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// typedef ______* queue_t;

bool queue_empty(queue_t S)    // O(1) 

/*@requires S != NULL; @*/ ;

queue_t queue_new()                // O(1)

/*@ensures \result != NULL; @*/

/*@ensures queue_empty(\result); @*/ ;

void enq(queue_t S, int x)           // O(1)

/*@requires S != NULL; @*/

/*@ensures !queue_empty(S); @*/ ;

int deq(queue_t S)                      // O(1)

/*@requires S != NULL; @*/

/*@requires !queue_empty(S); @*/ ;

say int for a changesay int for a change

Towards Queues

Queue Interface

3  7  2 deqenq

0 1 2

3 7 2

create new arrays each time?

where is the front? the back?

move elements around?

H
o

w

// Implementation-side type

struct queue_header {

int[] data;

};

typedef struct queue_header queue;

// Client type

typedef queue* queue_t;

 We want to implement the queue library

o So far we only wrote client code using its

interface

 A queue stores a bunch of elements of

the same type

o Idea: represent a queue as an array

o But …

arrays have fixed length yet queues are unbounded

how would we add and remove elements?

 can we achieve the complexity goals?

say int for a change

W
h

a
t

1



// typedef ______* queue_t;

bool queue_empty(queue_t S)    // O(1) 

/*@requires S != NULL; @*/ ;

queue_t queue_new()                // O(1)

/*@ensures \result != NULL; @*/

/*@ensures queue_empty(\result); @*/ ;

void enq(queue_t S, int x)           // O(1)

/*@requires S != NULL; @*/

/*@ensures !queue_empty(S); @*/ ;

int deq(queue_t S)                      // O(1)

/*@requires S != NULL; @*/

/*@requires !queue_empty(S); @*/ ;

Toward Queues

 A queue stores a bunch of elements of

the same type

oRepresent a queue as an array

 We want something like an array

but where

owe can add/remove elements at the beginning and end

o have it grow and shrink as needed

 Some kind of disembodied array …

Queue Interface

3  7  2 deqenq



3 7 2

Adding an element adds a cell,

removing an element removes a cell

But how to reach elements after the first?
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Toward Queues

 A disembodied array

o how to reach the elements after the first?

 Use pointers to go to the next element

 This is called a linked list

// typedef ______* queue_t;

bool queue_empty(queue_t S)    // O(1) 

/*@requires S != NULL; @*/ ;

queue_t queue_new()                // O(1)

/*@ensures \result != NULL; @*/

/*@ensures queue_empty(\result); @*/ ;

void enq(queue_t S, int x)           // O(1)

/*@requires S != NULL; @*/

/*@ensures !queue_empty(S); @*/ ;

int deq(queue_t S)                      // O(1)

/*@requires S != NULL; @*/

/*@requires !queue_empty(S); @*/ ;

Queue Interface

3  7  2 deqenq 3 7 2
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Linked Lists
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Lists of Nodes

 Linked lists use pointers to go to the next element

o each block is called a node

Let’s implement it:

 a node consists of

o a data element

o a pointer to the next node

 The whole list is a pointer to its first node

3 7 2

struct list_node {

int data;

struct list_node* next;

};

an int here
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Lists of Nodes

 Linked lists are a recursive type

o a struct list_node is defined in terms of itself

 What if we don’t have this pointer?
a node that contains an int and

a node that contains an int and

a node that contains an int and

…

o It would take an infinite amount of memory!

o The C0 compiler disallows this

 recursion can only occur behind a pointer (or an array)

3 7 2

struct list_node {

int data;

struct list_node* next;

};

3

7

2

.

.

.
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Lists of Nodes

 Let’s make it more readable

 Implementing this linked list
list* L = alloc(list);

L->data = 3;

L->next = alloc(list);

L->next->data = 7;

L->next->next = alloc(list);

L->next->next->data = 2;

3 7 2

typedef struct list_node list; // ADDED

struct list_node {

int data;

list* next; // MODIFIED

};

struct list_node {

int data;

struct list_node* next;

};

This can go before

or after the struct

L
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Lists of Nodes

 Does this help us implement queues?

o Linked lists can be arbitrarily large or small

use just the nodes we need

 size is not fixed like arrays

o It’s easy to insert an element at the beginning

allocate a new node and point its next field to the list

o In fact, it’s easy to insert an element between any two nodes

allocate a new node and move pointers around

 What about inserting an element at the end?

oHow do we indicate the end of a linked list?

3 7 2

So far we just drew

an empty box …
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The End of a List

We need to make the pointer in the last node special

 Use the NULL pointer

This is a NULL-terminated list

 Point it to a special node we keep track of somewhere

We know we reached the end of the list if its

next field is equal to the address of the dummy node

 Have it point to itself

3 7 2

3 7 2

3 7 2

3 7 2

This is a great idea if we

don’t need direct access

to the end of the list

This is a great idea if we

do need direct access

to the end of the list

This node is called

the dummy node

or the sentinel

This works too, but nobody does that9



List Segments
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Lists with a Dummy Node

 We need to keep track of two pointers

o start: where the first node is

o end: the address in the next field of the last node

 the address of the dummy node

 What’s in the dummy node?

o some values that are not important to us

 some number and some pointer

owe say its fields are unspecified

no way to test for “unspecified”

 A dummy value is a value we don’t care what it is

3 7 2

start end

These values are not special in any way:

• data could be any element

• next may or may not be NULL
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List Segments

 There may be more nodes before and after

o The pair of pointers start and end identify our list exactly

 start is inclusive (the first node of the list)

end is exclusive (one past the last node of the list)

o They identify the list segment [start, end)
 here it contain values 3, 7 and 2

 similar to array segments A[lo, hi)

3 7 2

start end

9 23 42 18 …

points to the

dummy node
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List Segments

 There are many list segments in a list

o The list segment [C, F) contains elements 3, 7, 2
 its dummy node contains 42 and the pointer G

o The list segment [A, G) contains 9, 23, 3, 7, 2, 42
 its dummy node contains 18 and the some pointer

o The list segment [B, D) contains 23, 3
 its dummy node contains 7 and the pointer E

o The list segment [C, C) contains no elements
 its dummy node contains 3 and the pointer D

 this is the empty segment

any segment where start is the same as end

 [A, A), [B, B), …

3 7 2

C

9 23 42 18 …

BA FED G
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Checking for List Segments

 We want to write a specification function that checks that 

two pointers start and end form a list segment

o Follow the next pointer from start until we reach end

oDoes this work?

 the dereference l->next may not be safe

 we need NULL-checks!

we never return false

bool is_segment(list* start, list* end) {

list* l = start;

while (l != end) {

l = l->next;

}

return true;

}

typedef struct list_node list;

struct list_node {

int data;

list* next;

};

3 7 2

start

end



12

dereferences

NULL
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Checking for List Segments

 We want to write a specification function that checks that 

two pointers start and end form a list segment

o Follow the next pointer from start until we reach end

oDoes this work?

 if there is a list segment from start to end, it will return true

 if it returns false, there is no list segment from start to end

o It works then …

bool is_segment(list* start, list* end) {

list* l = start;

while (l != NULL) { // MODIFIED

if (l == end) return true; // ADDED

l = l->next;

}

return false; // MODIFIED

}

typedef struct list_node list;

struct list_node {

int data;

list* next;

};

3 7 2

start

end

12

returns false
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Checking for List Segments

 A function that checks that start and end form a list segment

oCan there be no list segment but it does not return false

 if start points to a list containing a cycle

We need to be sure there are no cycles

bool is_segment(list* start, list* end) {

list* l = start;

while (l != NULL) {

if (l == end) return true; 

l = l->next;

}

return false; 

}

typedef struct list_node list;

struct list_node {

int data;

list* next;

};

3 7 2

start

end

12 Loops for ever

 if there is a list segment from start

to end, it will return true

 if it returns false, there is no list 

segment from start to end


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Checking for List Segments

 A function that checks that start and end form a list segment

oWe need to be sure there are no cycles

oDoes this work?

Yes!

bool is_segment(list* start, list* end)

//@requires is_acyclic(start); // ADDED

{

list* l = start;

while (l != NULL) {

if (l == end) return true; 

l = l->next;

}

return false; 

}

typedef struct list_node list;

struct list_node {

int data;

list* next;

};

3 7 2

start

end

12

Fails

precondition

We will implement it later


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Checking for List Segments

 A function that checks that start and end form a list segment

oNotes:

 returns false if start == NULL

or if end == NULL

 NULL is not a pointer to a list node

 subsumes NULL-check for both start and end

bool is_segment(list* start, list* end)

//@requires is_acyclic(start);

{

list* l = start;

while (l != NULL) {

if (l == end) return true; 

l = l->next;

}

return false; 

}

typedef struct list_node list;

struct list_node {

int data;

list* next;

};

18



All 3 versions are equivalent

Checking for List Segments

 We can also write it more succinctly

o using a for loop

o recursively

bool is_segment(list* start, list* end)

//@requires is_acyclic(start);

{

for (list* l = start; l != NULL; l = l->next) {

if (l == end) return true; 

}

return false; 

}

typedef struct list_node list;

struct list_node {

int data;

list* next;

};

bool is_segment(list* start, list* end)

//@requires is_acyclic(start);

{

if (start == NULL) return false;

return start == end

|| is_segment(start->next, end); 

}

All 3 versions are equivalentAll 3 versions are equivalent
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Detecting Cycles

 How to check if a list is cyclic?

oUse a counter and look for overflows

 very inefficient!

also, C0 pointers are 64 bits but ints are 32 bits

o Keep track of visited nodes somewhere

 in an array?

 in another list?

o Add a “visited” field to the nodes (a boolean)

we need to know the list is acyclic to initialize it to false!

oWhat then?

In C0, there are more

pointers than integers!

how big to make it?

array indices are 32 bits

how do we check it has no cycles?






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Detecting Cycles

 The tortoise and hare algorithm

o Traverse the list using two pointers

 the tortoise starts at the beginning and moves by 1 step

 the hare starts just ahead of the tortoise and moves by 2 steps

o If the hare ever overtakes the tortoise, there is a cycle

bool is_acyclic(list* start) {

if (start == NULL) return true;

list* t = start; // tortoise

list* h = start->next; // hare

while (h != t) {

if (h == NULL || h->next == NULL) return true;

//@assert t != NULL; // hare hits NULL quicker

t = t->next; // tortoise moves by 1 step

h = h->next->next; // hare moves by 2 steps

}

//@assert h == t; // hare has overtaken tortoise

return false; 

}

Robert W. Floyd

by this dude
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Detecting Cycles

 The tortoise and hare algorithm

 Does it fix our problem with is_segment?

o Too aggressive

o Exercise: fix it!

bool is_acyclic(list* start) {

if (start == NULL) return true;

list* t = start; // tortoise

list* h = start->next; // hare

while (h != t) {

if (h == NULL || h->next == NULL) return true;

//@assert t != NULL; // hare hits NULL quicker

t = t->next; // tortoise moves by 1 step

h = h->next->next; // hare moves by 2 steps

}

//@assert h == t; // hare has overtaken tortoise

return false; 

}

oReturns

 true if there is no cycle

 false if there is a cycle

3 7 2

start end

cycle after

segment

Hint: you need to

account for end
22



Manipulating List Segments

23



Deleting an Element

 How do we remove the node at

the beginning of a non-empty

list segment [start, end)?
and return the value in there

1. grab the value in the start node

2. move start to point to the next node

3. return the value

oComplexity: O(1)

3 7 2

start end

7 2

start end

int x = start->data;

start = start->next;

return x; 

3

Note: we are not “deleting”

the node, just making the

segment shorter

1

2
3

2

3

1

3 7 2

start end
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Deleting an Element

 How do we remove the last

node of a non-empty list

segment [start, end)?
and return the value in there

owe must go from start
 end is one node too far

1. follow next until just before end

2. move end to that node

3. return its value

oComplexity: O(n)

3 7 2

start end
list* l = start;

while (l->next != end)

l = l->next;

end = l;

return l->data; 

23 7

start end

2
3

1

Notes:

• The old last node becomes the

new dummy node

• We are not “deleting” anything,

just making the segment shorter

2

3

1

3 7 2

Expensive!

start end

25



 How do we add a node

at the beginning of a

list segment [start, end)?

1. create a new node

2. set its data field to the value to add

3. set its next field to start

4. set start to it

oComplexity: O(1)

3 7 2

start end

7 2

start end

list* l = alloc(list);

l->data = x;

l->next = start;

start = l; 

Note: we are adding

a brand new node

5

2

3

1

4

35

5 3

1

2

4

3 7 2

start end

Inserting an Element
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Inserting an Element

 How do we add a node

as the last node of a

list segment [start, end)?

1. create a new node

2. set its data field to the value to add

3. set its next field to end

4. point the old last node to it

oComplexity: O(n)

3 7 2

start end

2 5

start end

list* new_last = alloc(list);

new_last->data = x;

new_last->next = end;

list* l = start;

while (l->next != end)

l = l->next;

l->next = new_last; Note: we are adding a new last

node, but we modify the next

pointer of the old last node

2

3

1

73

5

4

1

2

3

4

4

Expensive!

5

3 7 2

start end
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Inserting an Element

 How do we add a node

as the last node of a

list segment [start, end)?

oCan we do better?

1. set the data field of end to the value to add

2. set its next field to a new dummy node

3. set end to it

oComplexity: O(1)

3 7 2 5

start end

end->data = x;

end->next = alloc(list);

end = end->next;

Note: we are using the old dummy

node as the new last node, and

creating a new dummy

2

3

1

2
1 2

3

Much better!

2 5

start end

73

5

3 7 2

start end
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Summary

 We will use this as a guide when implementing queues 

(and stacks) to achieve their complexity goals

at the beginning at the end

Inserting O(1) O(1)

Deleting O(1) O(n)

GoodGoodGood Bad
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Implementing Queues
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Queues as List Segments

 Implementing queues

oWe add and remove from opposite ends

oCost must be O(1)

 The front of the queue is the start of the segment

o because that’s where we remove elements from

 choosing the end would give deq cost O(n)

 The back of the queue is the end of the segment
 the dummy node

at the beginning at the end

Inserting O(1) O(1)

Deleting O(1) O(n)

3 7 2

start end

enqueue

here

dequeue

here
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Queues as List Segments

 The front of the queue is the start of the segment

 The back of the queue is the end of the segment

3 7 2

typedef struct list_node list;

struct list_node {

int data;

list* next;

};

// Implementation-side type

struct queue_header { // Concrete type

list* front; // start of segment, where we deq

list* back; // end of segment, where we enq

};

typedef struct queue_header queue; // Internal name

// … rest of implementation …

// Client-side type (abstract)

typedef queue* queue_t;

front back
header

2  7  3 deqenq

Client view Implementation

view

Notice

the order
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Queues as List Segments

 Internally, queues are values of

type queue*

omust be non-NULL

o front and back fields must bracket a valid list segment

typedef struct list_node list;

struct list_node {

int data;

list* next;

};

bool is_queue(queue* Q) {

return Q != NULL

&& is_acyclic(Q->front)

&& is_segment(Q->front, Q->back); 

}

struct queue_header {

list* front;

list* back;

};

typedef struct queue_header queue;

Q

a queue

3 7 2

front back

2  7  3 deqenq
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Queues as List Segments

 Next we implement the operations exported by the 

interface

// typedef ______* queue_t;

bool queue_empty(queue_t S)    // O(1) 

/*@requires S != NULL; @*/ ;

queue_t queue_new()                // O(1)

/*@ensures \result != NULL; @*/

/*@ensures queue_empty(\result); @*/ ;

void enq(queue_t S, int x)           // O(1)

/*@requires S != NULL; @*/

/*@ensures !queue_empty(S); @*/ ;

int deq(queue_t S)                      // O(1)

/*@requires S != NULL; @*/

/*@requires !queue_empty(S); @*/ ;

Queue Interface
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Queues as List Segments

 Enqueuing

o add at the back

o This is the code we wrote earlier with

 start changed to Q->front

end changed to Q->back

typedef struct list_node list;

struct list_node {

int data;

list* next;

};

int deq(queue* Q)

//@requires is_queue(Q);

//@requires !queue_empty(Q);

//@ensures is_queue(Q);

{

int x = Q->front->data;

Q->front = Q->front->next;

return x;

}

struct queue_header {

list* front;

list* back;

};

typedef struct queue_header queue;

 Dequeueing

o remove from the front

Cost is O(1)Cost is O(1)

Q

3 7 2

front back

void enq(queue* Q, int x)

//@requires is_queue(Q);

//@ensures is_queue(Q);

//@ensures !queue_empty(Q);

{

Q->back->data = x;

Q->back->next = alloc(list);

Q->back = Q->back->next;

}
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Queues as List Segments

 The empty queue

o empty segment has start

equal to end

typedef struct list_node list;

struct list_node {

int data;

list* next;

};

queue* queue_new()

//@ensures is_queue(\result);

//@ensures queue_empty(\result);

{

queue* Q = alloc(queue);

Q->front = alloc(list);

Q->back = Q->front;

return Q;

}

struct queue_header {

list* front;

list* back;

};

typedef struct queue_header queue;

 Creating a queue

owe create an empty queue

bool queue_empty(queue* Q)

//@requires is_queue(Q);

{

return Q->front == Q->back;

}

Q

front back

Cost is O(1)Cost is O(1)
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Implementing Stacks
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Stacks as List Segments

 Implementing stacks

oWe add and remove from the same end

oCost must be O(1)

 The top of the stack is the start of the segment

o because that’s where we add and remove elements

 choosing the end would give pop cost O(n)

 The floor of the stack is the end of the segment
 the dummy node

at the beginning at the end

Inserting O(1) O(1)

Deleting O(1) O(n)

3 7 2

start end

(nothing on this end)push and pop 

here
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Stack as List Segments

 The top of the stack is the start of the segment

o The representation invariant is_stack is just like is_queue

3 7 2

typedef struct list_node list;

struct list_node {

int data;

list* next;

};

// Implementation-side type

struct stack_header { // Concrete type

list* top; // start of segment, where we push and pop

list* floor;

};

typedef struct stack_header stack; // Internal name

// … rest of implementation …

// Client-side type (abstract)

typedef stack* stack_t;

top floor
header

Client view Implementation

view

3

7

2
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Stacks as List Segments

 Next we implement the operations exported by the 

interface

// typedef ______* stack_t;

bool stack_empty(stack_t S)     // O(1) 

/*@requires S != NULL; @*/ ;

stack_t stack_new()                 // O(1)

/*@ensures \result != NULL; @*/

/*@ensures stack_empty(\result); @*/ ;

void push(stack_t S, int x)        // O(1)

/*@requires S != NULL; @*/

/*@ensures !stack_empty(S); @*/ ;

int pop(stack_t S)                     // O(1)

/*@requires S != NULL; @*/

/*@requires !stack_empty(S); @*/ ;

Stack Interface

Also updated

to int elements
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Code we wrote earlier
with start replaced with S->top

Stacks as List Segments

typedef struct list_node list;

struct list_node {

int data;

list* next;

};

int pop(stack* S)

//@requires is_stack(S);

//@requires !stack_empty(S);

//@ensures is_stack(S);

{

int x = S->top->data;

S->top = S->top->next;

return x;

}

struct stack_header {

list* top;

list* floor;

};

typedef struct stack_header stack;
S

3 7 2

top floor

stack* stack_new()

//@ensures is_stack(\result);

//@ensures stack_empty(\result);

{

stack* S = alloc(stack);

S->top = alloc(list);

S->floor = S->top;

return S;

}

bool stack_empty(stack* S)

//@requires is_stack(S);

{

return S->top == S->floor;

}

Code we wrote earlier
with start replaced with S->top

Same code we wrote for queues
with front/back replaced with top/floor

Same code we wrote for queues
with front/back replaced with top/floor

Same code we wrote for queues
with front/back replaced with top/floor

void push(stack* S, int x)

//@requires is_stack(S);

//@ensures is_stack(S);

//@ensures !stack_empty(S);

{

list* l = alloc(list);

l->data = x;

l->next = S->top

S->top = l;

}

All O(1)All O(1)All O(1)All O(1)
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Another Implementation of Stacks

 The floor field goes mostly unused

o only to check that a stack is empty

 We can get rid of it …

o… if we represent stacks as NULL-terminated lists

// Implementation-side type

struct stack_header { // Concrete type

list* top; // start of segment, where we push and pop

};

typedef struct stack_header stack; // Internal name

floor is gone

3 7 2

top
header

Client view
New

implementation

view

3

7

2

floor is gone

This is a great idea if we

don’t need direct access

to the end of the list
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Another Implementation of Stacks

 Valid stacks are

o non-NULL and

o the top field is a NULL-terminated list

 i.e., is acyclic

 The empty stack has NULL

in the top field

 Nothing else changes!

stack* stack_new()

//@ensures is_stack(\result);

//@ensures stack_empty(\result);

{

stack* S = alloc(stack);

S->top = NULL;

return S;

}

bool stack_empty(stack* S)

//@requires is_stack(S);

{

return S->top == NULL;

}

bool is_stack(stack* S) {

return S != NULL

&& is_acyclic(S->top); 

}

top

S
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Sharing
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Stacks without Headers

 Since the header contains just one field,

owhy not get rid of it?

push and pop are now incorrect

 they modify the local stack variable but not the caller’s

 aliasing!

 it breaks the interface: NULL is now the empty stack

struct stack_header {

list* top;

};

typedef struct stack_header stack;

3 7 2

top

S

typedef list* stack; 3 7 2S


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Stacks without Headers

 But we’re fine if we always return the updated stack

o Functions transform an input stack into an output stack

 this is a functional interface

typedef list* stack; 3 7 2S

// typedef ______* stack_t;

bool stack_empty(stack_t S) ;   // O(1) 

stack_t stack_new()                 // O(1)

/*@ensures stack_empty(\result); @*/ ;

stack_t push(stack_t S, int x)    // O(1)

/*@ensures !stack_empty(\result); @*/ ;

stack_t pop(stack_t S, int* res) // O(1)

/*@requires !stack_empty(S); @*/ ;

Functional stack Interface

No more

NULL checks

Our trick to return

two outputs
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Functional Stacks

 How to create this stack?

equivalently

 but harder to read

3 7 2S
3

7

2
S

Client view Implementation

view

stack_t S = stack_new();

S = push(S, 2);

S = push(S, 7);

S = push(S, 3);

stack_t S = push(push(push(stack_new(), 2), 7), 3);
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Functional Stacks

oWhat if now we do                                             ?

3 7 2S

stack_t S1 = push(S, 14);

3 7 2

S

14S1

The client has two stacks

 S with 3, 7, 2

 S1 with 14, 3, 7, 2

 In the implementation, they share a suffix

 the linked list 3, 7, 2 is shared

3

7

2
S

3

7

2
S

14

3

7

2

S1
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Sharing

 A functional stack library supports sharing list suffixes

o This takes up much less space than our earlier implementation!

o The client has no idea

 What if we now do this?

stack_t S2 = push(S, 42);

stack_t S3 = pop(S, x_ptr);
The variable S

is still around
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Sharing

 What if we now do                                    ?stack_t S2 = push(S, 42);

stack_t S3 = pop(S, x_ptr);

3 7 2

S

14S1

42S2

S3

3

7

2
S

14

3

7

2

S1

42

3

7

2

S2

7

2S3

Client view

Implementation

view

o Lots more sharing!
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Sharing

 If sharing is so great, why don’t our libraries always use it?

o It takes a change of mindset

using functions that don’t modify data structures in place

o A lot of code we write uses one instance of a data structure

So what? Sharing wouldn’t hurt anyway

 Good point

o It doesn’t work for all data structures

Try it on queues!

 Functional programming languages rely heavily on sharing
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Wrap Up
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What have we done?

 We introduced linked lists

and two common ways to use them

oNULL-terminated linked lists

o list segments

 We learned about list manipulations and their complexity

 We used them to implement stacks and queues

 We talked about sharing
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Linked Lists vs. Arrays

 How do they compare?

 Question to help decide which one to use:

oCan we anticipate the size we need?

oDo they allow us to achieve our target complexity?

Arrays (unsorted) Linked lists

Pros

oO(1) access

o built-in

o self-resizing

oO(1) insertion*

oO(1) deletion*

* Given the right pointers

Cons
o fixed size

oO(n) insertion

oO(n) access

o no special syntax
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