Hashing

Sets and Dictionaries

What do we use arrays for?

- To keep a *collection* of elements of the same type in one place
 - E.g., all the words in the Collected Works of William Shakespeare

"a"	"rose" "by"	"any"	"name"		"Hamlet"	
-----	-------------	-------	--------	--	----------	--

- The array is used as a set
 - o the index where an element occurs doesn't matter much
- Main operations:
 - o add an element
 - ▶ like uba_add for unbounded arrays
 - o check if an element is in there
 - this is what search does (linear if unsorted, binary if sorted)
 - o go through all elements
 - > using a for-loop for example

What do we use arrays for?

- 2 As a *mapping* from indices to values
 - E.g., the monthly average high temperatures in Pittsburgh

0	1	2	3	4	5	6	7	8	9	10	11	12
High:	35	38	50	62	72	80	83	82	75			

- The array is used as a dictionary
 - o each value is associated to a specific index
 - o the indices are critical
- Main operations:
 - insert/update a value for a given index
 - > E.g., High[10] = 63 -- the average high for October is 63°F
 - lookup the value associated to an index
 - ➤ E.g., High[3] -- looks up the average high for March

0 = *unuse* 1 = Jan ... 12 = Dec

Dictionaries, beyond Arrays

- Generalize index-to-value mapping of arrays so that
 - index does not need to be a contiguous number starting at 0
 - in fact, index doesn't have to be a number at all
- A dictionary is a mapping from keys to values

> e.g.: mapping from month to high temperature (*value*)

> e.g.: mapping from student id to student record (*entry*)

 \triangleright arrays: index 3 is the key, contents A[3] is the value

Dictionaries

- Contains at most one entry associated to each key
- main operations:
 - create a **new** dictionary
 - O lookup the entry associated with a key
 - report that there is no entry for this key
 - insert (or update) an entry
- many other operations of interest
 - delete an entry given its key
 - number of entries in the dictionary
 - o print all entries, ...

(we will consider only these)

Dictionaries in the Wild

Dictionaries are a primitive data structure in many languages

```
➤ Like arrays in C0
```

- They are not primitive in low level languages like C and C0
 - We need to implement them and provide them as a library
 - This is also what we would do to write a Python interpreter

Implementing Dictionaries

- based on what we know so far ...
 - worst-case complexity assuming the dictionary contains n entries

- Observation: operations are fast when we know where to look
- Goal: efficient lookup and insert for large dictionaries
 about O(1)

Dictionaries with Sparse Numerical Keys

A dictionary that maps zip codes (keys) to neighborhood names (values) for the students in this room

- zip codes are 5-digit numbers -- e.g., 15213
 - o use a 100,000-element array with indices as keys?
 - o possibly, but most of the space will be wasted:
 - > only about 200 students in the room
 - > only some 43,000 zip codes are currently in use
- Use a much smaller m-element array
 - ➤ here m=5
 - reduce a key to an index in the range [0,m)
 - > here reduce a zip code to an index between 0 to 4
 - ➤ do zipcode % 5
- This is the first step towards a hash table

 We now perform a sequence of insertions and lookups

- o insert (15122, "Kennywood")
 - \triangleright compute table index as 15122 % 5 = 2
 - ☐ insert "Kennywood" at index 2

- lookup 15213
 - \triangleright compute table index as 15213 % 5 = 3
 - □ return contents of index 3
 - "CMU" value

insert (15213, "CMU")
insert (15122, "Kennywood")
lookup 15213
lookup 15219
lookup 15217
insert (15217, "Squirrel Hill")
lookup 15217
lookup 15219

- lookup 15217
 - \triangleright compute table index as 15217 % 5 = 2
 - □ return contents of index 2
 - "Kennywood"

- This is incorrect!
 - we never inserted an entry with key 15217
 - o it should signal there is no value

We need to store **both** the **key** and the **value** -- the whole **entry**

insert (15213, "CMU")
insert (15122, "Kennywood")
lookup 15213
lookup 15219
lookup 15217
insert (15217, "Squirrel Hill")
lookup 15217
lookup 15219

lookup now returns a whole entry

- o insert (15217, "Squirrel Hill")
 - \triangleright compute table index as 15217 % 5 = 2
 - □ there is an entry in there

 - entry at index 2 is not about this key

- We have a collision
 - o different entries map to the same index

Dealing with Collisions

Two common approaches

Open addressing

- if a table index is taken, store the new entry at a predictable index nearby
 - > linear probing: use next free index (modulo m)
 - > quadratic probing: try table index + 1, then +4, then +9, etc.

Separate chaining

- o do not store the entries in the table itself but in buckets
 - > bucket for a table index contain all the entries that map to that index
 - buckets are commonly implemented as chains
 - □ a chain is a NULL-terminated linked list

Collisions are Unvoidable

- If n > m
 - o pigeonhole principle
 - ➤ "If we have n pigeons and m holes and n > m, one hole will have more than one pigeon"
 - This is a certainty
- If n > 1
 - birthday paradox
 - "Given 25 people picked at random, the probability that 2 of them share the same birthday is > 50%"
 - This is a probabilistic result

Example, continued with linear probing

- o insert (15217, "Squirrel Hill")
 - \triangleright compute table index as 15217 % 5 = 2
 - ☐ there is an entry in there
 - □ check its key: 15122 ≠ 15217 🗶
 - > try next index, 3
 - ☐ there is an entry in there
 - □ check its key: 15213 ≠ 15217
 - > try next index, 4
 - ☐ there is no entry in there
 - □ insert (15217, "Squirrel Hill") at index 4

Example, continued with linear probing

insert (15213, "CMU")
insert (15122, "Kennywood")
lookup 15213
lookup 15219
lookup 15217
insert (15217, "Squirrel Hill")
lookup 15217
lookup 15219

Lookup 15217

- \triangleright compute table index as 15217 % 5 = 2
 - ☐ there is an entry in there
 - □ check its key: 15122 ≠ 15217 🗶
- > try next index, 3
 - □ there is an entry in there
 - □ check its key: 15213 ≠ 15217
- > try next index, 4
 - ☐ there is an entry in there
 - □ check its key: 15217 = 15217 ✓
 - □ return (15217, "Squirrel Hill")

Example, continued with linear probing

- Lookup 15219
 - > compute table index as 15219 % 5 = 4
 - □ there is an entry in there
 - □ check its key: 15217 ≠ 15219 🗶
 - \triangleright try next index, 5 % 5 = 0
 - □ there is no entry in there
 - report there is no entry for 15219 🗶

- Each table position contains a chain
 - a NULL-terminated linked list of entries
 - the chain at index i contains all entries that map to i

- o insert (15217, "Squirrel Hill")
 - \triangleright compute table index as 15217 % 5 = 2
 - points to a chain node
 - □ check its key: 15122 ≠ 15217 **★**
 - > try next node
 - ☐ there is no next node
 - □ create new node and insert (15217, "Squirrel Hill") in it

- lookup 15217
 - \triangleright compute table index as 15217 % 5 = 2
 - points to a chain node
 - □ check its key: 15122 ≠ 15217 🗶
 - > try next node
 - □ check its key: 15217 = 15217
 - □ return (15217, "Squirrel Hill")

- lookup 15219
 - \triangleright compute table index as 15219 % 5 = 4
 - ☐ there is no chain node
 - □ report there is no entry for 15219 🗶

Cost Analysis

Setup

- Assume
 - the dictionary contains *n* entries
 - the table has capacity *m*
 - collisions are resolved using separate chaining
 - > the analysis is similar for open addressing with linear probing
 - but not as visually intuitive
- What is the cost of lookup and insert?
 - Observe that insert costs at least as much as lookup
 - > we need to check if an entry with that key is already in the dictionary
 - ☐ if so, replace that entry (update)
 - ☐ if not, add a new node to the chain (proper insert)

Worst Possible Layout

- All entries are in the same bucket
 - look for a key that belongs to this bucket but that is not in the dictionary

- Looking up a key has cost O(n)
 - find the bucket -- O(1)
 - o going through all n nodes in the chain

- All buckets have the same number of entries
 - o all chains have the same length
 - > n/m
 - n/m is called the load factor of the table
 - ➤ in general, the load factor is a fractional number, e.g., 1.2347
- Looking up a key has worst-case cost O(n/m)
 - find the bucket -- O(1)
 - o go through all n/m nodes in the chain

Cost is O(n/m)

- Can we arrange so that n/m is about constant?
 - Yes! Resize the table when n/m reaches a fixed threshold c
 - \Box often, we choose c = 1.0

c is a constant

- When inserting, double the size of the table when n/m reaches c
- The cost of insert becomes O(1) amortized
 - ➤ like with unbounded arrays

Why O(1) amortized?

- Setup
 - dictionary contains n entries
 - o table has capacity m
 - o n/m < c

 c is a constant

- After inserting a new entry,
 - \circ either (n+1)/m < c
 - \circ or $(n+1)/m \ge c$ Resize the table

Why O(1) amortized?

- Case (n+1)/m < c
 - o go to the right bucket
 - check if it contains an entry with this key
 - > examine about n/m nodes
 - > that's at most c nodes ___c is a constant
 - insert or update the entry

This insert costs O(1)

Since (n+1)/m < c, the next lookup also costs O(1)

Why O(1) amortized?

After inserting a new entry,

```
\circ either (n+1)/m < c
  This is cheap!
         (n+1)/m \ge c
o or
  > costs O(n)
                                                           This is expensive!

    but the next n inserts will cost O(1)

                                                             Assuming we still have
                                                            the best possible layout ...
```

- Just like with unbounded array
 - many cheap operations can pay for the rare expensive ones
- Thus, insert has O(1) amortized cost
 - because lookup depends on what was inserted in the table, it has cost O(1)

 Assuming chains always have the same length and the table is self-resizing

insert costs O(1) amortized

amortized because some insertions trigger a table resize

lookup costs O(1)

➤ lookup never triggers a resize

Most insertions cost O(1), but a few cost O(n)

Lookups always cost O(1)

• But is this a reasonable assumption to make?

Without this assumption, both lookup and insert cost O(n) in the worst case

Best Possible Layout

- What does it take to be in this ideal case?
 - The indices associated with the keys in the table need to be uniformly distributed over [0,m)
 - This happens when the keys are chosen at random over the integers
- Is this typical?
 - Keys are rarely random
 - > e.g., if we take first digit of zip code (instead of last)
 - many students from Pennsylvania: lots of 1
 - many students from the West Coast: lots of 9 (mapped to 4, modulo 5)
 - We shouldn't count on it
- Making this assumption is not reasonable

Best Possible Layout

- Can we arrange so that we always end up in this ideal case?
 - > unless we are really, really unlucky
 - We want the indices associated to keys to be scattered
 - > be uniformly distributed over the table indices
 - bear little relation to the key itself
- Run the key through a pseudo-random number generator
 - "random number generator": result appears random
 - uniformly distributed
 - □ (apparently) unrelated to input
 - "pseudo": always returns the same result for a given key
 - deterministic

Best Possible Layout

- Arrange so that we always end up in the ideal case
 - > unless we are really, really unlucky
 - by running the key through a pseudo-random number generator

- Then, lookup has O(1) average case complexity
 - o because it will almost always be in the ideal case
 - ➤ but we if we are really, really unlucky
 - □ all keys may end up in the same bucket
 - ☐ the worst-case complexity remains is O(n)
- And insert has O(1) average and amortized complexity

Hash Tables

This is a **hash table**

- o a PRNG is an example of a hash function
 - > a function that turns a key into a number on which to base the table index
- o its result is a hash value
- it is then turned into a hash index in the range [0, m)

Hash Table Complexity

- Complexity of insert, assuming
 - the dictionary contains *n* entries
 - the table has capacity *m*
 - o and ...

Output is uniformly distributed and unrelated to input

		Bad hash function	Good hash function	
	No resizing	O(n)	O(n) (Left as exercise)	
Amortized	UBA-style resizing	(Left as exercise)	O(1) <u>average</u> a	and <u>amortized</u>
Double th	o oizo of			
Double the size of the table when load factor exceeds target		From good hash function From UBA-style resizing		

Hash Table Complexity

- Complexity of lookup, assuming
 - the dictionary contains n entries
 - the table has capacity *m*
 - o and ...

Output is uniformly distributed and unrelated to input

	Bad hash function	Good hash function
No resizing	O(n)	(Left as exercise)
UBA-style resizing	(Left as exercise)	O(1) <u>average</u>

insert doubles the size of the table when load factor exceeds target

From good hash function and insert producing chains of about the same length

Pseudo-Random Number Generators

Linear Congruential Generators

A common form of PRNG is

$$f(x) = a * x + c \mod d$$

- ➤ for appropriate constants a, c an d
- With 32-bit ints and handling overflow via modular arithmetic, we choose $d = 2^{32}$
 - > mod d is automatic
- To get uniform distribution, we pick
 - \bigcirc a \neq 0
 - o c and d to be relative primes
- This is called a linear congruential generator (LCG)
 - Cost is O(1)

Linear Congruential Generators

$$f(x) = a * x + c \mod d$$

ightharpoonup a \neq 0, and c and d relatively prime ightharpoonup $d = 2^{32}$

Implemented in the C0 rand library

#use <rand>

 \circ a = 1664525

 \circ c = 1013904223

Do it yourself?

```
int lgc(int x) {
  return 1664525 * x + 1013904223 ;
}
```

```
The rand library is a bit more general. It's interface is:

// typedef ____ rand_t;
rand_t init_rand (int seed);
int rand(rand_t gen):

Look it up!
```

Cryptographic Hash Functions

- Hash functions are used pervasively in cryptography
- Cryptographic hash functions have additional requirements
 - practically impossible to find x given h(x)
 - practically impossible to find x and a different y such that h(x) = h(y)
- Cryptographic hash functions are overkill for use in hash tables

Non-numerical Keys

Hashing Non-numerical Keys

Simply transform the key into a number first (cheaply)

- The whole transformation from key to hash value is called the hash function
 - often implemented as a single function

Dictionaries Summary

- We can use hash tables to implement efficient dictionaries
 - type of keys can be anything we want
 - O(1) average cost for lookup
 - O(1) average and amortized cost for insert

- Collision resolved via separate chaining or open addressing
 - Open addressing is more common in practice
 - uses less space
- They are called hash dictionaries

Dictionaries Summary

- Complexity assuming
 - the dictionary contains n entries
 - the table has capacity *m*

	unsorted array with (key, value) data	(key, value) array sorted by key	linked list with (key, value) data	Hash Tables
lookup	O(n)	O(log n)	O(n)	O(n) O(1) average*
insert	O(1) amortized	O(n)	O(1)	O(n) O(1) average* and amortized**

^{*}average = by using a good hash function

The same analysis applies for open addressing hash tables

^{**}amortized = by resizing the table

What about Sets?

- A set can be understood as a special case of a dictionary
 - keys = entries
 - > These are the elements of the set
 - lookup can simply return true or false
 - > this now checks set membership
- A set implemented as a hash dictionary is called a hash set