
Contracts

A Mystery Function

1

The Story

Your first task at your new job is to debug this code written by

your predecessor, who was fired for being a poor programmer.

This is all you

are given

How do you go about this “friendly” challenge?

int f(int x, int y) {

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

2

The Language

 This code is written in C0

o The language we will use for most

of this course

 This is also valid C code

o For the most part, C0 programs

are valid C programs

oWe will use C0 as a gentler

language to

 learn to write complex code that is correct

 learn to write code in C itself

 But what does this function do?

int f(int x, int y) {

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

3

The Programmer

 Is this good code?

o there are no comments

o the names are non-descript

 the function is called f

 the variables are called x, y, r

No!

 No wonder your predecessor

was fired as a programmer!

 But what does this function do?

int f(int x, int y) {

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}



4

The Function

 But what does this function do?

 We can run experiments

o call f with various inputs and observe the outputs

 We do so by loading it in the C0 interpreter – coin

coin mystery.c0

C0 interpreter (coin) 0.3.3 'Nickel' (r590, Mon Aug 29 12:04:13 UTC 2016)

Type `#help' for help or `#quit' to exit.

-->

Linux Terminal

The command for

the C0 interpreter

The file where we

saved the function

The coin

prompt

5

Running Experiments

 Call f with various inputs and observe the outputs

 These are not very good experiments

o they don’t help us understand what f does

coin mystery.c0

C0 interpreter (coin) …

…

--> f(7, 12);

956385313 (int)

--> f(3, 17);

129140163 (int)

-->

Linux Terminal

The result is 956385313

We are calling f with

inputs 7 and 12

The result has type int

6

Running Experiments

 Call f with various inputs and observe the outputs

owe are better off calling f with small inputs

o and vary them by just a little bit so we can spot a pattern

--> f(2, 3);

8 (int)

--> f(2, 4);

16 (int)

--> f(2, 5);

32 (int)

--> f(2, 6);

64 (int)

-->

Linux Terminal

Much better!

o It looks like f(x, y) computes xy

o Let’s confirm with more

experiments

7

Confirming the Hypothesis

 It looks like f(x, y) computes xy

 Let’s confirm with more experiments

 Let’s run a few more experiments to identify the problem

--> f(2, 2);

4 (int)

--> f(3, 2);

9 (int)

--> f(4, 2);

16 (int)

--> f(5, 2);

25 (int)

-->

Linux Terminal

oWe find a secret memo in a

hidden drawer

Yep! That’s xy

Not the friendliest of work places!

Power not working.

Fix by tonight or you’re out

8

Discovering the Bug

 f(x, y) is meant to computes xy

o but it doesn’t

 Let’s find where it fails with more experiments

 Now we have something to chew on

--> f(-2, 3);

-8 (int)

--> f(-2, 2);

4(int)

--> f(2, 1);

2 (int)

--> f(2, 0);

2 (int)

--> f(2, -1);

2 (int)

-->

Linux Terminal

That’s not 20

It seems to work for

negative values of x

It seems to work for

negative values of x

That’s definitely not 2-1

9

Preconditions

10

The Power Function

 What does it mean to be the power function xy ?

o

Yes, but that’s not very precise

 Let’s write a mathematical definition

o

x * …. * x

y times

x0 = 1

xy = xy-1 * x

and this is its base caseThis is a recursive definition

11

The Power Function

 What does it mean to be the power function xy ?

oWhat happens if y is negative?

we never reach the base case …

 The power function xy on integers is undefined if y < 0

x0 = 1

xy = xy-1 * x

x0 = 1

xy = xy-1 * x if y > 0
This defines xy for y ≥ 0 onlyThis defines xy for y ≥ 0 only

12

The Power Function

 What does it mean to be the power function xy ?

 To implement the power function, f must disallow negative

exponents

o It can raise an error

o It can tell the caller that the exponent should be ≥ 0

x0 = 1

xy = xy-1 * x if y > 0

int f(int x, int y) {

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

We need to test y.

This would slow f down a bit.

Better!
no need to test y

13

Preconditions

 Disallow negative exponents

o by telling the caller that the exponent should be ≥ 0

 A restriction on the admissible inputs to a function is called

a precondition

oWe need to impose a

precondition on f

 In most languages, we are

limited to writing a

comment
 and hope the

caller reads it

// y must be greater than or equal to 0

int f(int x, int y) {

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

This is how we

would write a

precondition in C

14

Preconditions in C0

 We need to impose a precondition on f

o to tell the caller that y should be ≥ 0

 In C0 we can write an executable contract directive

//@requires y >= 0;

oWe check contracts by invoking coin

with the -d flag

 “dynamic checking”

 but everybody understands it as debug mode

owithout the -d flag, contracts are

treated as comments

int f(int x, int y)

//@requires y >= 0;

{

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

C0 keyword to specify a precondition
• written between the function header and the body

• before the first “{“

C0 keyword to specify a precondition
• written between the function header and the body

• before the first “{“

15

16

Using Contract

Running with contracts disabled Running with contracts enabled

coin mystery.c0

C0 interpreter (coin) …

--> f(2, 3);

8 (int)

--> f(2, -1);

2 (int)

-->

Linux Terminal

coin -d mystery.c0

C0 interpreter (coin) …

--> f(2, 3);

8 (int)

--> f(2, -1);

mystery.c0:2.4-2.20: @requires annotation failed

Last position: mystery.c0:2.4-2.20

f from <stdio>:1.1-1.9

-->

Linux Terminal

Contracts are treated

as comments

Contracts are executed

• if true, execution proceeds normally

• if false, execution aborts

Line number

where contract failed

cc0, the C0 compiler,

works the same way

File where

contract failed

Safety

 If we call f(x,y) with a negative y

owith -d, execution aborts

owithout -d, f can return an arbitrary result

 there is no right value it could return

 Calling a function with inputs that cause a precondition to

fail is unsafe

o execution will never do the right thing

either abort

or compute a wrong result

 The caller must make sure that the call is safe
 that y ≥ 0

17

Postconditions

18

Contracts about Function Outcomes

 Preconditions are checked before the

function starts executing

 A contract that is checked after it is done

executing could tell us if the function did

the right thing
 check that the output is what we expect

o This is a postcondition

function

body

pre

post

19

Postconditions in C0

 In C0, the contract directive

//@ensures <some_condition> ;

allows us to write a postcondition

o <some_condition> can mention the

contract-only variable \result

what the function returns

 can only be used with //@ensures

int f(int x, int y)

//@requires y >= 0;

//@ensures …;

{

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

C0 keyword to specify a precondition
• written between the function header and the body

• before the first “{“

C0 keyword to specify a postcondition
• written between the function header and the body

• after the preconditions (by convention)

• before the first “{“

20

Writing a Postcondition

 The postcondition we want to write is

//@ensures \result == x**y;

o but x**y is not defined in C0

C0 has no primitive power function!

 What do we do?

o transcribe the mathematical definition into a C0 function

That’s how we write xy in Python

x0 = 1

xy = xy-1 * x if y > 0

int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return POW(x, y-1) * x;

}

21

Writing a Postcondition

 Then our postcondition is

//@ensures \result == POW(x, y);

right? … almost

o The function modifies x (and y)

Which values of x and y should C0 evaluate the

postcondition with?

 We want the initial values, but it is checked when returning …

o To avoid confusion, C0 disallows modified variables in postconditions

int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return POW(x, y-1) * x;

}

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * y;

}

coin -d mystery.c0

mystery.c0:18.5-18.6:error:cannot assign to

variable 'x' used in @ensures annotation

x = x * x;

~

Unable to load files, exiting...

Linux Terminal

22

Writing a Postcondition

 C0 disallows modified variables in

postconditions

oMake copies x and y and modify those

oWe’re good

int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return POW(x, y-1) * x;

}

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

coin -d mystery.c0

C0 interpreter (coin) …

--> f(2, 3);

8 (int)

--> f(2, 0);

mystery.c0:11.4-11.33: @ensures annotation failed

Last position: mystery.c0:11.4-11.33

f from <stdio>:1.1-1.8

Linux Terminal

Line number

where contract failed

23

This should always

be on our mind

Recall Safety
int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return POW(x, y-1) * x;

}

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}





This should always

be on our mind

 In the postcondition of f, we are making

a call to POW

o Is it safe?
 We need to show that y >= 0

The precondition tells us that y >= 0

 The body of POW makes a call to POW

o Is it safe?
 We need to show that y-1 >= 0

The precondition tells us that y >= 0

Since we don’t return on the if, y > 0

So y-1 >= 0 by math

 These are examples of point-to reasoning

oWe justify something by pointing to lines of code that supports it

24

The Power Function

 But wait!

o f was meant to implement the power function

o… but POW is the power function!

 Let’s use it!

o There may be benefits to fixing f instead

 it may be more efficient than POW

o Keep reading …

int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return POW(x, y-1) * x;

}

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

25

Correctness

 If a call violates a function’s postconditions
(assuming its preconditions were met so it actually ran)

the function is doing something wrong

o the function has a bug

 The function is incorrect

oOur mystery function f is incorrect

 When writing a function, we must make sure that it is

correct

o i.e., that its postconditions will be satisfied for any safe input

function

body

pre

post

26

Blame

 If a function preconditions fail, it’s the caller’s fault
 the caller passed invalid inputs

o the call is unsafe

 If its postconditions fail, it’s the implementation’s fault
 the function code does the wrong thing

o the function is incorrect

We will develop methods to make sure that the code we

write is safe and correct

27

How to Use Contracts

 Contract-checking helps us write code that works as

expected

oUse -d while writing our code

o At this stage, this is development code

bugs are likely

 Once we are confident our code works, compile it

without -d

o The code can be used in its intended application

o At this stage, this is production code

 there should be no bugs

 Why not use -d always?

o it slows down execution

28

Specification Functions

 POW is used only in contracts

o It is not executed when

contract-checking is disabled

without -d

 Functions used only in contracts are

called specification functions

o They help us state what the code should do

o They are critical to writing good code

int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return POW(x, y-1) * x;

}

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

29

Function Contracts

30

Where are we?

 We have learned a lot about f

o the preconditions describe what valid

inputs are

o the postconditions describe what it is

supposed to do

on valid inputs

 We have a fully documented function

 We have not looked at all at its body
but we know there is a bug in there

 it is incorrect

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

31

The Caller’s Perspective

Preconditions describe valid inputs

Postconditions describe what it does

 That’s what the caller needs to know

to use the function

 The caller should be able to use it

without knowing anything about how

it is implemented

o The implementation details are abstracted away

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

Header:
• function name

• number and type of its arguments

Contracts:
• pre- and post-conditions

32

Abstraction

 Split a complex system into small chunks that can be

understood independently

 Computer science is all about abstraction

Bother with as few details

as possible at any time

33

The Function’s Perspective

Preconditions describe valid inputs

Postconditions describe what it does

 That’s what the implementation is to do

o guidelines to write the body of the function

 How to write good code

o First write the contracts

o and then the body

 in this way, you always know what you are

aiming for

Now, we need to look at the body of f to find the bug

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

34

Loop Invariants

35

Diving In

 We need to look at the body of f

o The complicated part is the loop

 the values of the variables change at each

iteration

 it’s unclear how many iterations there are

o If we understand the loop, we understand

the function

 How to go about that?

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

36

Abstraction

 If we understand the loop,

we understand the function

 How to go about that?

oContracts summarize what a function does

so we don’t need to bother with the details

of its implementation

An abstraction over functions

oCome up with a summary of the loop so

we don’t need to bother with the details

of its implementation

An abstraction over loops!

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

37

Loop Invariants

The values of the variables change at each iteration

 One valuable abstraction is what does

not change

o This is called a loop invariant

a quantity that remains constant at each iteration

of the loop

 a quantity may be an expression, not just a variable

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}We will see what makes

some loop invariants

really valuable shortly

38

Tracing Code

 How to find a loop invariant?
a quantity that remains constant at each iteration

of the loop

 Run the function on sample inputs

 Track the value of the variables
b, e, r

 no need to bother with x and y since they don’t change

o just before the loop guard is tested

That’s e > 1

 Look for patterns

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

loop

body

e > 1

Here

Loop guard

This is called

tracing

an execution

true

false

39

Tracing Code

 Run the function on sample inputs

and track the value of the variables

o Let’s try with f(2,8)

oCan we spot a quantity that doesn’t change?

b e r

2 8 1

4 4 1

16 2 1

256 1 1

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

This checks

if e is odd

At this point

we exit the loop

40

loop

body

e > 1

Here

true

false

Tracing Code

 Trying with f(2,8)

oCan we spot a quantity that doesn’t change?

o be is always 256

o This is a candidate loop invariant

be is constant on one set of inputs

a loop invariant must stay constant on all inputs

b e r be

2 8 1 256

4 4 1 256

16 2 1 256

256 1 1 256

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

41

loop

body

e > 1

Here

true

false

Tracing Code

 be is a candidate loop invariant

 Let’s try with f(2,7)

o be is not invariant on these inputs!

 It was a candidate that didn’t pan out

 Can we spot another quantity that

doesn’t change?

b e r be

2 7 1 128

4 3 2 64

16 1 8 16

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

Not constant

on these

inputs

42

loop

body

e > 1

Here

true

false

Tracing Code

 Trying with f(2,7)

oCan we spot a quantity that doesn’t change?

o be * r is always 128

 This is another candidate loop invariant

o Let’s test it on f(3,5)

o This seems to work

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

b e r be be * r

2 7 1 128 128

4 3 2 64 128

16 1 8 16 128

b e r be * r

3 5 1 243

9 2 3 243

81 1 3 243

43

loop

body

e > 1

Here

true

false

A Candidate Loop Invariant

 be * r is a promising candidate loop invariant

o It works on three inputs!

 How do we know it works in general?

oWe can’t test it on all inputs

oWe need to provide a proof

 But first, let’s add it to our code

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

44

Loop Invariants in C0

 In C0, we use the directive

//@loop_invariant

to specify a loop invariant

 Then, simply write

//@loop_invariant POW(b, e) * r;

o… this won’t work

C0 would need to keep track of the values of this

expression across all iterations of the loop

also, what if the loop runs 0 times?

 In C0, loop invariants must be boolean expressions

o true means it was satisfied in the current iteration

o false means it wasn’t

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1)

//@loop_invariant … ;

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

C0 keyword to specify a loop invariant
• written between the loop guard and the loop body

45

Loop Invariants in C0

 They are boolean expressions

o true means satisfied

 What can we use?

o As we enter the loop,

b is x and e is y

 so xy is 128 too

 thus, be * r = xy

 Then, we can write

//@loop_invariant POW(b, e) * r == POW(x, y);

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1)

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

b e r be * r

2 7 1 128

4 3 2 128

16 1 8 128

Execution will abort

when ran with -d

if LI is ever false

46

Safety

We have two new calls to POW

oAre they safe?

 POW(x, y)
To show: y >= 0

o y >= 0 by line 2 (precondition of f)

 POW(b, e)
To show: e >= 0

o “e is initially equal to y which is >= 0 and it is halved at each

iteration of the loop so e is always >= 0”

o This is an example of operational reasoning

The justification relies on what is happening in all the iterations of the loop

 This is error-prone

We will disallow safety proofs based on operational reasoning on loops

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant POW(b,e) * r == POW(x,y);

10. {

11. if (e % 2 == 1) {

12. r = b * r;

13. }

14. b = b * b;

15. e = e / 2;

16. }

17. return r * b;

18. }

?




47

Safety

POW(b, e)
To show: e >= 0

oWe can sort of do it with

operational reasoning

error prone!

o but we really want to prove it

using point-to reasoning

 We do believe that e >= 0 at

every iteration of the loop

o Turn it into a candidate loop invariant!

//@loop_invariant e >= 0;

We will need to prove later that it is valid

o Then we prove that POW(b, e) is safe by pointing to line 9

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }



An operational hunch

is often a good candidate

loop invariant

48

How Loop Invariants Work

 Loop invariants are checked just

before the loop guard is tested

 If the loop body runs n times,

o the loop invariant is checked n+1 times

must be true all n+1 times

o the loop guard is tested n+1 times too

 true the first n times and false the last time

 When we exit the loop

o the loop invariant is true

o the loop guard false

loop

body

loop guard

Here

true

false

LI

Important!Important!

Note that n could be 0

49

Validating Loop Invariants

50

Where are we?

 We have learned even more about f

o The contracts tell us what it is

meant to do

o The loop invariants give us useful

information about how the loop works

but these are candidate loop invariants

we need to prove that they are valid

 We have started learning about proving things about code
 just safety so far

o point-to reasoning: good

o operational reasoning: error prone

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

51

Proving a Loop Invariant Valid

 We cannot show a loop invariant is

valid by running it on all possible

inputs

oWe need to supply a proof

using point-to reasoning

 Two steps

INIT: show that the loop invariant is true initially

 just before we test the loop guard the very first time

PRES: show that the loop invariant is preserved by the loop

 if it is true at the beginning of an arbitrary iteration of the loop,

 then it is also true at the end of this iteration

loop

body

loop guard
true

false

LI

But it may become

false temporarily

in the middle of

the loop body

P
R

E
S

INIT

52

Validity of e ≥ 0

INIT:
To show: e ≥ 0 initially

A. y ≥ 0 by line 2

B. e = y by line 6

C. e ≥ 0 by math on A and B

PRES:
To show: if e ≥ 0, then e ≥ 0

o The value of e changes in the body of the loop

oWe need a way to distinguish the value at the start and end of

the current iteration

e value of e at the start of the current iteration

e’ value of e at the end of the current iteration

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

This is a typical

proof format in

this course

But isn’t this trivially true?

LI at start of

current iteration
LI at end of

current iteration



We use math notation for brevity

53

Validity of e ≥ 0

INIT: e ≥ 0 initially

PRES:
To show: if e ≥ 0, then e’ ≥ 0

A. e’ = e/2 by line 16

B. e ≥ 0 by assumption

C. e/2 ≥ 0 by math on B

D. e’ ≥ 0 by A and C

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

LI at start of

current iteration
LI at end of

current iteration





Both INIT and PRES were

proved by point-to reasoning

54

Validity of be r = xy

INIT:
To show: be r = xy initially

A. b = x by line 5

B. e = y by line 6

C. r = 1 by line 7

D. be r = xy by math on A, B, C

PRES:
To show: if be r = xy, then b’e’ r’ = xy

oWe need to distinguish 2 cases based on the test e % 2 == 1

e % 2 == 1 is true — e is odd

e % 2 == 1 is false — e is even

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

LI at start of

current iteration
LI at end of

current iteration



x and y don’t change

in the loop

55

Validity of be r = xy

PRES:
To show: if be r = xy, then b’e’ r’ = xy

Case e is odd (e % 2 == 1)

 Then e = 2n+1 for some n

A. b’ = b*b by line 15

B. e’ = e/2 by line 16

C. = n by case assumption and math

D. r’ = b * r by line 13

E. b’e’ r’ = (b*b)n b*r by A, B, C, D

F. = b(b2)n r by math

G. = b2n+1 r by math

H. = be r by case assumption

I. = xy by assumption

o This proves the first case

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

This is one of the

most complex proofs

in this course

56

Validity of be r = xy

PRES:
To show: if be r = xy, then b’e’ r’ = xy

Case e is even (e % 2 == 0)

 Then e = 2n for some n

A. b’ = b*b by line 15

B. e’ = e/2 by line 16

C. = n by case assumption and math

D. r’ = r since r is unchanged

E. b’e’ r’ = (b*b)n r by A, B, C, D

F. = (b2)n r by math

G. = b2n r by math

H. = be r by case assumption

I. = xy by assumption

o This proves the second case too

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }



PRES holds

for be r = xy

57

Loop Invariants

 e ≥ 0 is valid

o it holds INITially

o it is PREServed by an arbitrary iteration

of the loop

 if e ≥ 0, then e’ ≥ 0

 be r = xy is valid

o it holds INITially

o it is PREServed by an arbitrary iteration of the loop

 if be r = xy, then b’e’ r’ = xy

 This shows that both are genuine loop invariants

o not just candidates

owe can forget about the body of the loop when reasoning about

this function

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }





58

Proof-directed Debugging

59

Where are we?

 The contracts tell us what the

function is meant to do
but we know there is a bug in there

 The loop invariants abstract away the

details of the loop

 Let’s find the bug!

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

But what to do

with them is still

a bit mysterious

60

After the Loop

 What do we know when execution

exits the loop?

o the loop guard is false

e ≤ 1

o the loop invariants are true

e ≥ 0

be r = xy

 Knowing this will

o enable us to prove correctness

o or expose a bug

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

loop

body

loop guard

Here

true

false

LI

Here

61

Since f is incorrect,

this should happen

After the Loop

 What do we know when execution

exits the loop?

o the loop guard is false

e ≤ 1

o the loop invariants are true

e ≥ 0

be r = xy

 From e ≤ 1 and e ≥ 0,

we have that

o either e = 0

o or e = 1

as we exit the loop

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

loop

body

loop guard

Here

true

false

LI

Here

Recall that e

has type int

62

After the Loop

 Either e = 0 or e = 1

o Let’s plug these values in the other

loop invariant, be r = xy

If e = 1, then xy = be r = b1 r = r b

o Thus, xy = r b in this case

if e = 0, then xy = be r = b0 r = r

o Thus, xy = r in this case

 xy ≠ r b

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

Here

This is exactly

what f returns.

This is not

what f returns.

This is the bug!





63

Tracking the Bug

 The bug is when e = 0 as we exit

the loop

 This can happen only if f is called

with 0 as y

o if e = 1, the loop doesn’t run and

e stays 1

o if e > 1 at the start of an iteration,

then e’ ≥ 1 as we end it

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

Here

64

Fixing the Bug

Idea #1: return 1 if y = 0

 This works but it introduces a

special case in the code

 Special cases leads to contrived,

unmaintainable code

o sometimes unavoidable

o but let’s see if we can do better

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

if (y == 0) return 1;

int b = x;

int e = y;

int r = 1;

while (e > 1)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

65

Fixing the Bug

Idea #2: change the precondition

to y > 0

 This forces the caller to have special

cases in their code!

o calls to f need to be guarded

 This also means that f is not the power function any more

o undefined when exponent is 0

 Not a great solution

int f(int x, int y)

//@requires y > 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

int c = f(a, b)
int c = 1;

if (b > 0) c = f(a, b);



66

Fixing the Bug

Idea #3: forget about f and use POW

instead

 Recall the trace of f(2,8)

o the loop ran 4 times

 Trace POW(2, 8)

o 9 recursive calls

 f is much more

efficient

int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return POW(x, y-1) * x;

}

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}



b e r

2 8 1

4 4 1

16 2 1

256 1 1

x y

2 8

2 7

2 6

2 5

2 4

2 3

2 2

2 1

2 0
67

Fixing the Bug

Observations: with this body,

o if e == 1, then

e/2 == 0

 r becomes b*r by line 13

Idea #4: make f return only when e = 0

o change the loop guard to e > 0

 the loop always end with e = 0

o return r instead of r * b

 that’s what we had to return when e = 0

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 0)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r;

19. }

No special cases!



Rather than getting rid of the bad case (e = 0),

we make it the good case and do away with

the other case (e = 1)

How’s this for a movie plot?
68

Correctness

69

Did we Really Fix the Bug?

 The loop invariants are still valid

owe didn’t change the body of the loop

owe changed the loop guard

but it doesn’t impact the validity proof

 Right after the loop, we know that

o the loop guard is false: e ≤ 0

o the 1st loop invariant is true: e ≥ 0

o the 2nd loop invariant is true: be r = xy

 so xy = be r = b0 r = r

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r;

}Check for yourself

so e = 0

This is what f returns now



70

Assertions

Right after the loop, we know that e = 0

 We can note this with the directive

//@assert e == 0;

o checked only when running with -d

o aborts execution if the test is false

 //@assert is a great way to note

o intermediate steps of reasoning

o expectations about execution

 These are all the run-time directives of C0

//@requires, //@ensures, //@loop_invariant, //@assert

There are no others

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert e == 0;

return r;

}

//@assert can appear

anywhere a statement

is expected

71

Is the Function Correct?

Correctness: for any safe input,

the postconditions are true

 We just proved that, as we exit the

loop, r = xy

 just before return r;

 This tells us that f will never return

the wrong result

… but will it always return the right result?

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert e == 0;

return r;

}

72

Is the Function Correct?

Correctness: for any safe input, the postconditions are true

 Can a function never return the wrong result and yet not

necessarily always return the right result ?

o Let’s empty out the loop body in our example

 … only if it never returns

o if the loop runs for ever

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{ }

return r;

}

The loop invariants are valid

• INIT is unchanged

• PRES holds trivially

If execution were to reach return r,

• e == 0 would have to be true

• r would have to contain xy
This is legal

C0 code

But it never reaches return r!

So the postcondition will never be true

This code is not correct.

73

Termination

 We need to have a reason to believe

the loop terminates
 it doesn’t run for ever

 Here’s a proof of termination

o as the loop runs,

e gets strictly smaller at each iteration

 it can never become smaller than 0

 the loop guard is false when e = 0

o so the loop must terminate

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert e == 0;

return r;

}

This is an operational proof:

we are not pointing to anything



74

Termination

 Operational proof
as the loop runs, e gets strictly smaller,

it can never become smaller than 0, and

the loop guard is false when e = 0

 so the loop must terminate

 Can we prove it using point-to

reasoning?

o Yes! Here’s what we need to show

o in an arbitrary iteration of the loop,

 if e ≥ 0,

 then e’ < e

and e’ ≥ 0

o the loop guard is false when e = 0

0 > 0 is false

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert e == 0;

return r;

}

0 is a lower bound for e

e is strictly decreasing

0 stays a lower bound for e

if e starts >= 0,

it gets strictly smaller and

can never becomes smaller than 0

75

Termination

 Point-to proof
To show: if e ≥ 0, then e’ < e and e’ ≥ 0

A. e > 0 by line 8 (loop guard)

B. e’ = e/2 by line 16

C. e’ < e by math

D. e’ ≥ 0 by math

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 0)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. //@assert e == 0;

19. return r;

20. }

However,

for termination proofs,

we will generally be Ok with an operational argument



76

Reasoning about Code

77

Reasoning about C0

 C0 programs have a precise behavior

owe can reason about them mathematically

 We used two types of reasoning

oOperational reasoning: drawing conclusions about how things

change when certain lines of code are executed

o Point-to reasoning: drawing conclusions about what we know

to be true by pointing to specific lines of code that justify them

boolean expressions

basic mathematical properties

 variable assignments

This is operational reasoning,

but really simple

78

Operational Reasoning

 Examples

o Value of variables right after an assignment

o Things happening in the body of a loop from outside this loop

o Things happening in the body of a function being called

o Previously true statement after variables in it have changed

 Operational reasoning is hard to do right consistently
 very error prone!

oWe want to stay away from anything beyond simple assignments

except in termination proofs

But operational intuitions

are a good way to form

conjectures that we can then

prove using point-to reasoning









If a proof about loops uses words

like “always”, “never”, “each”, you

are doing operational reasoning

79

Point-to Reasoning

 Examples

o Boolean conditions

 condition of an if statement in the “then” branch

negation of the condition of an if statement in the “else” branch

 loop guard inside the body of a loop

negation of the loop guard after the loop

oContract annotations

preconditions of the current function

postconditions of a function just called

 loop invariant inside the loop body

 loop invariant after the loop

earlier fully justified assertions

oMath

 laws of logic

 some laws of arithmetic

o Value of variables right after an assignment































80

Point-to Reasoning: Tips and Tricks

 When reasoning about an earlier loop,

pretend the body of the loop is not there

oOnly rely on the loop guard and loop invariants

81

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert r = POW(x,y);

return r;

}

When reasoning about

an earlier loop,

pretend its body is not there

Point-to Reasoning: Tips and Tricks

 When reasoning about a function being called,

pretend the body of the function is not there
unless it’s a specification function

oOnly rely on its contracts

82

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x; int e = y; int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r;

}

int main() {

int k = f(2,5);

//@assert k >= 0;

return 0;

}

When reasoning about the

outcome of a function call,

pretend its body is not there

Safety

 The inputs of a function call satisfy the function’s

preconditions

owe will generalize this definition in the future

We will exclusively use point-to reasoning to justify safety

 The postconditions of a function will be true on any call that

satisfies the preconditions

oWe will not need to generalize this definition

Correctness

83

Straight Line Functions

A non-recursive function without loops

 Proving correctness amounts to

combining assignments
To show: \result = x

A. b = x by line 5

B. r = 1 by line 7

C. \result = r * b by line 8

D. r * b = x by math on A, B, C

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == x;

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. return r * b;

9. }

Straight

line code

pre

post

84

Functions with One Loop

 Proving correctness involves

3 steps

o Show that the loop invariants are valid

 INIT: the LI are true initially

PRES: the LI are preserved by an

arbitrary iteration of the loop

o EXIT: the LI and the negation of the

loop guard imply the postcondition

o TERM: the loop terminates

loop

body

loop guard
true

false

LI

pre

post

That’s exactly what

we did for our

mystery function These steps can be

proved in any order

85

Functions with One Loop

INIT: the loop invariant is true initially

 proved by point-to reasoning

typically using

o the preconditions

o simple assignments before

the loop

86

loop

body

loop guard
true

false

LI

pre

post

Functions with One Loop

PRES: the LI are preserved by an arbitrary

iteration of the loop

 proved by point-to reasoning

typically using

o the assumption that the LI is true

at the beginning of the iteration

o the loop guard being true

we are running an iteration

o simple assignments and conditionals

in the loop body

o the preconditions (sometimes)

87

loop

body

loop guard
true

false

LI

pre

post

Functions with One Loop

EXIT: the loop invariants and the negation

of the loop guard imply the postcondition

 proved by point-to reasoning

typically using

o the loop invariant

o the negation of the loop guard

o simple assignments and conditionals

after the loop

88

loop

body

loop guard
true

false

LI

pre

post

Functions with One Loop

TERM: the loop terminates

 proved by operational reasoning

typically using

o the assumption that the LI is true

at the beginning of the iteration

o the loop guard

o simple assignments and conditionals

in the loop body

But it can also be proved

by point-to reasoning

89

loop

body

loop guard
true

false

LI

pre

post

Functions with One Loop

TERM: the loop terminates

 Format of a termination proof

using operational reasoning

“on an arbitrary iteration of the loop,

the quantity _____ gets strictly smaller

but it can’t ever get smaller than _____”

on which the loop guard is false

or

“on an arbitrary iteration of the loop,

the quantity _____ gets strictly bigger

but it can’t ever get bigger than _____”

on which the loop guard is false

A quantity may be an expression,

not necessarily a variable
90

loop

body

loop guard
true

false

LI

pre

post

More Complex Functions

 These techniques can be extended

o but we will rarely deal with functions with more than one loop

 We can also factor out nested loops and the like into

helper functions

o and then use the technique we just saw

91

Seriously??

 All these proofs and complicated reasoning seem overkill!

o the mystery function wasn’t all that hard after all

owe could just spot what was going on

 Yes, but it won’t be that easy for more complex functions

o the technique we saw is systematic and scalable

o reasoning about code will pay off

 Point-to reasoning is what we do in our head all the time

when programming

owriting it down as loop invariants and contracts makes it easier

not to get confused

o and the -d flag will catch lingering issues at run time

92

Epilogue

93

Where are we?

 We fully documented f

o function contracts

o loop invariants

o key assertions

 We fixed the bug

 We gave mathematical proofs that

o all the calls it makes are safe

o it is correct

 Let’s enjoy the fruit of our labor with some more testing!

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert e == 0;

return r;

}

94

Sanity Checks

 Let’s do a last round of testing

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert e == 0;

return r;

}

coin -d mystery.c0

C0 interpreter (coin) …

--> f(2, 0);

1 (int)

--> f(2, 1);

2 (int)

--> f(2, 7);

128 (int)

--> f(2, 8);

256 (int)

--> f(2, 19);

524288 (int)

--> f(2, 31);

-2147483648 (int)

--> f(2, 32);

0 (int)

-->

Linux Terminal

Bug fixed!

Looking goodLooking goodLooking good

Plausible

What?

What?

The story

continues …

95

