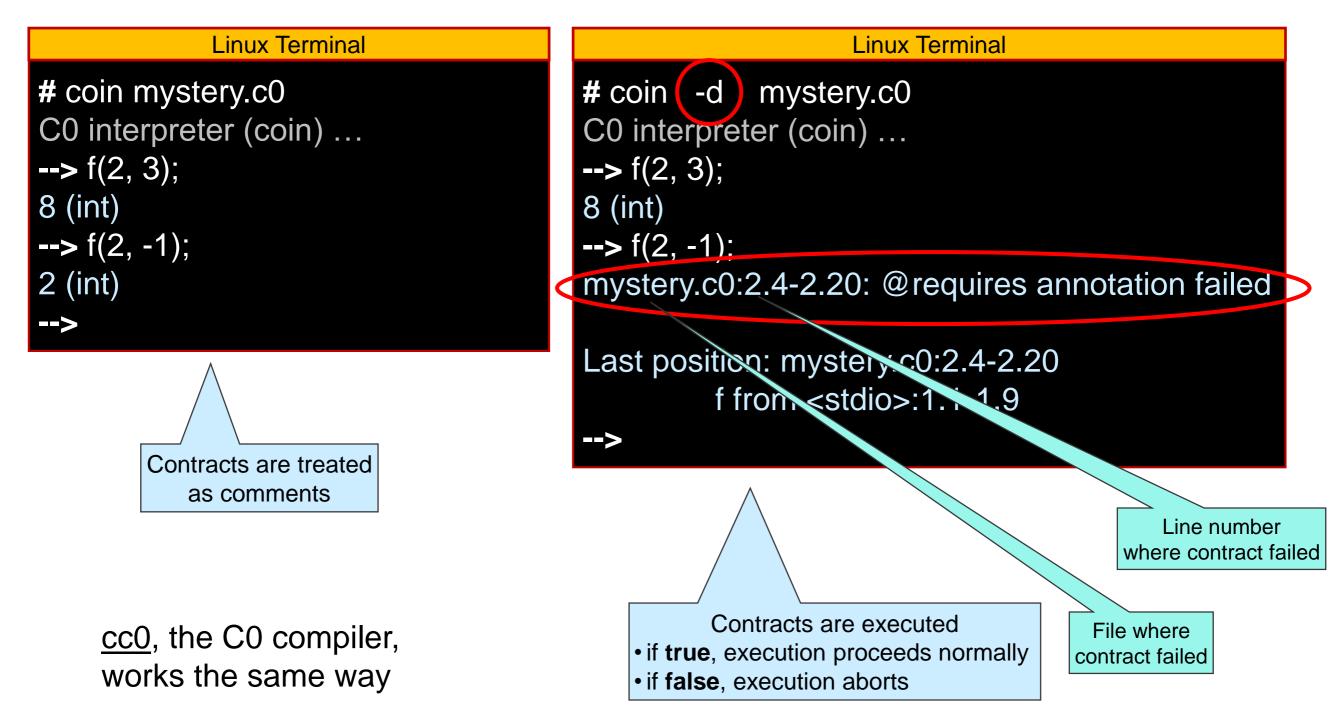
- We need to impose a precondition on f
 to tell the caller that y should be ≥ 0
- In C0 we can write an executable contract directive



Using Contract

Running with contracts disabled

Running with contracts enabled



Safety

• If we call f(x,y) with a negative y

- with -d, execution aborts
- o without -d, f can return an arbitrary result
 - > there is **no** right value it could return

 Calling a function with inputs that cause a precondition to fail is unsafe

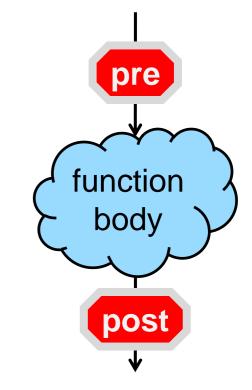
o execution will never do the right thing

- ➤ either abort
- ➢ or compute a wrong result
- The caller must make sure that the call is safe > that $y \ge 0$

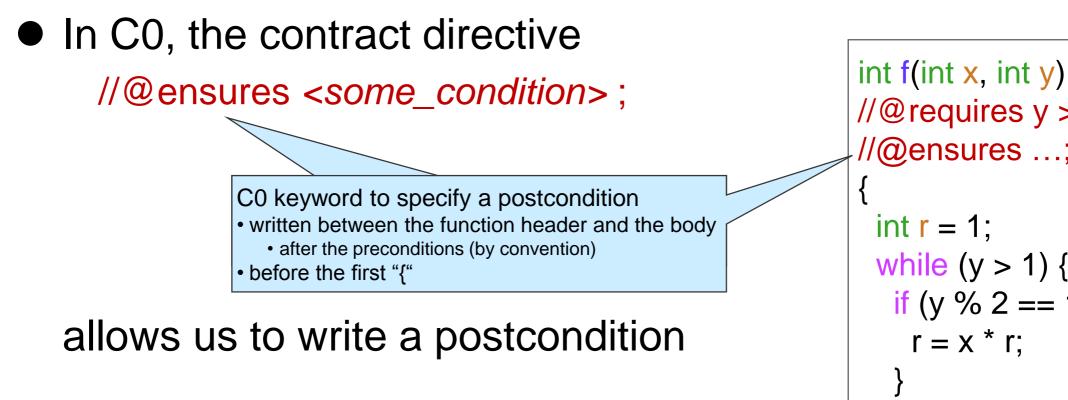
Postconditions

Contracts about Function Outcomes

- Preconditions are checked before the function starts executing
- A contract that is checked *after* it is done executing could tell us if the function did the right thing
 - check that the output is what we expect
 - \odot This is a **postcondition**



Postconditions in C0

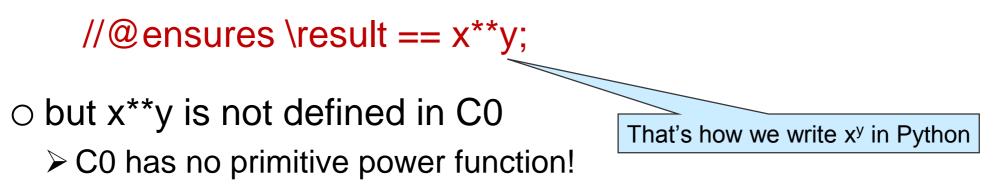


- o <some_condition> can mention the contract-only variable \result
 - > what the function returns
 - > can only be used with //@ensures

```
//@ requires y >= 0;
//@ensures ...;
{
    int r = 1;
    while (y > 1) {
        if (y % 2 == 1) {
            r = x * r;
        }
        x = x * x;
        y = y / 2;
    }
    return r * x;
}
```

Writing a Postcondition

• The postcondition we want to write is



• What do we do?

transcribe the mathematical definition into a C0 function

Writing a Postcondition

Then our postcondition is

```
//@ensures \result == POW(x, y);
```

```
right? ... almost
```

```
Linux Terminal
# coin -d mystery.c0
mystery.c0:18.5-18.6:error:cannot assign to
variable 'x' used in @ensures annotation
x = x * x;
~
Unable to load files, exiting...
```

```
\odot The function modifies x (and y)
```

```
Which values of x and y should C0 evaluate the postcondition with?
```

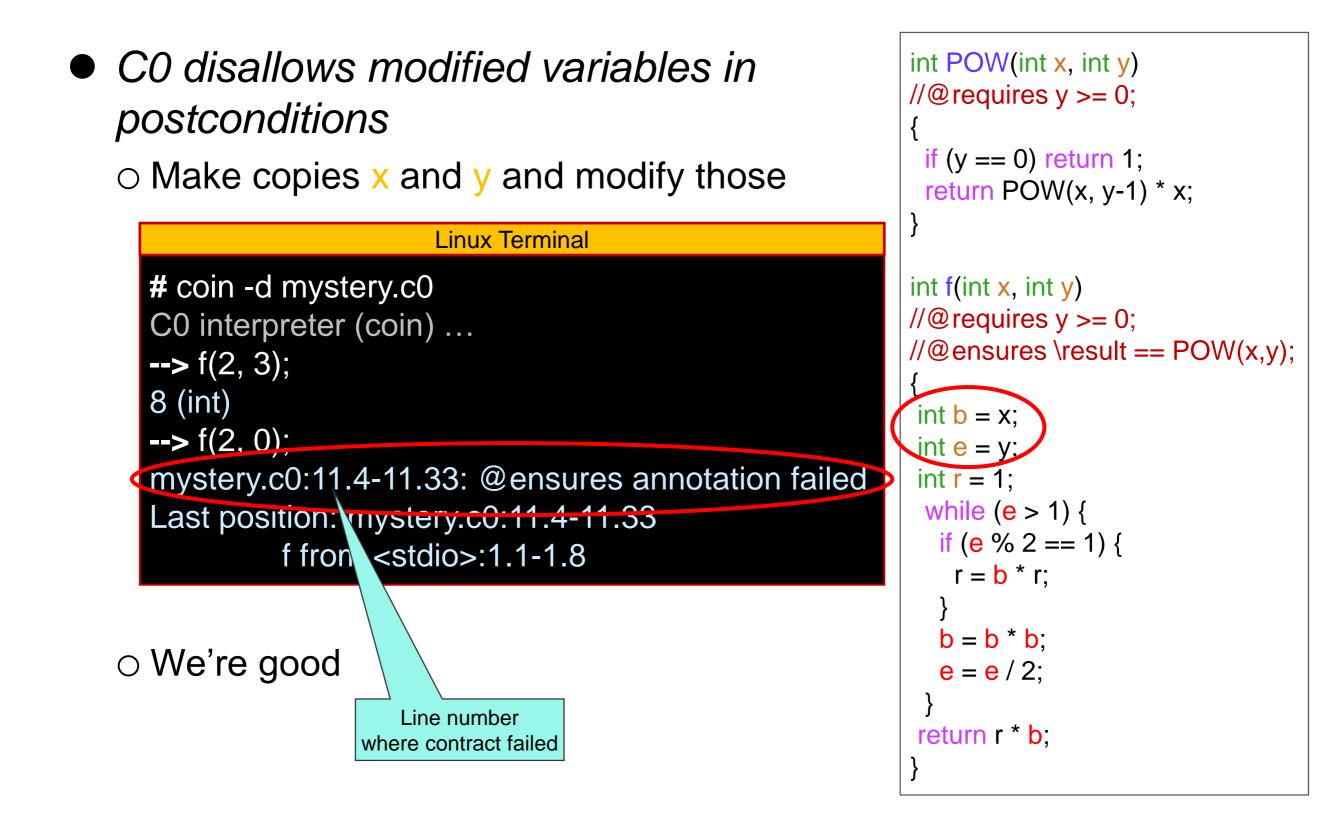
```
int POW(int x, int y)
 //@ requires y >= 0;
  if (y == 0) return 1;
  return POW(x, y-1) * x;
 int f(int x, int y)
 //@ requires v \ge 0;
77@ensures \result == POW(x,y);
 int \mathbf{r} = \mathbf{1};
  while (y > 1) {
    if (y % 2 == 1) {
     r = x * r;
   x = x * x;
```

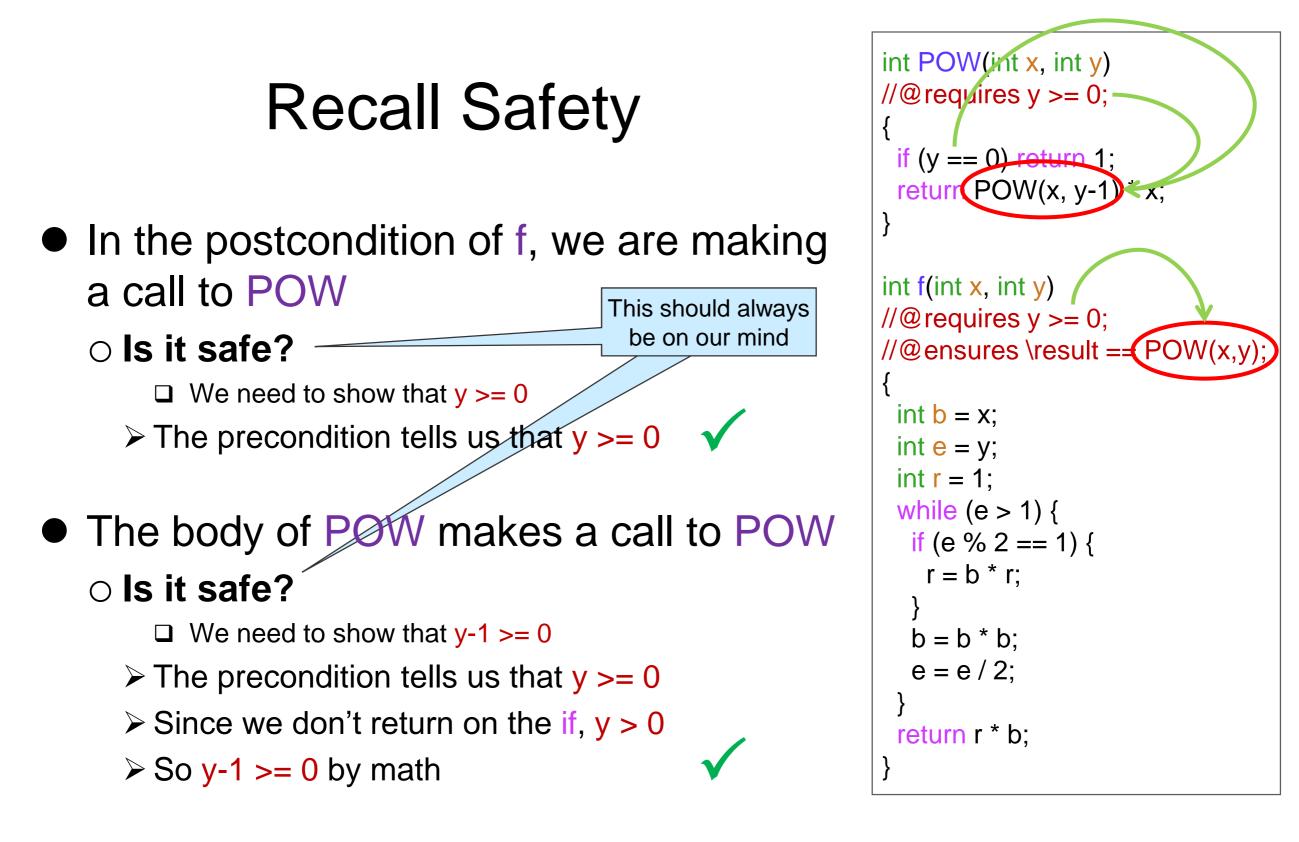
```
x = x x,
y = y / 2;
}
return r * y;
}
```

□ We want the initial values, but it is checked when returning ...

 \odot To avoid confusion, C0 disallows modified variables in postconditions

Writing a Postcondition





These are examples of point-to reasoning
 We justify something by pointing to lines of code that supports it

```
But wait!
                                                                    int POW(int x, int y)
                                                                    //@ requires y >= 0;
   \circ f was meant to implement the power function
                                                                    ł
                                                                      if (y == 0) return 1;
   ○ … but POW is the power function!
                                                                      return POW(x, y-1) * x;
Let's use it!
                                                                    int f(int x, int y)
                                                                    //@ requires y >= 0;
   • There may be benefits to fixing f instead
                                                                    //@ensures \result == POW(x,y);
      ➢ it may be more efficient than POW
                                                                      int \mathbf{b} = \mathbf{x};
   ○ Keep reading …
                                                                      int \mathbf{e} = \mathbf{y};
                                                                      int \mathbf{r} = \mathbf{1};
```

while (e > 1) {

r = b * r;

b = b * b;

e = e / 2;

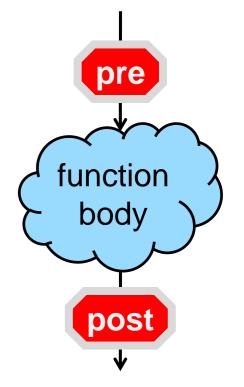
return r * b;

if (e % 2 == 1) {

Correctness

 If a call violates a function's postconditions (assuming its preconditions were met so it actually ran)
 the function is doing something wrong
 the function has a bug

The function is incorrect
 Our mystery function f is incorrect



 When writing a function, we must make sure that it is correct

○ i.e., that its postconditions will be satisfied for any safe input

Blame

• If a function preconditions fail, it's the caller's fault

➤ the caller passed invalid inputs

 \odot the call is $\ensuremath{\text{unsafe}}$

If its postconditions fail, it's the implementation's fault
 > the function code does the wrong thing
 > the function is incorrect

We will develop methods to make sure that the code we write is **safe** and **correct**

How to Use Contracts

 Contract-checking helps us write code that works as expected

○ Use -d while writing our code

• At this stage, this is **development code**

bugs are likely

Once we are confident our code works, compile it without -d

 \odot The code can be used in its intended application

• At this stage, this is **production code**

 \succ there should be no bugs

Why not use -d always?
 it slows down execution

Specification Functions

 POW is used only in contracts
 It is not executed when contract-checking is disabled
 without -d

 Functions used only in contracts are called specification functions

 \odot They help us state what the code should do

 \odot They are critical to writing good code

```
int POW(int x, int y)
//@ requires y >= 0;
 if (y == 0) return 1;
 return POW(x, y-1) * x;
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y)
 int \mathbf{b} = \mathbf{x};
 int \mathbf{e} = \mathbf{y};
 int \mathbf{r} = \mathbf{1};
 while (e > 1) {
   if (e % 2 == 1) {
     r = b * r;
   b = b * b;
   e = e / 2;
 return r * b;
```

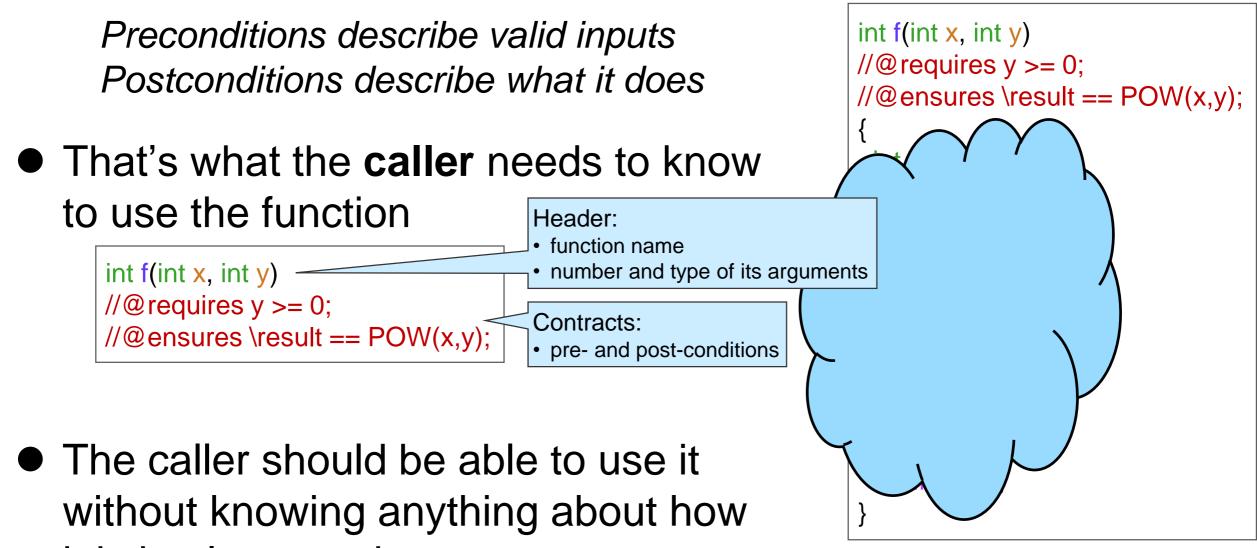
Function Contracts

Where are we?

- We have learned a lot about f
 - the preconditions describe what valid inputs are
 - the postconditions describe what it is supposed to do
 - on valid inputs
- We have a fully documented function
- We have not looked at all at its body
 but we know there is a bug in there
 it is incorrect

int f(int x, int y) //@ requires y >= 0; $//@ensures \result == POW(x,y);$ int e = y;int $\mathbf{r} = \mathbf{1}$; while (e > 1) { if (e % 2 == 1) { r = b * r;b = b * b;e = e / 2;

The Caller's Perspective



- it is implemented
- The implementation details are abstracted away

Abstraction

 Split a complex system into small chunks that can be understood independently

Bother with as few details as possible at any time

Computer science is all about abstraction

The Function's Perspective

Preconditions describe valid inputs Postconditions describe what it does

- That's what the implementation is to do
 guidelines to write the body of the function
- How to write good code
 First write the contracts
 - \odot and then the body
 - in this way, you always know what you are aiming for

int f(int x, int y) //@ requires y >= 0; $//@ensures \result == POW(x,y);$ int $\mathbf{e} = \mathbf{y};$ int $\mathbf{r} = \mathbf{1}$; while (e > 1) { if (e % 2 == 1) { r = b * r;b = b * b;e = e / 2;

Now, we need to look at the body of f to find the bug

Loop Invariants

Diving In

- We need to look at the body of f
 - The complicated part is the loop
 - the values of the variables change at each iteration
 - \succ it's unclear how many iterations there are
 - If we understand the loop, we understand the function
- How to go about that?

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int \mathbf{b} = \mathbf{x};
 int e = y;
 int \mathbf{r} = \mathbf{1};
 while (e > 1) {
   if (e % 2 == 1) {
     r = b * r;
   b = b * b;
   e = e / 2;
 return r * b;
```

Abstraction

- If we understand the loop, we understand the function
- How to go about that?
 - Contracts summarize what a function does so we don't need to bother with the details of its implementation
 - An abstraction over functions
 - Come up with a summary of the loop so we don't need to bother with the details of its implementation
 - > An abstraction over loops!

int f(int x, int y) //@ requires y >= 0; $//@ensures \result == POW(x,y);$ int $\mathbf{b} = \mathbf{x};$ int e = y;int $\mathbf{r} = \mathbf{1}$; while (e : return r * b;

Loop Invariants

The values of the variables change at each iteration

 One valuable abstraction is what does not change

This is called a loop invariant

- a quantity that remains constant at each iteration of the loop
 - a quantity may be an expression, not just a variable

We will see what makes some loop invariants really valuable shortly

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
١
 int \mathbf{b} = \mathbf{x};
 int e = y;
 int \mathbf{r} = 1;
 while (e > 1) {
   if (e % 2 == 1) {
    r = b * r;
   b = b * b;
   e = e / 2;
 return r * b;
```

• How to find a **loop invariant**?

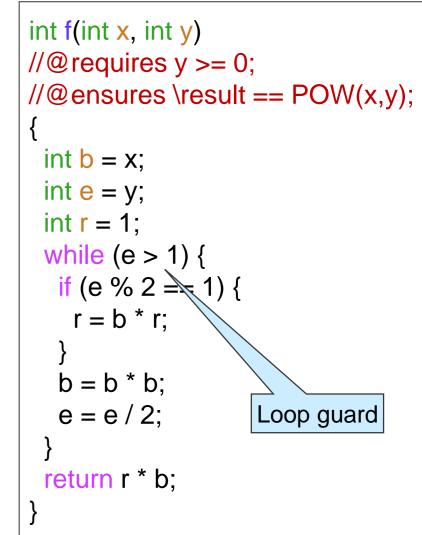
- a quantity that remains constant at each iteration of the loop
- Run the function on sample inputs
- Track the value of the variables
 - ≻b, e, r

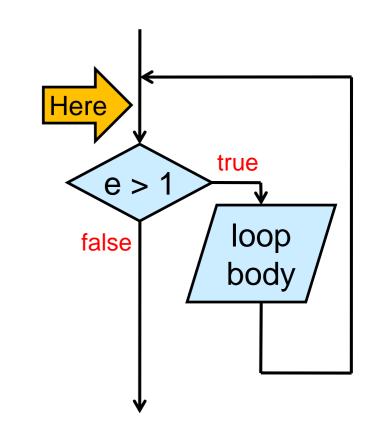
no need to bother with x and y since they don't change

 \odot just before the loop guard is tested

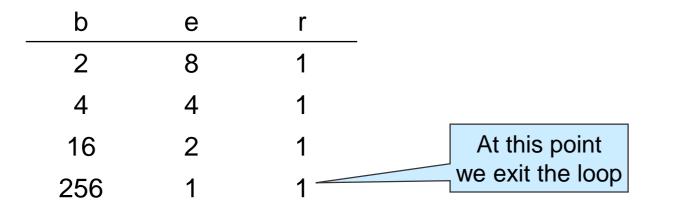
That's e > 1

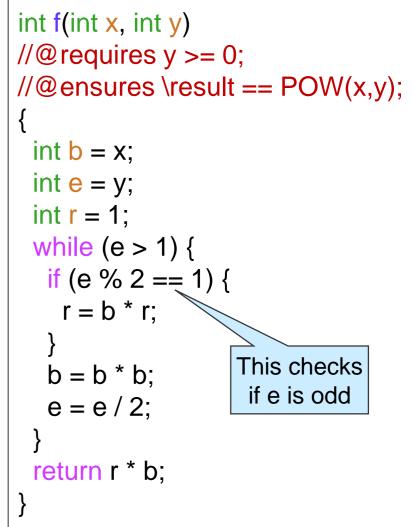
• Look for patterns



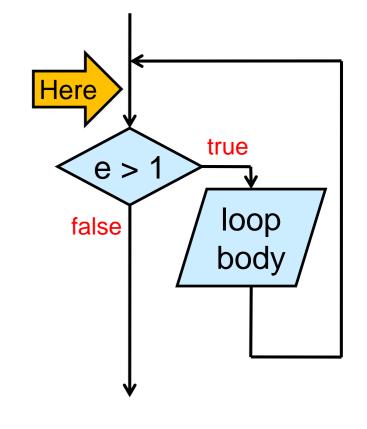


 Run the function on sample inputs and track the value of the variables
 Let's try with f(2,8)





O Can we spot a quantity that doesn't change?



• Trying with f(2,8)

○ Can we spot a quantity that doesn't change?

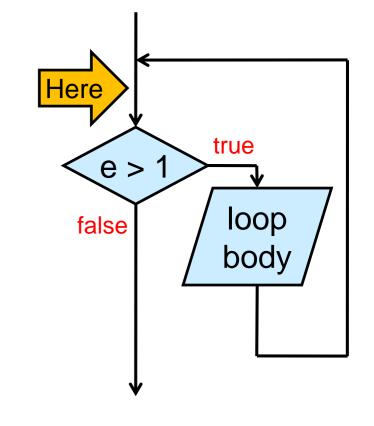
 \odot **b**^e is always 256

b ^e	r	е	b
256	1	8	2
256	1	4	4
256	1	2	16
256	1	1	256

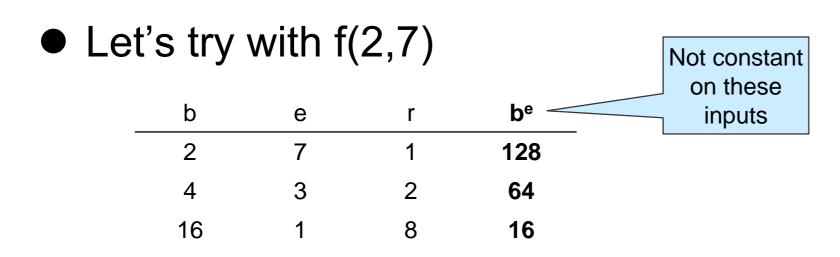
int f(int x, int y)
//@requires y >= 0;
//@ensures \result == POW(x,y);
{
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
 if (e % 2 == 1) {
 r = b * r;
 }
 b = b * b;
 e = e / 2;
 }
 return r * b;
}

\odot This is a candidate loop invariant

- b^e is constant on one set of inputs
- > a loop invariant must stay constant on all inputs



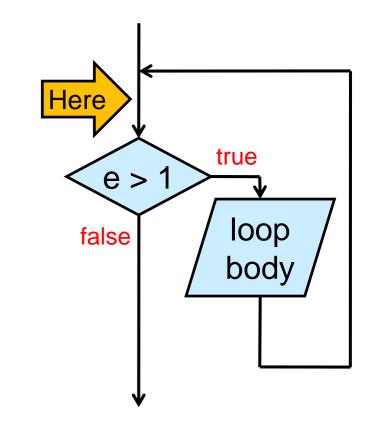
• **b**^e is a *candidate* loop invariant



int f(int x, int y)
//@requires y >= 0;
//@ensures \result == POW(x,y);
{
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
 if (e % 2 == 1) {
 r = b * r;
 }
 b = b * b;
 e = e / 2;
 }
 return r * b;
}

○ b^e is not invariant on these inputs!
 > It was a candidate that didn't pan out

 Can we spot another quantity that doesn't change?



- Trying with f(2,7)
 - Can we spot a quantity that doesn't change?
 - \circ **b**^e * **r** is always 128

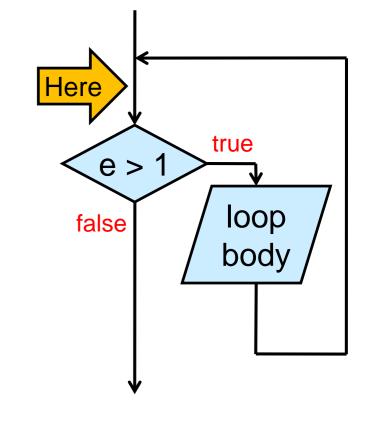
b	е	r	be	b ^e * r
2	7	1	128	128
4	3	2	64	128
16	1	8	16	128

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int \mathbf{b} = \mathbf{x};
 int e = y;
 int \mathbf{r} = \mathbf{1};
 while (e > 1) {
   if (e % 2 == 1) {
     r = b * r;
   b = b * b;
   e = e / 2;
 return r * b;
```

This is another candidate loop invariant
 Let's test it on f(3,5)

b ^e * r	r	е	b
243	1	5	3
243	3	2	9
243	3	1	81

 \odot This seems to work



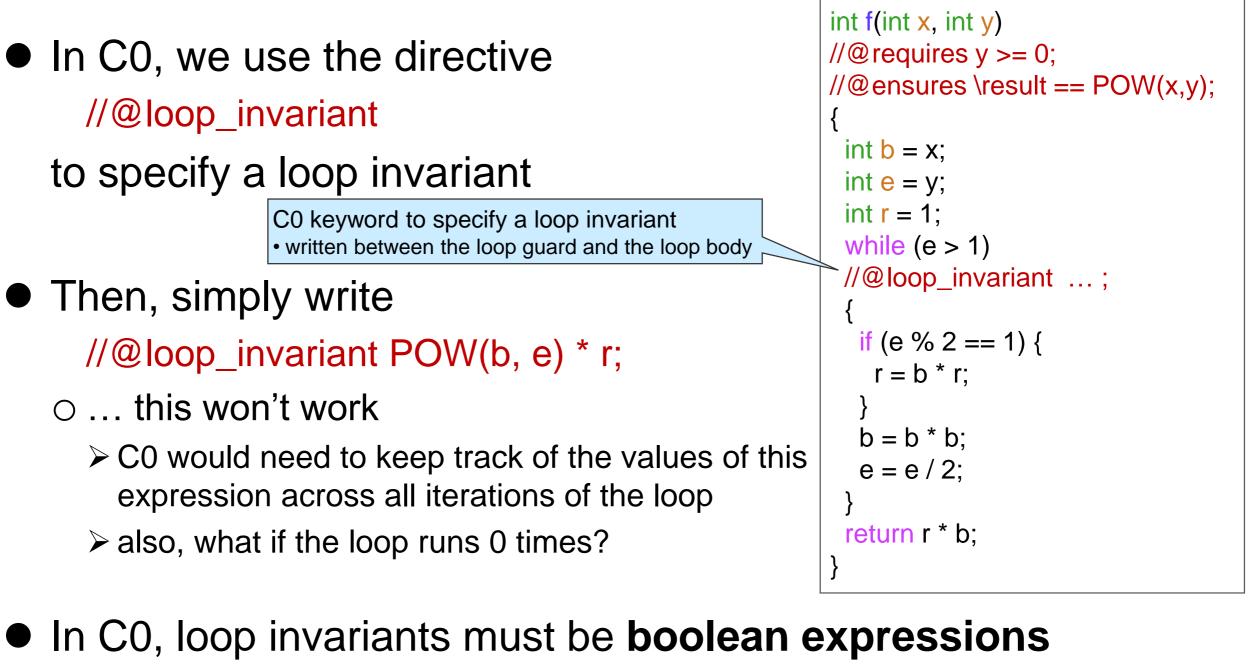
A Candidate Loop Invariant

- b^e * r is a promising candidate loop invariant
 It works on *three* inputs!
- How do we know it works in general?
 We can't test it on all inputs
 We need to provide a proof

• But first, let's add it to our code

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int \mathbf{b} = \mathbf{x};
 int \mathbf{e} = \mathbf{y};
 int \mathbf{r} = \mathbf{1};
 while (e > 1) {
   if (e % 2 == 1) {
     r = b * r;
   b = b * b:
   e = e / 2;
 return r * b;
```

Loop Invariants in C0



 $\odot\,\text{true}$ means it was satisfied in the current iteration

○ false means it wasn't

Loop Invariants in C0

- They are boolean expressions
 true means satisfied
- What can we use?

b ^e * r	r	е	b
128	1	7	2
128	2	3	4
128	8	1	16

- As we enter the loop,
 b is x and e is y
 - ➢ so x^y is 128 too
 - ➢ thus, b^e * r = x^y

• Then, we can write

//@loop_invariant POW(b, e) * r == POW(x, y);

1. int f(int x, int y) Safety 2. //@requires y >= 0; ---3. //@ensures \result == POW(x,y): 4. int $\mathbf{b} = \mathbf{x}$; 5. We have two new calls to POW int $\mathbf{e} = \mathbf{y};$ 6. int $\mathbf{r} = \mathbf{1}$; 7. ○ Are they safe? while (e > 1)8. //@loop_invarian(POW(b,e)* r == POW(x, 9. 10. • POW(x, y)if (e % 2 == 1) { 11. r = b * r; \succ To show: y >= 0 12. ? 13. \circ y >= 0 by line 2 (precondition of f) b = b * b;14. e = e / 2;15. 16. 17. return r * b; • POW(b, e)18. \succ To show: $e \ge 0$

- "e is *initially* equal to y which is >= 0 and it is halved at *each* iteration of the loop so e is *always* >= 0"
- This is an example of operational reasoning
 - The justification relies on what is happening in all the iterations of the loop
 This is error-prone
 - We will disallow safety proofs based on operational reasoning on loops

Safety

POW(b, e)

- To show: e >= 0
- We can sort of do it with operational reasoning
 - ➤ error prone!
- but we really want to prove it using point-to reasoning
- We do believe that e >= 0 at every iteration of the loop
 - Turn it into a candidate loop invariant! -

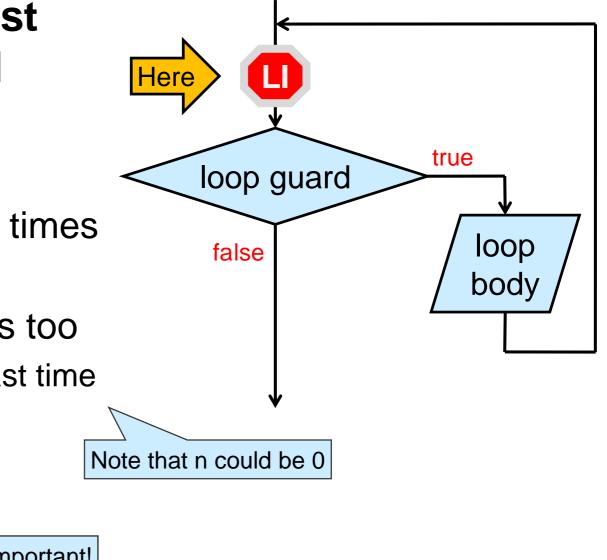
//@loop_invariant e >= 0;

- > We will need to prove later that it is valid
- O Then we prove that POW(b, e) is safe by pointing to line 9

An operational hunch is often a good candidate loop invariant

How Loop Invariants Work

- Loop invariants are checked just before the loop guard is tested
- If the loop body runs n times,
 the loop invariant is checked n+1 times
 must be true all n+1 times
 the loop guard is tested n+1 times too
 true the first n times and false the last time
- When we exit the loop
 the loop invariant is true
 the loop guard false



Validating Loop Invariants

Where are we?

- We have learned even more about f
 - The contracts tell us what it is meant to do
 - The loop invariants give us useful information about how the loop works
 - but these are candidate loop invariants
 - > we need to prove that they are valid

```
1. int f(int x, int y)
2. //@requires y >= 0;
3. //@ensures \result == POW(x,y);
4. {
    int \mathbf{b} = \mathbf{x};
5.
    int e = y;
6.
    int \mathbf{r} = \mathbf{1};
7.
    while (e > 1)
8.
    //@loop invariant e >= 0;
9.
    //@loop invariant POW(b,e) * r == POW(x,y)
10.
11.
      if (e % 2 == 1) {
12.
        r = b * r;
13.
14.
      b = b * b;
15.
      e = e / 2;
16.
17. }
18. return r * b;
19.
```

- We have started learning about proving things about code
 - ➢ just safety so far
 - point-to reasoning: good
 - operational reasoning: error prone

Proving a Loop Invariant Valid

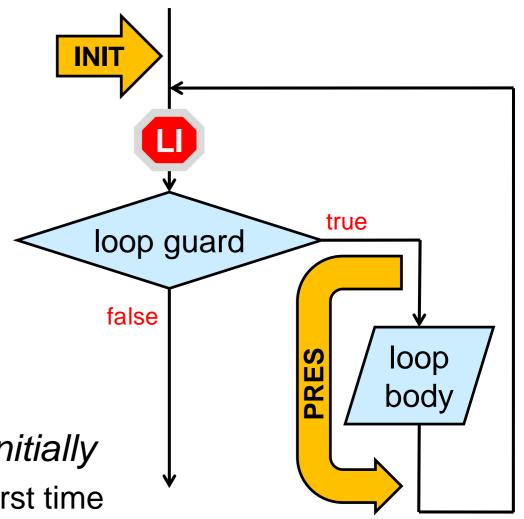
- We cannot show a loop invariant is valid by running it on all possible inputs
 - \odot We need to supply a proof
 - using point-to reasoning
- Two steps

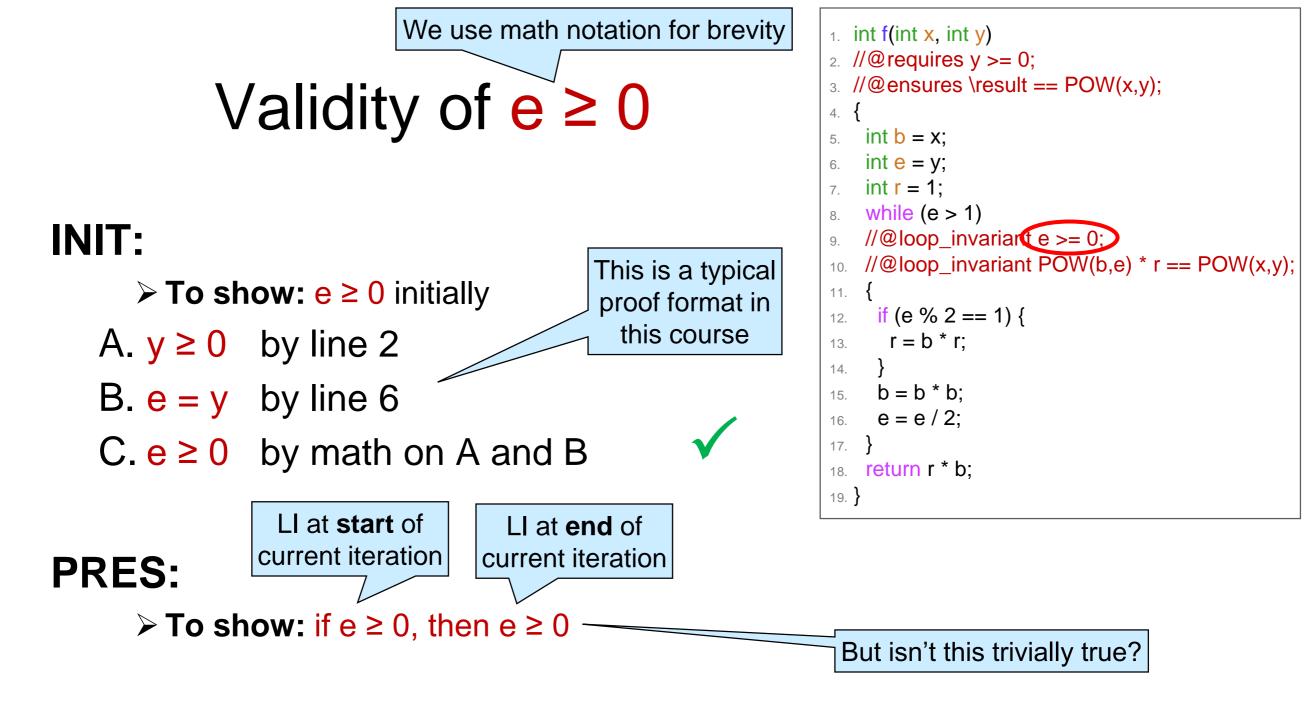
INIT: show that the loop invariant is true *initially*

> just before we test the loop guard the very first time

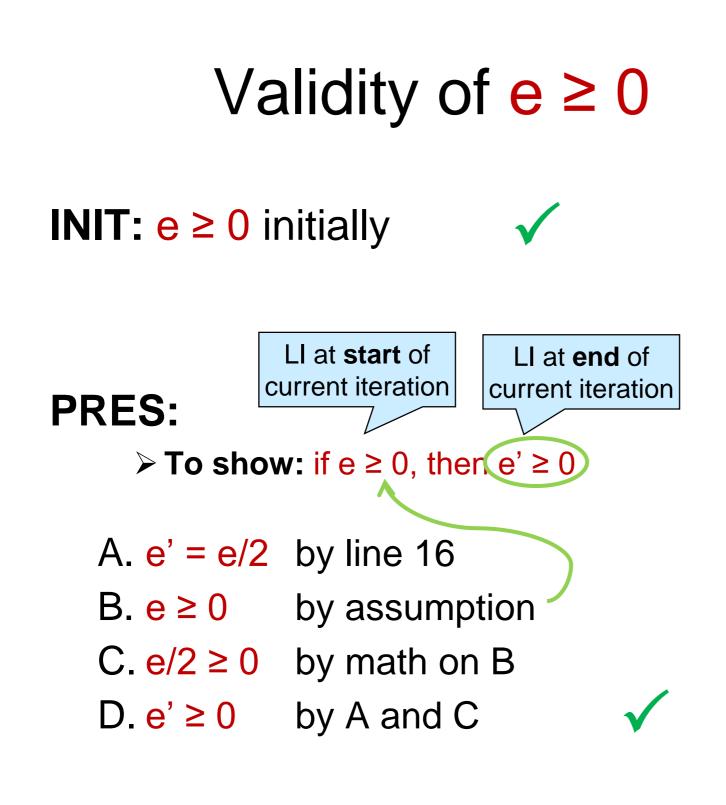
- PRES: show that the loop invariant is preserved by the loop
 - > if it is true at the beginning of an **arbitrary iteration** of the loop,

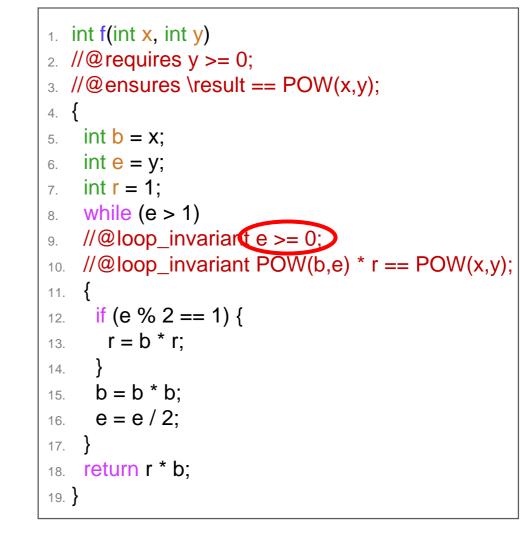
 \succ then it is also true at the end of this iteration

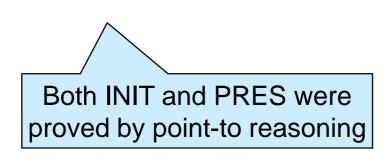


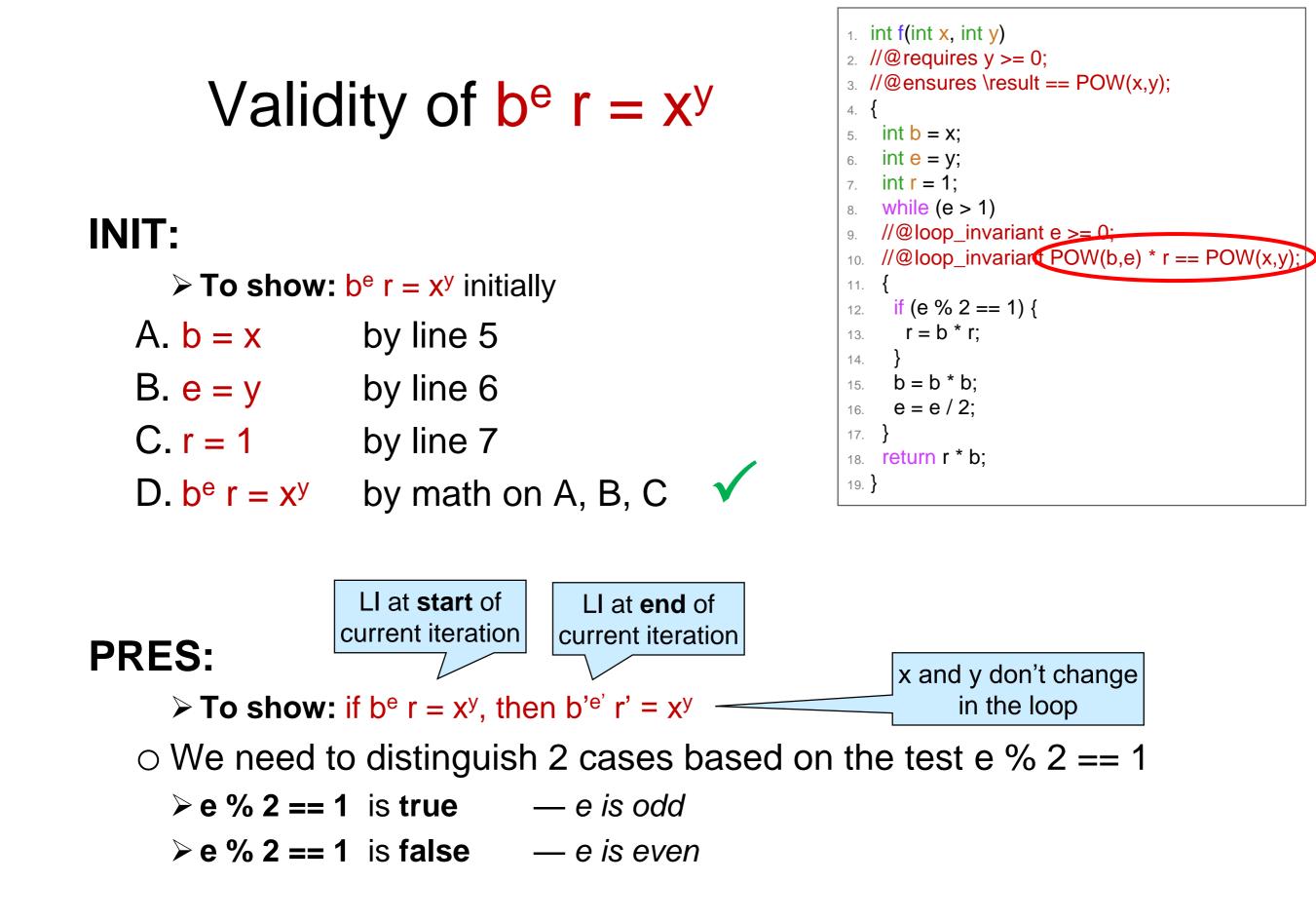


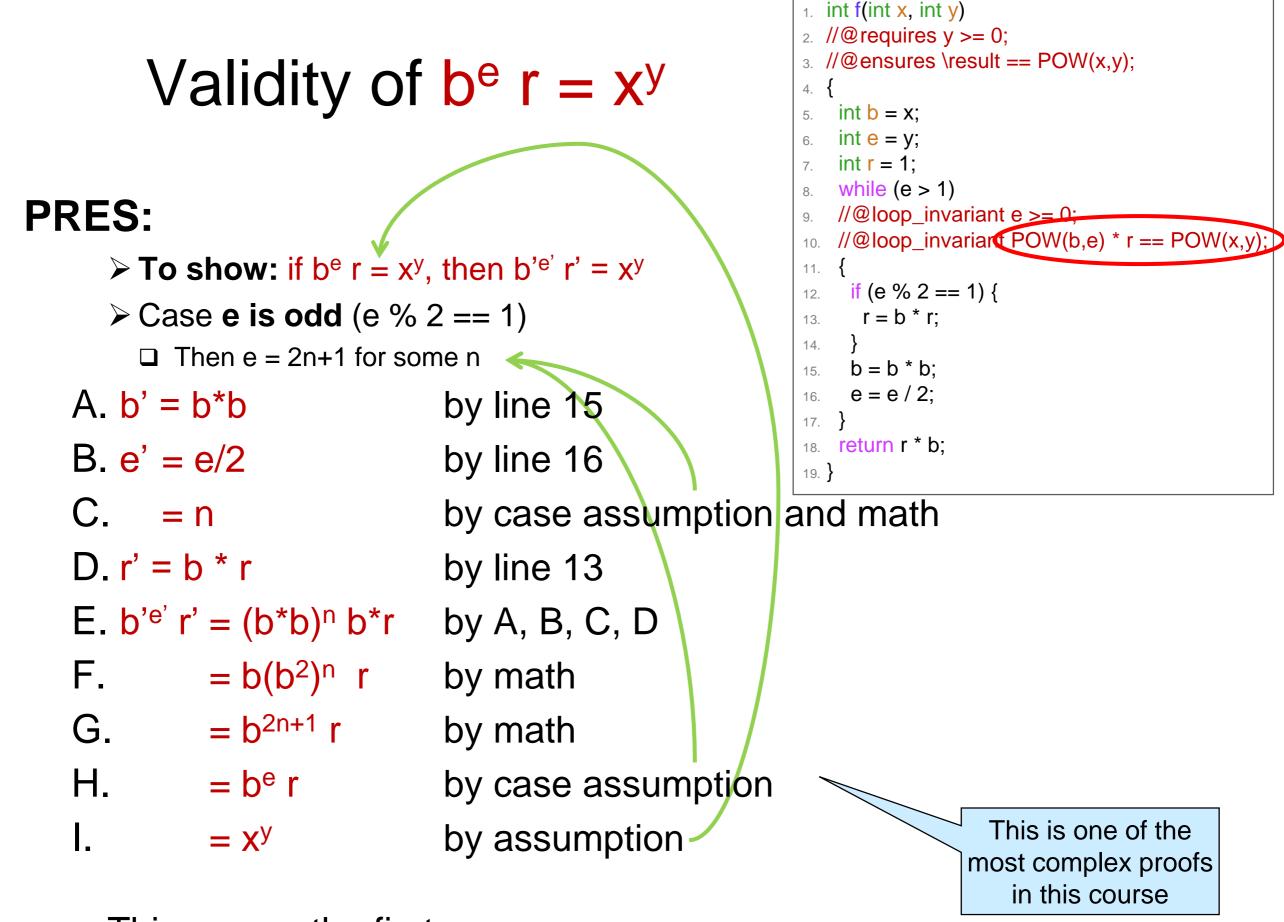
- The value of e changes in the body of the loop
- We need a way to distinguish the value at the start and end of the current iteration
 - > e <--- value of e at the start of the current iteration
 - e' value of e at the end of the current iteration



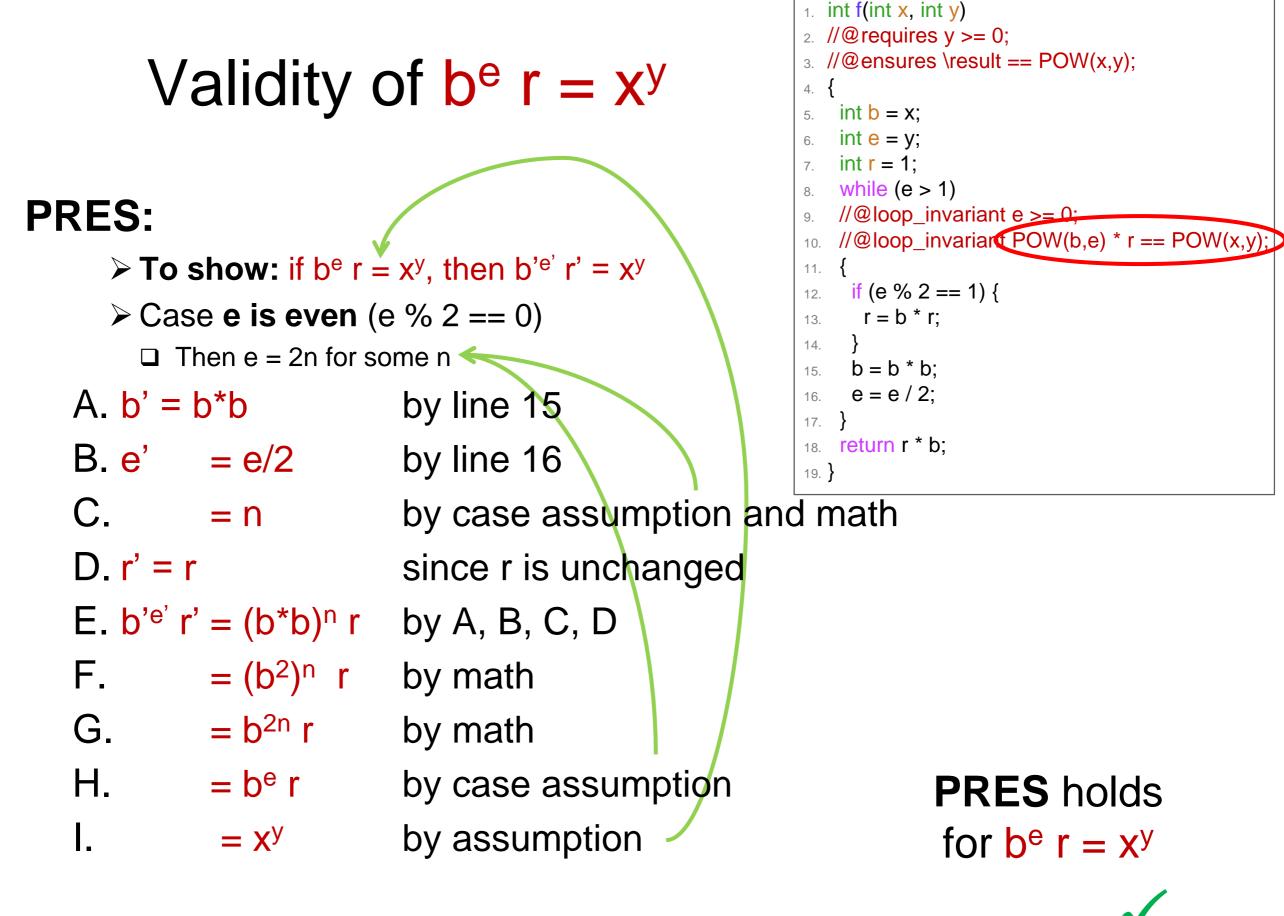








This proves the first case



This proves the second case too

Loop Invariants e ≥ 0 is valid it holds INITially it is PREServed by an arbitrary iteration of the loop if e ≥ 0, then e' ≥ 0

• b^e r = x^y is valid

 \checkmark

○ it holds INITially

○ it is **PRES**erved by an arbitrary iteration of the loop
 > if b^e r = x^y, then b'^{e'} r' = x^y

- This shows that both are genuine loop invariants
 o not just candidates
 - we can forget about the body of the loop when reasoning about this function

<pre>1. int f(int x, int y) 2. //@requires y >= 0; 3. //@ensures \result == POW(x,y); 4. {</pre>
5. int b = x;
6. int $e = y;$
7. int $r = 1;$
8. while (0 > 1)
//@loop_invariant e >= 0;
//@loop_invariant POW(b,e) * r == POW(x,y);
11. {
12. if (e % 2 == 1) {
13. $r = b * r;$
14. }
15. $b = b * b;$
16. $e = e / 2;$
17. }
18. return r * b;
19. }

Proof-directed Debugging

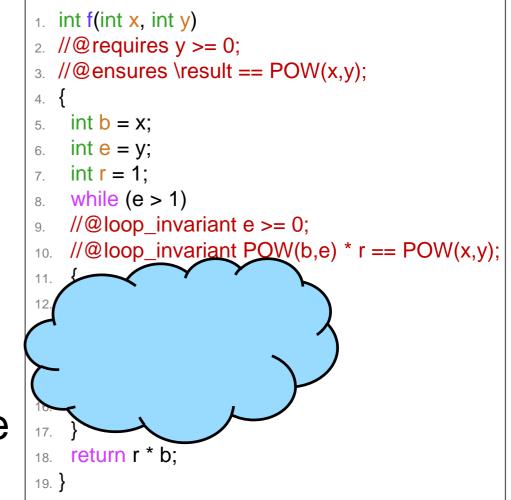
Where are we?

• The contracts tell us what the function is *meant to* do

but we know there is a bug in there

 The loop invariants abstract away the details of the loop

> But what to do with them is still a bit mysterious



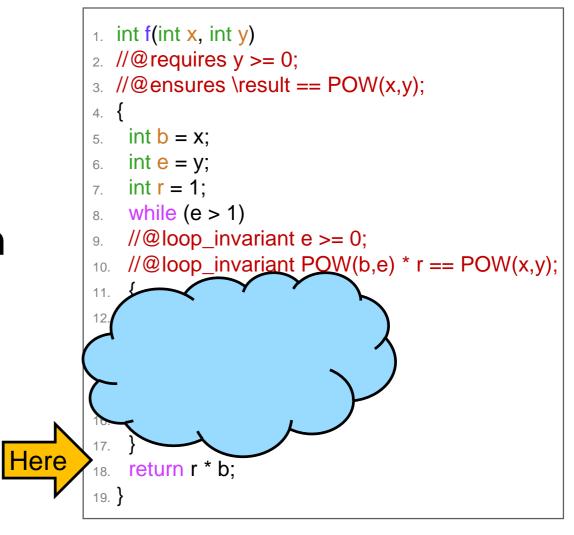
After the Loop

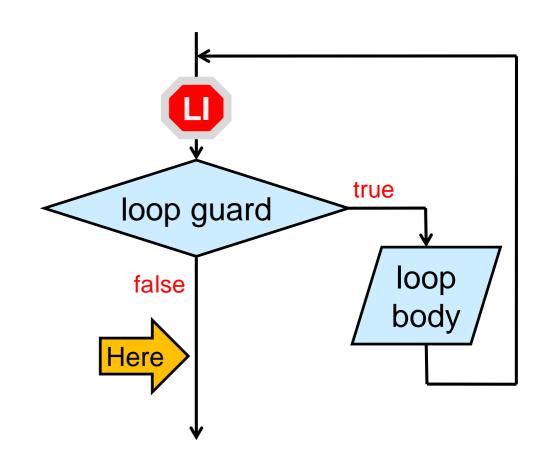
- What do we know when execution exits the loop?
 - the loop guard is false

≻ e ≤ 1

- \odot the loop invariants are $\ensuremath{\textit{true}}$
 - **≻** e ≥ 0
 - > b^e r = x^y
- Knowing this will
 enable us to prove correctness
 or expose a bug

Since f is incorrect, this should happen





After the Loop

- What do we know when execution exits the loop?
 - the loop guard is false

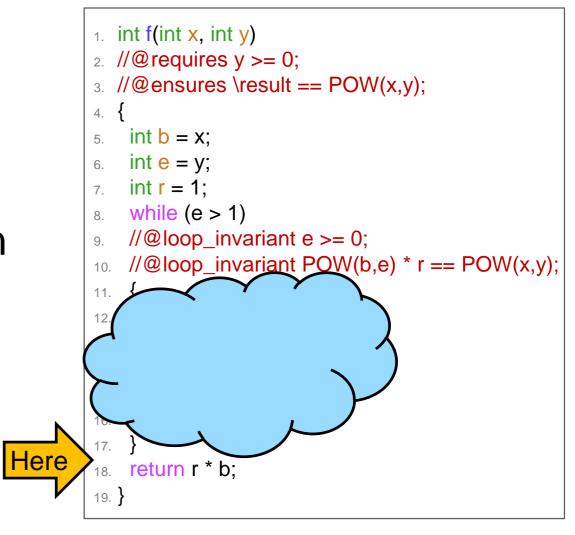
≻ e ≤ 1

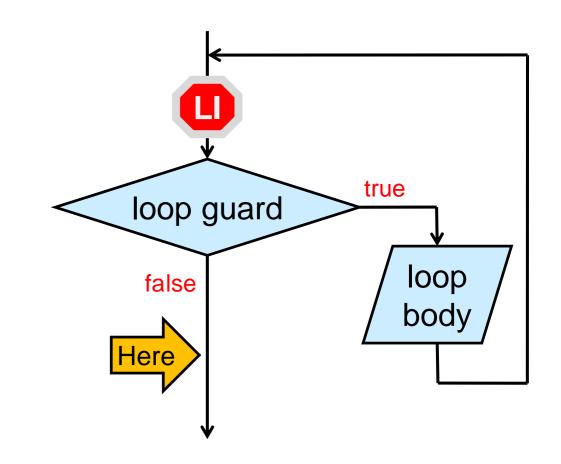
○ the loop invariants are true $\ge e \ge 0$

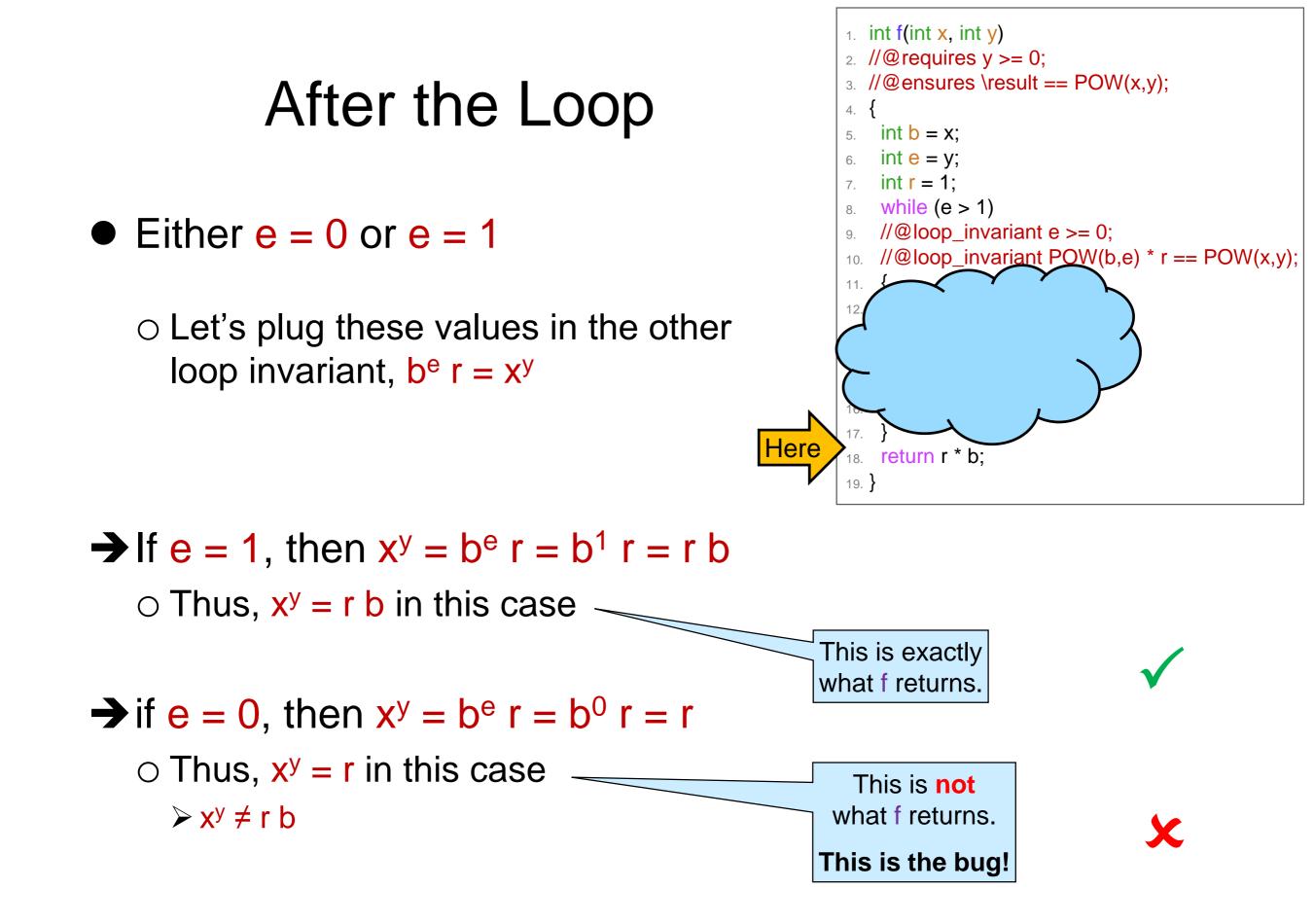
 \succ b^e r = x^y

 From e ≤ 1 and e ≥ 0, we have that
 o either e = 0
 o or e = 1
 Recall that e has type int

as we exit the loop

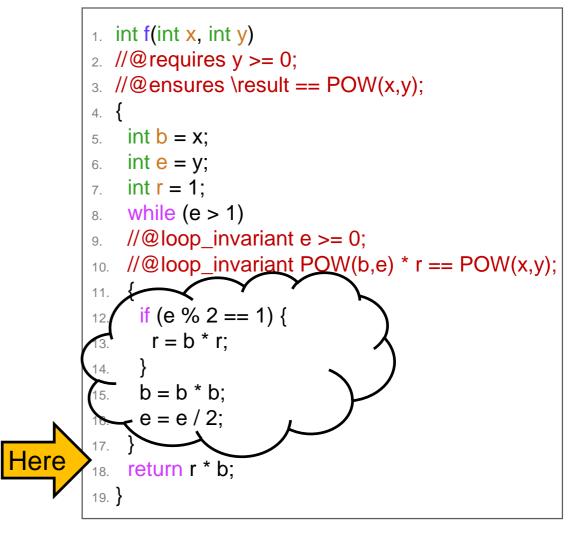






Tracking the Bug

- The bug is when e = 0 as we exit the loop
- This can happen only if f is called with 0 as y
 - o if e = 1, the loop doesn't run and e stays 1
 - if e > 1 at the start of an iteration,
 then e' ≥ 1 as we end it



Idea #1: return 1 if y = 0

- This works but it introduces a special case in the code
- Special cases leads to contrived, unmaintainable code

 sometimes unavoidable
 but let's see if we can do better

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
if (y == 0) return 1;
 int b = x;
 int \mathbf{e} = \mathbf{y};
 int \mathbf{r} = \mathbf{1};
 while (e > 1)
 //@loop_invariant e >= 0;
 //@loop invariant POW(b,e) * r == POW(x,y);
  if (e % 2 == 1) {
    r = b * r:
  b = b * b;
  e = e / 2:
 return r * b;
```

Idea #2: change the precondition to y > 0

• This forces the caller to have special cases in their code!

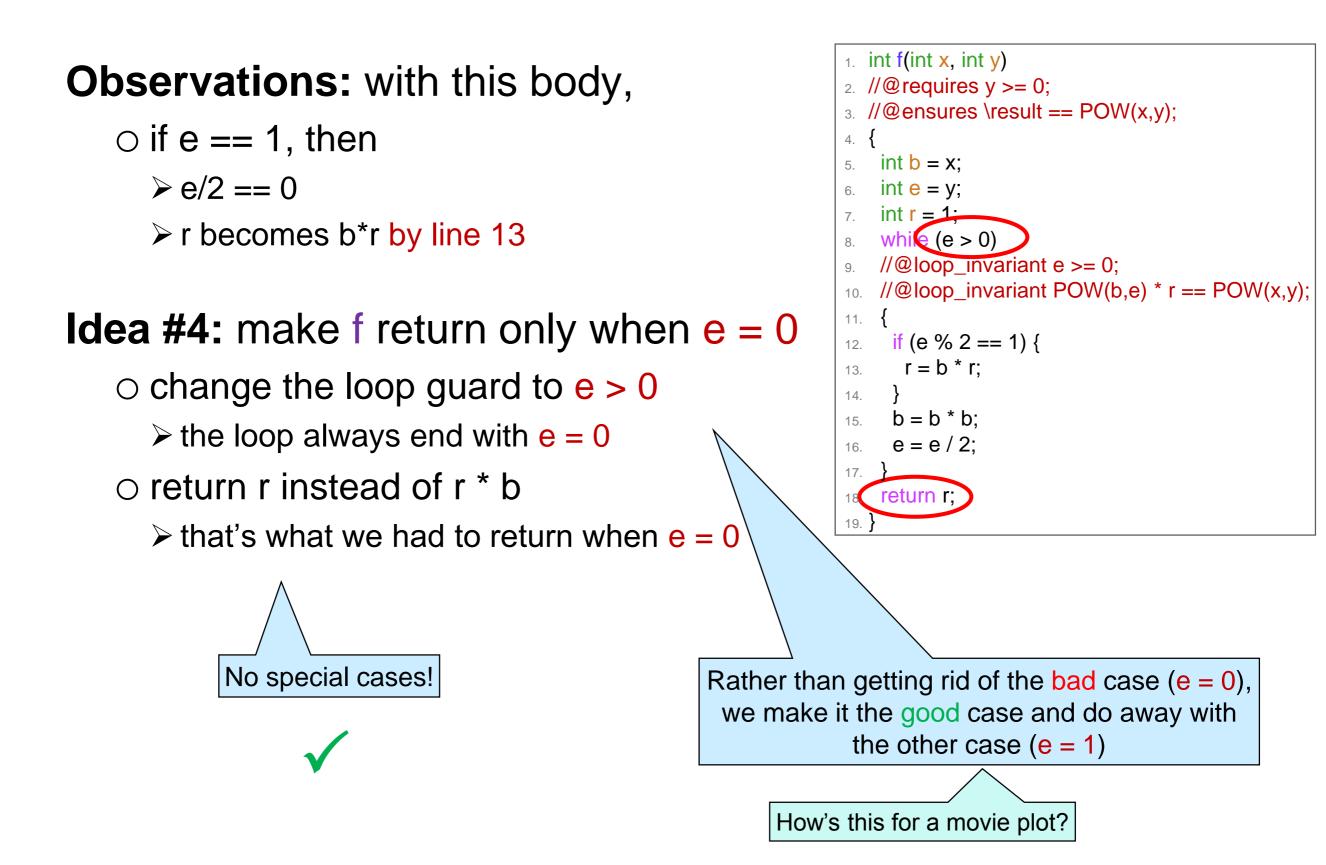
o calls to f need to be guarded

int c = f(a, b) int c = 1;if (b > 0) c = f(a, b);

int f(int x int y) //@ requires y > 0; $//@ensures \result == POW(x,y);$ int $\mathbf{b} = \mathbf{x};$ int e = y; int $\mathbf{r} = \mathbf{1}$; while (e > 1)//@loop invariant e >= 0; //@loop invariant POW(b,e) * r == POW(x,y); if (e % 2 == 1) { $\mathbf{r} = \mathbf{b} * \mathbf{r}$: b = b * b;e = e / 2: return r * b;

- This also means that f is not the power function any more
 o undefined when exponent is 0
- Not a great solution

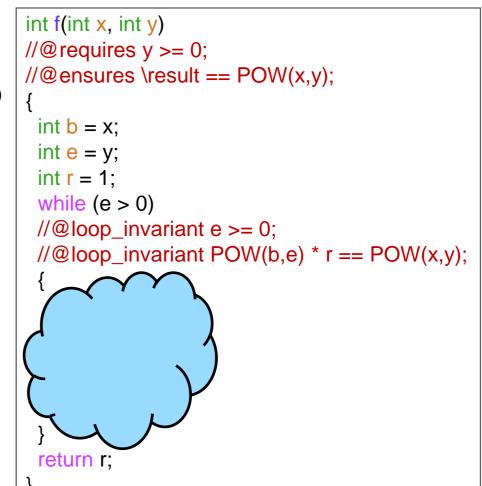
int POW(int x, int y) Idea #3: forget about f and use POW //@ requires y >= 0; instead if (y == 0) return 1; return POW(x, y-1) * x; b е r • Recall the trace of f(2,8)int f(int x, int y) 2 8 1 //@ requires y >= 0; ○ the loop ran 4 times 4 4 1 $//@ensures \result == POW(x,y);$ 2 16 1 int $\mathbf{b} = \mathbf{x}$; int $\mathbf{e} = \mathbf{y}$; 256 1 1 int $\mathbf{r} = 1$; while (e > 1)Х У $//@loop_invariant e >= 0;$ • Trace POW(2, 8)//@loop_invariant POW(b,e) * r == POW(x,y); 2 8 { 2 7 if (e % 2 == 1) { ○ 9 recursive calls r = b * r; 2 6 b = b * b;2 5 e = e / 2: • f is much more 2 4 return r * b; 2 3 efficient 2 2 2 1 2 0



Correctness

Did we Really Fix the Bug?

- The loop invariants are still valid
 we didn't change the body of the loop
 we changed the loop guard
 - but it doesn't impact the validity proof



Right after the loop, we know that
the loop guard is false: e ≤ 0
the 1st loop invariant is true: e ≥ 0
the 2nd loop invariant is true: b^e r = x^y

> so $x^y = b^e r = b^0 r = r$

This is what f returns now

so e = 0

Check for yourself

Assertions

Right after the loop, we know that e = 0

 We can note this with the directive //@assert e == 0;

checked only when running with -d
aborts execution if the test is false

//@assert is a great way to note
 o intermediate steps of reasoning
 o expectations about execution

```
int f(int x, int y)
//@requires y >= 0;
//@ensures \result == POW(x,y);
 int \mathbf{b} = \mathbf{x};
 int \mathbf{e} = \mathbf{y};
 int \mathbf{r} = \mathbf{1};
 while (e > 0)
 //@loop_invariant e >= 0;
 //@loop invariant POW(b,e) * r == POW(x,y);
   if (e \% 2 == 1) {
    r = b * r:
   b = b * b;
   e = e / 2;
//@assert e == 0;
return r;
        //@assert can appear
       anywhere a statement
                is expected
```

 These are all the run-time directives of C0 //@requires, //@ensures, //@loop_invariant, //@assert There are no others

Is the Function Correct?

Correctness: for any safe input, the postconditions are true

We just proved that, as we exit the loop, r = x^y

➢ just before return r;

 This tells us that f will never return the wrong result int f(int x, int y) //@ requires y >= 0; $//@ensures \result == POW(x,y);$ int $\mathbf{b} = \mathbf{x}$; int $\mathbf{e} = \mathbf{y}$; int $\mathbf{r} = \mathbf{1}$; while (e > 0) $//@loop_invariant e >= 0;$ //@loop_invariant POW(b,e) * r == POW(x,y);if (e % 2 == 1) { r = b * r: b = b * b;e = e / 2: //@assert e == 0;return r;

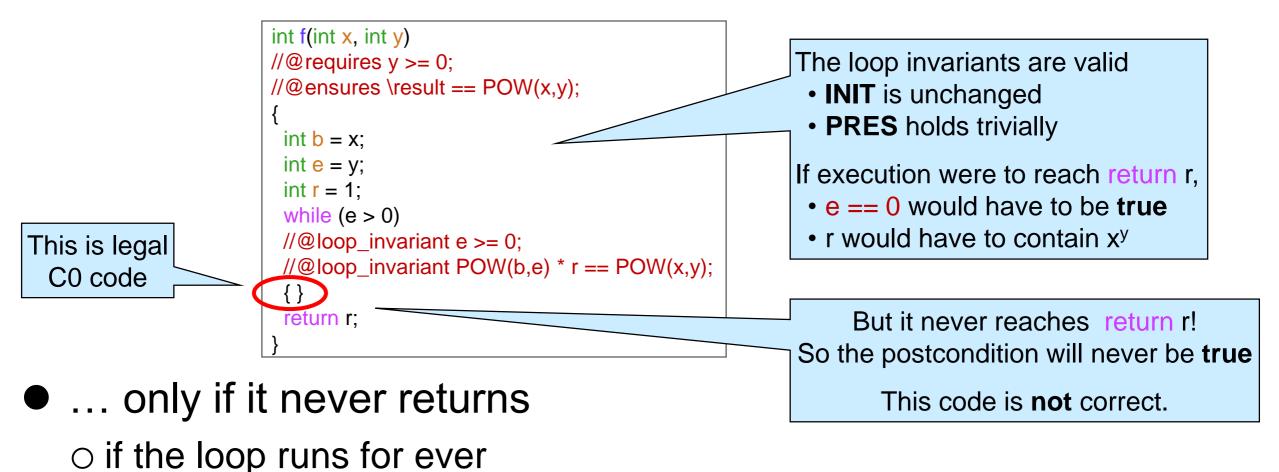
... but will it *always return the right result*?

Is the Function Correct?

Correctness: for any safe input, the postconditions are true

• Can a function never return the wrong result and yet not necessarily always return the right result ?

 \odot Let's empty out the loop body in our example



Termination

• We need to have a reason to believe the loop terminates

it doesn't run for ever

• Here's a proof of termination

o as the loop runs,

➤ e gets strictly smaller at each iteration

➢ it can never become smaller than 0

> the loop guard is false when e = 0

 \odot so the loop must terminate

```
int f(int x, int y)
//@requires y >= 0;
//@ensures \result == POW(x,y);
 int \mathbf{b} = \mathbf{x};
 int e = y;
 int \mathbf{r} = \mathbf{1};
 while (e > 0)
 //@loop_invariant e >= 0;
 //@loop_invariant POW(b,e) * r == POW(x,y);
 {
   if (e \% 2 == 1) {
     \mathbf{r} = \mathbf{b} * \mathbf{r}:
   b = b * b;
   e = e / 2;
//@assert e == 0;
return r;
```

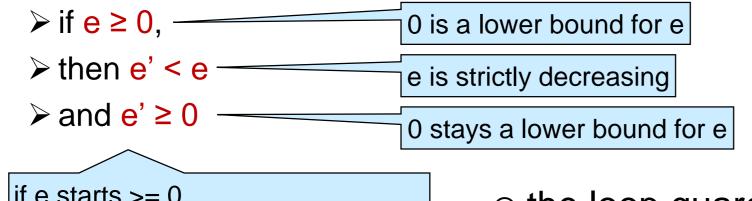
This is an **operational** proof: we are not pointing to anything

Termination

Operational proof

as the loop runs, e gets strictly smaller, it can never become smaller than 0, and the loop guard is false when e = 0

- > so the loop must terminate
- Can we prove it using point-to reasoning?
 - Yes! Here's what we need to show
 - in an arbitrary iteration of the loop,



if e starts >= 0, it gets strictly smaller and can never becomes smaller than 0

int f(int x, int y) //@requires y >= 0; $//@ensures \result == POW(x,y);$ int $\mathbf{b} = \mathbf{x}$; int e = y; int $\mathbf{r} = \mathbf{1}$; while (e > 0) $//@loop_invariant e >= 0;$ //@loop invariant POW(b,e) * r == POW(x,y); if (e % 2 == 1) { $\mathbf{r} = \mathbf{b} * \mathbf{r}$: b = b * b;e = e / 2;//@assert e == 0;return r;

```
○ the loop guard is false when e = 0

> 0 > 0 is false
```

Termination

Point-to proof

> To show: if $e \ge 0$, then e' < e and $e' \ge 0$

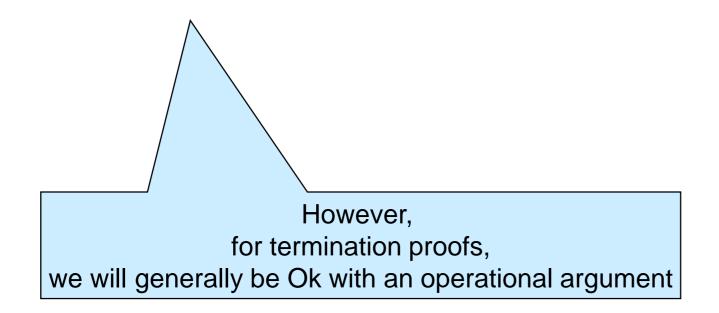
- A. e > 0 by line 8 (loop guard)
- B. e' = e/2 by line 16
- C. e' < e by math

D. e' ≥ 0

by math

 \checkmark

int f(int x, int y) //@ requires y >= 0; 2. $//@ensures \result == POW(x,y);$ 3. 4. int $\mathbf{b} = \mathbf{x}$; 5. int e = y;6. int $\mathbf{r} = 1$; 7. while (e > 0)8. $//@loop_invariant e >= 0;$ 9. //@loop_invariant POW(b,e) * r == POW(x,y); 10. 11. if (e % 2 == 1) { 12. r = b * r; 13. 14. b = b * b;15. e = e / 2;16. 17. //@assert e == 0;18. return r; 19. 20.



Reasoning about Code

Reasoning about C0

- C0 programs have a precise behavior
 o we can reason about them mathematically
- We used two types of reasoning
 - Operational reasoning: drawing conclusions about how things change when certain lines of code are executed
 - Point-to reasoning: drawing conclusions about what we <u>know</u>
 <u>to be true</u> by pointing to specific lines of code that justify them
 - boolean expressions
 - basic mathematical properties
 - variable assignments _

This is operational reasoning, but really simple

Operational Reasoning

• Examples

- Value of variables right after an assignment
- \odot Things happening in the body of a loop from outside this loop
- \odot Things happening in the body of a function being called
- \odot Previously true statement after variables in it have changed
- Operational reasoning is hard to do right consistently
 - ➤ very error prone!
 - We want to stay away from anything beyond simple assignments
 - except in termination proofs

If a proof about loops uses words like "always", "never", "each", you are doing operational reasoning But operational intuitions are a good way to form conjectures that we can then prove using point-to reasoning X

Point-to Reasoning

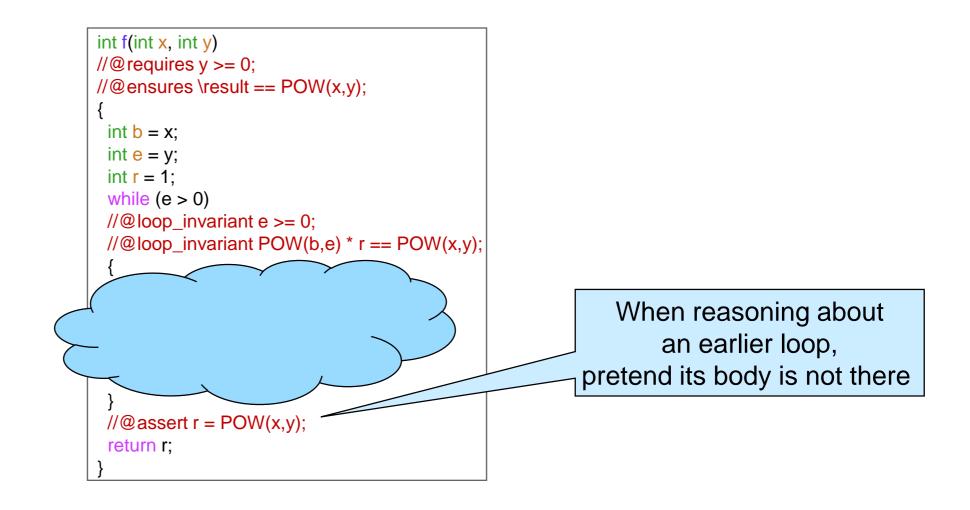
• Examples

Boolean conditions

- > condition of an if statement in the "then" branch
- > negation of the condition of an if statement in the "else" branch
- loop guard inside the body of a loop
- negation of the loop guard after the loop
- Contract annotations
 - preconditions of the current function
 - postconditions of a function just called
 - loop invariant inside the loop body
 - loop invariant after the loop
 - earlier fully justified assertions
- Math
 - Iaws of logic
 - ➤ some laws of arithmetic
- Value of variables right after an assignment

Point-to Reasoning: Tips and Tricks

 When reasoning about an earlier loop, pretend the body of the loop is not there
 Only rely on the loop guard and loop invariants

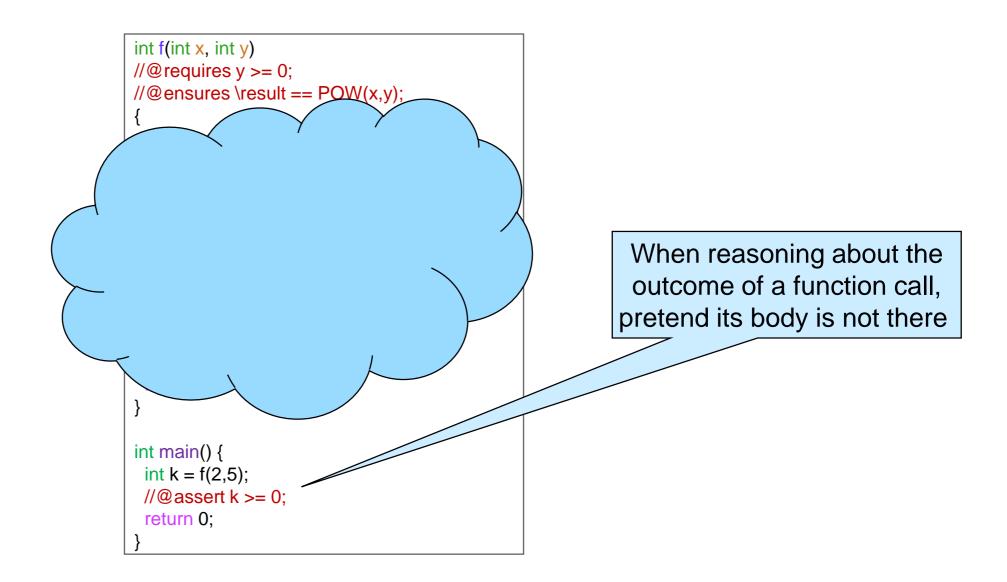


Point-to Reasoning: Tips and Tricks

When reasoning about a function being called,
 pretend the body of the function is not there

> unless it's a specification function

 \odot Only rely on its contracts



Safety

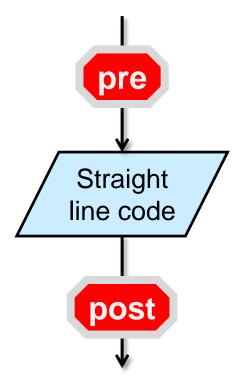
- The inputs of a function call satisfy the function's preconditions
 - o we will generalize this definition in the future
- We will exclusively use point-to reasoning to justify safety

Correctness

- The postconditions of a function will be true on any call that satisfies the preconditions
 - We will not need to generalize this definition

Straight Line Functions

A non-recursive function without loops



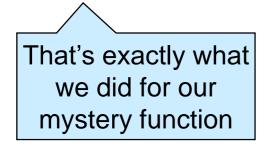
 Proving correctness amounts to combining assignments

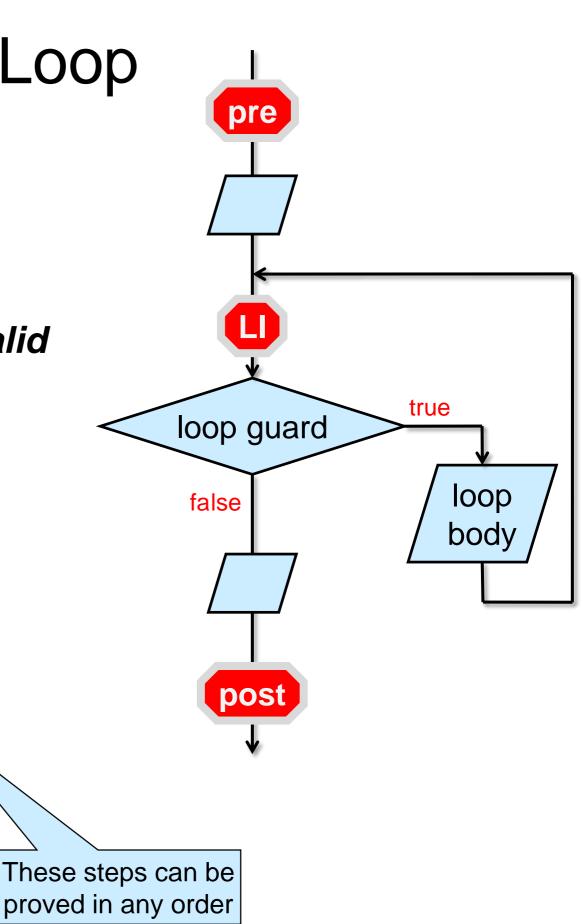
To show: \result = x

A. $\mathbf{b} = \mathbf{x}$	by line 5
B. r = 1	by line 7
C. $result = r * b$	by line 8
D.r * b = x	by math on A, B, C

1. int f(int x, int y)
2. //@requires y >= 0;
3. //@ensures \result == x;
4. {
5. int b = x;
6. int e = y;
7. int r = 1;
8. return r * b;
9. }

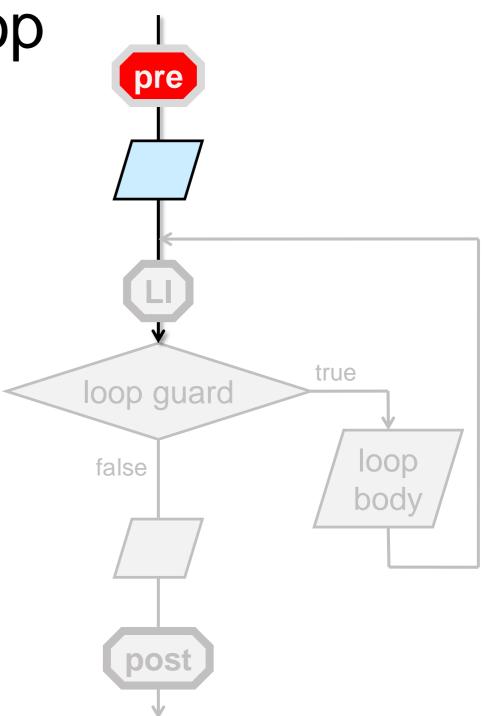
- Proving correctness involves
 3 steps
 - \odot Show that the loop invariants are valid
 - > INIT: the LI are true initially
 - PRES: the LI are preserved by an arbitrary iteration of the loop
 - EXIT: the LI and the negation of the loop guard imply the postcondition
 - \odot TERM: the loop terminates





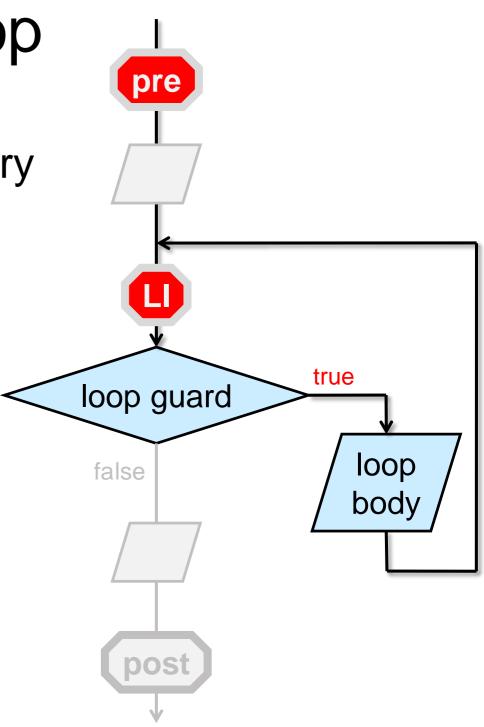
INIT: the loop invariant is true initially

- proved by <u>point-to reasoning</u> typically using
 - \odot the preconditions
 - simple assignments before the loop



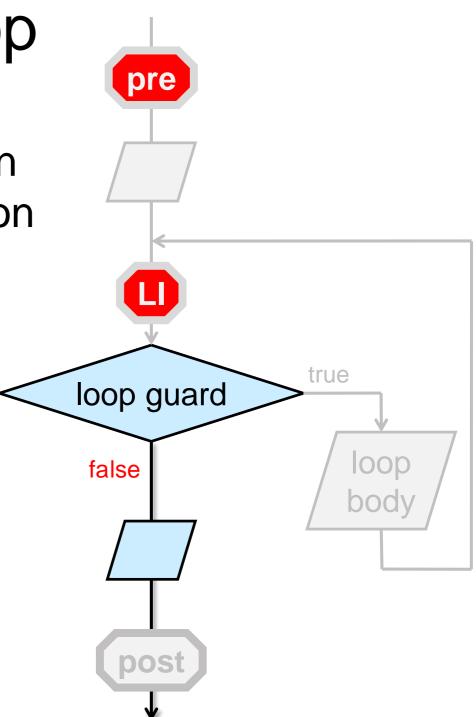
PRES: the LI are preserved by an arbitrary iteration of the loop

- proved by <u>point-to reasoning</u> typically using
 - the assumption that the LI is true at the beginning of the iteration
 - \odot the loop guard being true
 - > we are running an iteration
 - simple assignments and conditionals in the loop body
 - the preconditions (sometimes)



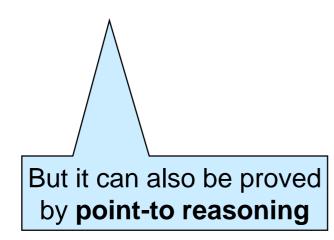
EXIT: the loop invariants and the negation of the loop guard imply the postcondition

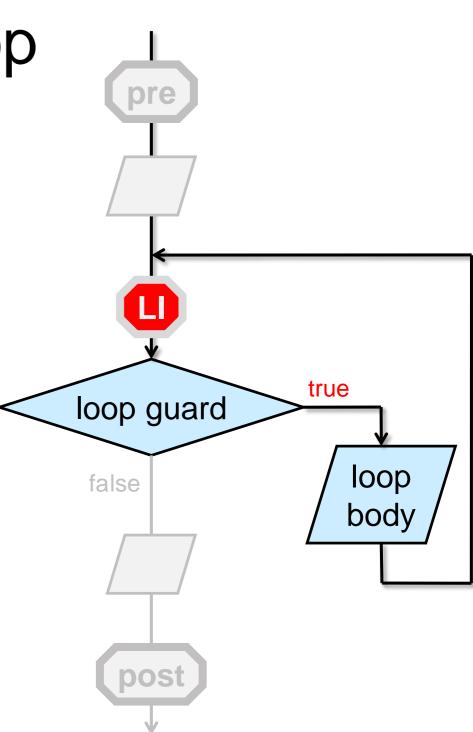
- proved by <u>point-to reasoning</u> typically using
 - \odot the loop invariant
 - \odot the negation of the loop guard
 - simple assignments and conditionals after the loop



TERM: the loop terminates

- proved by <u>operational reasoning</u> typically using
 - the assumption that the LI is true at the beginning of the iteration
 - the loop guard
 - simple assignments and conditionals in the loop body





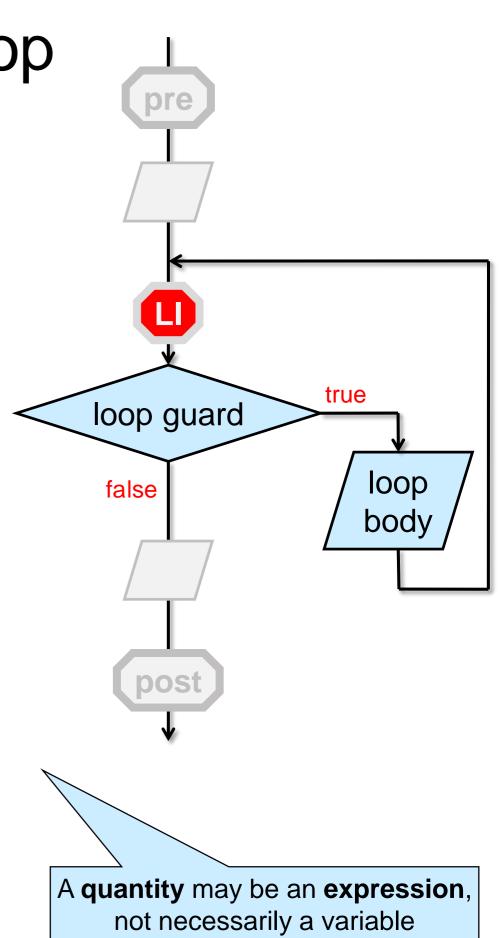
TERM: the loop terminates

 Format of a termination proof using <u>operational reasoning</u>

> "on an arbitrary iteration of the loop, the quantity _____ gets strictly smaller but it can't ever get smaller than _____ on which the loop guard is false

or

"on an arbitrary iteration of the loop, the quantity _____ gets strictly bigger but it can't ever get bigger than _____" on which the loop guard is false



More Complex Functions

- These techniques can be extended
 but we will rarely deal with functions with more than one loop
- We can also factor out nested loops and the like into helper functions

 \odot and then use the technique we just saw

Seriously??

- All these proofs and complicated reasoning seem overkill!
 the mystery function wasn't all that hard after all
 we could just spot what was going on
- Yes, but it won't be that easy for more complex functions
 the technique we saw is systematic and scalable
 reasoning about code will pay off
- Point-to reasoning is what we do in our head all the time when programming
 - writing it down as loop invariants and contracts makes it easier not to get confused
 - o and the -d flag will catch lingering issues at run time

Epilogue

Where are we?

- We fully documented f
 function contracts
 loop invariants
 key assertions
- We fixed the bug
- We gave mathematical proofs that
 all the calls it makes are safe
 it is correct
- Let's enjoy the fruit of our labor with some more testing!

```
int f(int x, int y)
//@requires y >= 0;
//@ensures \result == POW(x,y);
 int \mathbf{b} = \mathbf{x};
 int e = y;
 int \mathbf{r} = \mathbf{1};
 while (e > 0)
 //@loop_invariant e >= 0;
 //@loop invariant POW(b,e) * r == POW(x,y);
  {
   if (e \% 2 == 1) {
     \mathbf{r} = \mathbf{b} * \mathbf{r}:
   b = b * b;
   e = e / 2;
//@assert e == 0;
return r;
```

