Linked Lists

(_ Queue Interface o)
Il typedef * queue_t;

Towards Queues

> bool queue _empty(queue_t S) // O(1)
[*@requires S '= NULL,; @*/ ;

What

gueue_t queue_new() I O(1)

How

[*@ensures \result '= NULL; @*/

> ® We want to implement the queue library | r@ensures aveue_emptyvesun; @

oid eng(queue_t S, int x) I/ O(1)

. o y
O So far we only wrote client code using its oo e S NULL o
interface [@=rSures lqueue_empty(S); @

Lint deg(queue_t S) I/ O(1)
® A queue stores a bunch of 0 "@requires S 1= NULL; @/
[*@requires !queue_empty(S); @*/ ;

the same typezsay int for a change b
O ldea: represent a queue as an array

m m:1> _)o3 17 22 OQQ
)

O But ...
> arrays have fixed length yet queues are unbounded [Créate new arrays each time?

» how would we add and remove elements?whe front? the back?
» can we achieve the complexity goals?

move elements around?

I/l Implementation-side type
struct queue_header {

Int[] data;

4

typedef struct queue heade[queue]

Il Client type
typedef queue* queue t;

C Queue Interface &)

Il typedef * queue_t;
Toward Q u e u eS bool queue _empty(queue_t S) // O(1)
[*@requires S = NULL; @*/ ;
gueue_t queue_new() I O(1)
[*@ensures \result '= NULL; @*/
® A queue stores a bunch of elements of | #@ensures queue_empty(resuit); @
the same type void eng(queue_t S, int x) I O(1)
[*@requires S '= NULL,; @*/
O Represent a queue as an array X ["@ensures iqueue_empty(S); - @
int deg(queue_t S) I O(1)
]] [*@requires S !'= NULL, @*/
® \We want something like an array | /"@requires lqueue_empty(S); @ g

but where

O we can add/remove elements at the beginning and end
O have it grow and shrink as needed

® Some kind of disembodied array ... Adding an element adds a cell,

removing an element removes a cell

L

eng_ W —> 3 7 2

AR

But how to reach elements after the first?

Toward Queues

® A disembodied array

O how to reach the elements after the first?

® Use pointers to go to the next element

® This is called a linked list

W .

HC

Queue Interface &)

.

Il typedef * queue_t;

bool queue _empty(queue_t S) // O(1)
[*@requires S '= NULL,; @*/ ;

gueue_t queue_new() I/ O(1)
[*@ensures \result '= NULL; @*/
[*@ensures queue_empty(\result); @*/ ;

void eng(queue_t S, int x) I/ O(1)
[*@requires S '= NULL,; @*/
[*@ensures !queue_empty(S); @*/ ;

int deg(queue_t S) I/ O(1)
[*@requires S '= NULL,; @*/

[*@requires !queue_empty(S); @*/ ;

D7 | e—> 2

Linked Lists

Lists of Nodes

® Linked lists use pointers to go to the next element

3 | e 70—}—)2

O each block is called a node

Let’'s implement it:

® a node consists of
o a data element —an int here
O a pointer to the next node

struct list_node {
Int data;
struct list_ node* next;

J

® The whole list Is a pointer to its first node

Lists of Nodes

struct list_node {
Int data;
struct Iist_node,*\next;

J

® Linked lists are a recursive type
O a struct list_node is defined in terms of itself

® \What if we don’t have this pointer?

a node that contains an int and
a node that contains an int and
a node that contains an int and

O It would take an infinite amount of memory!

O The CO compiler disallows this
» recursion can only occur behind a pointer (or an array)

Lists of Nodes

struct list_node {
Int data;
struct list_ node* next;

J

® |et's make it more readable

typedef struct list_node list;

- .
struct list_node { \ This can go before

Nt data; \‘or after the struct

list* next;

J

® Implementing this linked list
list* L = alloc(list);
L->data = 3;

L->next = alloc(list);

L->next->data = 7;
L->next->next = alloc(list);
L->next->next->data = 2;

Lists of Nodes

® Does this help us implement queues?

O Linked lists can be arbitrarily large or small
» use just the nodes we need
» size is not fixed like arrays

O It's easy to insert an element at the beginning
» allocate a new node and point its next field to the list

O In fact, it's easy to insert an element between any two nodes

» allocate a new node and move pointers around

® \What about inserting an element at the end?
O How do we indicate the end of a linked list?

T~

So far we just drew
an empty box ...

The End of a List

We need to make the pointer in the last node special

® Use the NULL pointer

3

o

>

v

» This is a NULL-terminated list

>

_|.|.|

This is a great idea If we
don’t need direct access

 to the end of the list

® Point it to a special node we keep track of somewhere

3

>

v

» We know we reached the end of the list if its
next field is equal to the address of the dummy node

® Have it point to itself

3

>

v

>

2

)

2

-

./

\ This works too, but nobody does that

T

This is a great idea if we
do need direct access
N\e end of the list

This node Is called
the dummy node
or the sentinel

10

List Segments

11

Lists with a Dummy Node

® \We need to keep track of two pointers

3 | &4+— 7 | &— 2 | e—+—

1 T

start end

O start: where the first node Is

O end: the address in the next field of the last node
» the address of the dummy node

® \What's in the dummy node?
O some values that are not important to us

» some number and some pointer 'These values are not special in any way:

O we say its fields are unspecified * data could be any element
* next may or may not be NULL

» no way to test for “unspecified”

® A dummy value Is a value we don’t care what it is

List Segments

® There may be more nodes before and after

9 | @&—> 23 | &—> 3 ([&—> 7 | &—> 2 | 42 | &1—> 18 | &—>:--

T T

start end

O The pair of pointers start and end identify our list exactly
» start is inclusive (the first node of the list)

points to the
dummy node

» end Is exclusive (one past the last node of the list) ﬁ

O They identify the list segment [start, end)

Q here it contain values 3, 7 and 2
» similar to array segments A[lo, hi)

List Segments

® There are many list segments in a list

T T T T [

A B C D E F

O The list segment [C, F) contains elements 3, 7, 2
Q its dummy node contains 42 and the pointer G

O The list segment [A, G) contains 9, 23, 3, 7, 2, 42
Q its dummy node contains 18 and the some pointer

O The list segment [B, D) contains 23, 3
Q its dummy node contains 7 and the pointer E

O The list segment [C, C) contains no elements
Q its dummy node contains 3 and the pointer D
» this Is the empty segment

» any segment where start is the same as end
Q [A A), [B, B), ...

9 |e+—> 23 | &+— 3 | &+— 7 | e—> 2 |e+— 42 | e+—>

G —>

typedef struct list_node list;
struct list_node {
Int data;

Checking for List Segments |«

® \We want to write a specification function that checks that
two pointers start and end form a list segment

O Follow the next pointer from start until we reach end

bool is_segment(list* start, list* end) {
list* | = start; 3 | e+—> 7 | &4—> 2 .__H.I
while (1''=end) { T
}l = Fonext; start 12
return true; T
} end
dereferences
NULL

O Does this work?

» the dereference I->next may not be safe
0 we need NULL-checks! X

> we never return false

15

Checking for List Segments |,

typedef struct list_node list;
struct list_node {
Int data;

list* next;

® \We want to write a specification function that checks that
two pointers start and end form a list segment

O Follow the next pointer from start until we reach end

bool is_segment(list* start, list* end) {
list* | = start;
while (I''= NULL) {
if (I == end) return true;
| = |->next;
}

return false;

}

o Does this work?

start 12

end

> If there Is a list segment from start to end, it will return true
> If it returns false, there is no list segment from start to end

O It works then ...

returns false

typedef struct list_node list;
struct list_node {
Int data;

Checking for List Segments |«

® A function that checks that start and end form a list segment

bool is_segment(list* start, list* end) {
list* | = start;
while (I''= NULL) {
if (I == end) return true;
| = |->next;
}

return false;

}

» If there Is a list segment from start
to end, it will return true

» If It returns false, there is no list
segment from start to end

O Can there be no list segment but it does not return false

» If start points to a list containing a cycle

—)Q

X

» We need to be sure there are no cycles

16

3

o

I

start

12 \i Loops for ever

end

Checking for List Segments

typedef struct list_node list;
struct list_node {

Int data;

list* next;

J

® A function that checks that start and end form a list segment

O We need to be sure there are no cycles

bool is_segment(list* start, list* end)
l/@requires is_acyclic(start);
{ e
list* | = start;
while (1''= NULL) {
T (I == end) return true;
| = |->next;

}

return false;

:|We will implement it later

}

o Does this work? m
o> 2 | o

> Yes! 3 | &> 7

\/ start 12

end

17

Fails
precondition

18

Checking for List Segments

typedef struct list_node list;
struct list_node {

Int data;

list* next;

J

® A function that checks that start and end form a list segment

bool is_segment(list* start, list* end)
[/@requires is_acyclic(start);
{
list* | = start;
while (I''= NULL) {
T (I == end) return true;
| = |->next;

}

return false;

}

O Notes:
» returns false If start == NULL

> or If end == NULL

O NULL is not a pointer to a list node
O subsumes NULL-check for both start and end

Checking for List Segments

® \We can also write it more succinctly
O using a for loop

bool is_segment(list* start, list* end)
l/@requires is_acyclic(start);

{

typedef struct list_node list;
struct list_node {

Int data;

list* next;

J

for (list* | = start; | '= NULL,; | = I->next) {
if (I == end) return true;

All 3 versions are equivalent

}

return false:

}

O recursively

bool is_segment(list* start, list* end)

[/@requires is_acyclic(start);

{
If (start == NULL) return false;
return start == end

|| Is_segment(start->next, end);

19

20

X

Detecting Cycles

® How to check if a list Is cyclic?
O Use a counter and look for overflows

» very inefficient! In CO, there are more
pointers than integers!

» also, CO pointers are 64 bits but ints are 32 bits

O Keep track of visited nodes somewhere
> In an array?

"how big to make it?

'array indices are 32 bits

» In another list?
how do we check it has no cycles?

O Add a “visited” field to the nodes (a boolean)
» we need to know the list is acyclic to initialize it to false!

o What then?

21

® The tortoise and hare algorithm

O Traverse the list using two pointers
» the tortoise starts at the beginning and moves by 1 step
» the hare starts just ahead of the tortoise and moves by 2 steps

O If the hare ever overtakes the tortoise, there is a cycle

Detecting Cycles

bool is_acyclic(list* start) {
If (start == NULL) return true;
list* { = start;
list* h = start->next;
while (h1=1) {
if (h == NULL || h->next == NULL) return true;
[[@assert t = NULL;
t = t->next;
h = h->next->next;
}
[[@assert h ==t;
return false;

}

bythisdude/ o T

Detecting Cycles

® The tortoise and hare algorithm

bool is_acyclic(list* start) {
If (start == NULL) return true;
list* t = start;
list* h = start->next;
while (h1=1) {

[l@assert t '= NULL;
t = t->next;
h = h->next->next;
}
[l[@assert h ==t;
return false;

}

if (h == NULL || h->next == NULL) return true;

O Returns

» true If there Is no cycle
» false if there is a cycle

® Does it fix our problem with is segment?

O Too aggressive

.
O Exercise: fix it! —

22

Hint: you need to
account for end

cycle after
segment

start

end

o,

3 | e 7

2

23

Manipulating List Segments

24

¥

Deleting an Element T3 g B o g B)T
start end

® How do we remove the node at

the beginning of a non-empty

list segment [start, end)? {g} Telo > [elos

» and return the value In there T T
start end

1. grab the value in the start node
2. move start to point to the next node
3. return the value

=D

f
(| int x = start->data; Ji il 7 | e 2 |e——>
@ | start = start->next: ~ T A T
®| returnx; L & y

O Complexity: O(1)

Note: we are not “deleting”
the node, just making the
segment shorter

25

Deleting an Element

® How do we remove the last
node of a non-empty list
segment [start, end)?
» and return the value In there

O we must go from start
d end is one node too far

1. follow next until just before end
2. move end to that node
3. return its value

list* | = start;

while (I->next != end)
| = |->next;

end = [;

return I->data;

O,
@ ——

O Complexity: O(n)

Expensive!

start end

-~ /’®.~~\/ _____ ~
4
- N
3 o——;r? o—> (21| o——
I~"
I g |
start (3 @“*—end
v
Notes:

* The old last node becomes the
new dummy node

* We are not “deleting” anything,
just making the segment shorter

26

Inserting an Element | L2577 ioz o

® How do we add a node
at the beginning of a
list segment [start, end)?

OO

start end

5 | &— 3 |&— 7 | e+—> 2 |e1—>

| T

start end

create a new node

set its data field to the value to add
set its next field to start
4. set startto it

W N

list* | = alloc(list): . 12 %
|->data = X; A\ T T

|->next = start; @ =~ - - gtart end
start = [;

o Complexity: O(1) Note: we are adding

Inserting an Element

® How do we add a node
as the last node of a

list segment [start, end)? ;

T

start

create a new node

end

set its data field to the value to add
set its next field to end
4. point the old last node to it -

W N

-

-

@[list* new last = alloc(list); 3
| new_last->data = x; T
® r_1ew_|ast—>next = end; start
| list* | = start;
while (I->next != end)
@A | = |->next:
_| |->next =new_last;

O Complexity: O(n)

vel
7 | Expensive!

Note: we are adding a new last
node, but we modify the next
pointer of the old last node

Inserting an Element ~ L2517 o2 1o

® How do we add a node
as the last node of a

list segment [start, end)?

3 |e+— 7 |+ 2 | &— 5 |e+—>

| T

O Can we do better? start end

1. set the data field of end to the value to add

2. set its next field to a new dummy node
3. setend to it

3 | e 7 | &— 2 |e+— B @»’P@ﬂ’ _____
(1| end->data = x; ‘
(2| end->next = alloc(list); T T R
3)| end = end->next; start end - -- @
O Complexity: O(1)
A\
Much better! Note: we are using the old dummy

node as the new last node, and
creating a new dummy

28

Summary

at the beginning at the end
Inserting /0(1) O(1)

Deleting / 0O(1) O(n)
M/ \

® \We will use this as a guide when implementing queues
(and stacks) to achieve their complexity goals

30

Implementing Queues

31

Queues as List Segments

® Implementing queues

O We add and remove from opposite ends

O Cost must be O(1)

at the beginning

at the end

i

Inserting

O(1)

Deleting

O(n)

® The front of the queue Is the start of the segment
O because that's where we remove elements from

» choosing the end would give deq cost O(n)

® The back of the queue Is the end of the segment

» the dummy node

3 | &> 7

start
dequeue
here

T

end

enqueue
here

32

Queues as List Segments

typedef struct list_node list;
struct list_node {

Int data;

list* next;

J

® The front of the queue Is the start of the segment

® The back of the queue Is the end of the segment

= D)

enqg

3 @
A
® | ©

front back

\ header

Client view

struct queue_header {
list* front;
list* back;

3

typedef struct queue header queue;

typedef queue* queue_t;

Implementation
view

Notice
the order

33

Queues as List Segments

® Internally, queues are values of
type queue*
O must be non-NULL

O front and back fields must bracket a valid list segment

3 | &4+—> 7 | &— 2 | e+—>

o ——iiT: |

typedef struct list_node list;
struct list_node {

Int data;

list* next;

%

struct queue_header {
list* front;
list* back;

J

typedef struct queue header queue;

W

front back
a queue

bool is_queue(queue* Q) {
return Q 1= NULL
&& Is_acyclic(Q->front)
&& is_segment(Q->front, Q->back);

enqg

Queues as List Segments

® Next we implement the operations exported by the
Interface

(___ Queue Interface o)

/] typedef * queue _t;

bool queue_empty(queue_t S) // O(1)
[*@requires S '= NULL,; @*/ ;

gueue_t queue_new() I/ O(1)
[*@ensures \result '= NULL,; @*/
[*@ensures queue_empty(\result); @*/ ;

void enq(queue_t S, int x) I O(1)
[*@requires S '= NULL,; @*/
[*@ensures !queue_empty(S); @*/ ;

int deq(queue_t 5) I O(1)
[*@requires S '= NULL,; @*/

[*@requires !queue_empty(S); @*/ ; Z)
. N

typedef struct list_node list;
struct list_node {
Int data;

Queues as List Segments e

struct queue_header {
list* front;

3 | e4+— 7 | e— 2 |e—>

list* back;
¥
Q > I . T typedef struct queue_header queue;
front back
® Enqueuing ® Degueueing
O add at the back O remove from the front
void eng(queue* Q, int x) int deg(queue* Q)
[/@requires is_queue(Q); [/@requires is_queue(Q);
[/@ensures is_queue(Q); [/@requires lqueue_empty(Q);
[/@ensures !queue_empty(Q); l/@ensures is_queue(Q);
{ {
Q->back->data = x; int x = Q->front->data;
Q->back->next = alloc(list); Q->front = Q->front->next;
Q->back = Q->back->next; return X;
} }
O This Is the code we wrote earlier with \
Costis O(1)

» start changed to Q->front

» end changed to Q->back
35

36

Queues as List Segments };

(i
¢

front back

® The empty queue

O empty segment has start
equal to end

bool queue_empty(queue* Q)
[/@requires is_queue(Q);

{
}

return Q->front == Q->back;

T~

Costis O(1)

struct list_node {
Int data;
list* next;

typedef struct list_node list;

struct queue_header {
list* front;
list* back;

J

typedef struct queue header queue;

® Creating a queue
O we create an empty queue

gueue* queue_new()

l/@ensures is_queue(\result);

l/@ensures queue_empty(\result);

{
gueue* Q = alloc(queue);
Q->front = alloc(list);
Q->back = Q->front;
return Q;

}

37

Implementing Stacks

Stacks as List Segments

® |mp|ementing stacks at the beginning | at the end
O We add and remove from the same end Inserting (1) (1)
O Cost must be O(1) Deleting o) o()

® The top of the stack Is the start of the segment

O because that’'s where we add and remove elements
» choosing the end would give pop cost O(n)

® The floor of the stack is the end of the segment
» the dummy node

3| 7 | —> 2 |o1—>

/ stllrt eld x

push and pop (nothing on this end)
here

39

Stack as List Segments

® The top of the stack Is the start of the segment

typedef struct list_node list;
struct list_node {

Int data;

list* next;

J

3 3 | e+—> 7 | e—> 2
7 I *
2 o @

top floor
1header

struct stack _header {

list* top;

Client view list* floor

3

typedef struct stack header stack;

typedef stack* stack t;

Implementation
view

O The representation invariant is_stack is just like is_queue

40

Stacks as List Segments

® Next we implement the operations exported by the

Interface

S

(__Stack Interface
/Il typedef * stack t;
bool stack_empty(stack t S) // O(1)
[*@requires S '= NULL; @*/ ;
stack t stack new() I/ O(1)
[*@ensures \result '= NULL; @*/

[*@ensures stack_empty(\result); @*/ ;

void push(stack t S, int x) I/ O(1)
[*@requires S '= NULL,; @*/
[*@ensures !stack_empty(S); @*/ ;

Int pop(stack _t S) I/ O(1)
[*@requires S '= NULL,; @*/
[*@requires !stack _empty(S); @*/ ;

-

Also updated
to int elements

S > o | @

Stacks as List Segments

3 | e+— 7

——> 2 |o+—>

[

top floor

typedef struct list_node list;
struct list_node {

Int data;

list* next;

%

struct stack _header {
list* top;
list* floor;

I3

typedef struct stack header stack;

bool stack_empty(stack* S)
[/@requires is_stack(S);
{

}

return S->top == S->floor;

__—

Same code we wrote for queues
with front/back replaced with top/floor

41

i

stack* stack new()

l/@ensures is_stack(\result);

[/@ensures stack _empty(\result);

{
stack* S = alloc(stack);
S->top = alloc(list);
S->floor = S->top;
return S;

}

———AIl0(1)

—

Int pop(stack* S)

[/@requires is_stack(S);

[/@requires Istack_empty(S);

[/@ensures is_stack(S);

{
Int x = S->top->data,;
S->top = S->top->next;
return X;

}

void push(stack* S, int x)
[I@requires is_stack(S);
[/@ensures is_stack(S);
[I@ensures !stack_empty(S);

{

Code we wrote earlier
with start replaced with S->top

list* | = alloc(list);

|->data = X;
l->next = S->top
S->top = |;

}

/

42

Another Implementation of Stacks

® The floor field goes mostly unused
O only to check that a stack is empty

® We cangetrid of it ...

This is a great idea if we
don’t need direct access
to the end of the list

O ... if we represent stacks as NULL-terminated lists

) W

top

: (z)

\\Qﬁheader

Client view
floor is gone struct stack_header {
\\ list* tOp,

J§

typedef struct stack header stack;

TS

New
implementation
view

43

Another Implementation of Stacks

® Valid stacks are _
bool is_stack(stack* S) {

O non-NULL and return S 1= NU|._L
o the top field is a NULL-terminated list |, && Is_acyclic(S->top):

> l.e., Is acyclic

® The empty stack has NULL S S
In the top field fop
bool stack_empty(stack* S) stack* stack_new()
[/@requires is_stack(S); [/@ensures is_stack(\result);

{ [/@ensures stack _empty(\result);
return S->top : {
} stack* S = allac(stack);
S->top @

return S;

}

® Nothing else changes!

44

Sharing

Stacks without Headers

® Since the header contains just one field,

struct stack _header { 3
list* top; T
o

J

typedef struct stack_header stack; S >

top

O why not get rid of it?

» push and pop are now incorrect
Q they modify the local stack variable but not the caller’s
Q aliasing!
> It breaks the interface: NULL is now the empty stack

X

typedef list* stack; S —> 3 | &—>

46

Stacks without Headers

typedef list* stack;

® But we're fine if we always return the updated stack

C

Functional stack Interface &)

¢

Il typedef * stack t;
bool stack_empty(stack t S); // O(1)

stack t stack new() I O(1)
[*@ensures stack_empty(\result); @*/;

stack tPush(stack t S, intx) // O(1)

/*@ensures !stack_emptY(\reslw

No more

/ NULL checks

stack_tpop(stack _t @/ O(1)
[*@requires !stack_empty(S); @*/ ;
\

Our trick to return
/ two outputs
9

O Functions transform an input stack into an output stack
» this Is a functional interface

Functional Stacks

® How to create this stack?

S —— m:i> S — 3 | &—> 7 | 61— 2 o——I-H

7 \

Client view Implementation
view

stack t S = stack _new();
S = push(S, 2);
S = push(S, 7);
S = push(S, 3);

» equivalently

stack t S = push(push(push(stack new(), 2), 7), 3);

O but harder to read

47

48

Functional Stacks

o What if now we do

S —

N N W

stack t S1 = push(S, 14); ?
S
W S1] ——{ 14 | et>| 3 | e 7

» The client has two stacks
Q Swith3,7,2
0 S1with14,3,7,2

» In the implementation, they share a suffix
Q the linked list 3, 7, 2 Is shared

Sharing

® A functional stack library supports sharing list suffixes
O This takes up much less space than our earlier implementation!
O The client has no idea

® \What if we now do this?

stack t S2 = push(S, 42);

] .
stack t = pop(S’ X_ptr); The variable

Is still around

50

® \What if we now do

S1] —

S2 —

/

Client view

Sharing

stack t
stack t

= push(S, 42);
= pop(S, x_ptr);

Sl —> 14 | e

S3

o

S2 —/—> 42

Implementation
view

O Lots more sharing!

51

Sharing

® |f sharing is so great, why don't our libraries always use it?
O It takes a change of mindset
» using functions that don’t modify data structures in place

O A lot of code we write uses one instance of a data structure

» So what? Sharing wouldn’t hurt anyway
QO Good point

O It doesn’t work for all data structures
» Try it on queues!

® Functional programming languages rely heavily on sharing

52

Wrap Up

53

What have we done?

® We introduced linked lists
and two common ways to use them

O NULL-terminated linked lists
O list segments

® \We learned about list manipulations and their complexity
® \We used them to implement stacks and queues

® \We talked about sharing

Linked Lists vs. Arrays

® How do they compare?

Arrays (unsorted) Linked lists
0 O(1) access O self-resizing
O built-in o0 O(1) insertion®
Pros _—
O O(1) deletion
" Given the right pointers
O fixed size O O(n) access
Cons . . .
© O(n) insertion O no special syntax

® Question to help decide which one to use:
O Can we anticipate the size we need?
O Do they allow us to achieve our target complexity?

54

