
Hashing

Sets and Dictionaries

1

What do we use arrays for?

To keep a collection of elements of the same type in one place

o E.g., all the words in the Collected Works of William Shakespeare

 The array is used as a set

o the index where an element occurs doesn’t matter much

 Main operations:

o add an element

 like uba_add for unbounded arrays

o check if an element is in there

 this is what search does (linear if unsorted, binary if sorted)

o go through all elements

using a for-loop for example

0 1 2 3

“a” “rose” “by” “any” “name” … “Hamlet”

1

2

What do we use arrays for?

As a mapping from indices to values

o E.g., the monthly average high temperatures in Pittsburgh

 The array is used as a dictionary

o each value is associated to a specific index

o the indices are critical

 Main operations:

o insert/update a value for a given index

E.g., High[10] = 63 -- the average high for October is 63°F

o lookup the value associated to an index

E.g., High[3] -- looks up the average high for March

0 1 2 3 4 5 6 7 8 9 10 11 12

35 38 50 62 72 80 83 82 75

0 = unused

1 = Jan

…

12 = Dec

High:

2

3

Dictionaries, beyond Arrays

 Generalize index-to-value mapping of arrays so that

o index does not need to be a contiguous number starting at 0

o in fact, index doesn’t have to be a number at all

 A dictionary is a mapping from keys to values

e.g.: mapping from month to high temperature (value)

e.g.: mapping from student id to student record (entry)

arrays: index 3 is the key, contents A[3] is the value

k e

key entry if e contains k

value otherwise

“march” 50

“honk” (“Honk”, “!”, “honk”, “2019”)

key value

key entry

3 A[3]key value

4

Dictionaries

 Contains at most one entry associated to each key

 main operations:

o create a new dictionary

o lookup the entry associated with a key

or report that there is no entry for this key

o insert (or update) an entry

 many other operations of interest

o delete an entry given its key

o number of entries in the dictionary

o print all entries, …

k e
key entry

(we will consider

only these)

5

Dictionaries in the Wild

 Dictionaries are a primitive data structure in many languages
Like arrays in C0

o E.g.,

Python

 Javascript

PHP, …

 They are not primitive in low level languages like C and C0

oWe need to implement them and provide them as a library

o This is also what we would do to write a Python interpreter

php -a

php > $A[0] = 3;

php > echo $A[0];

3

php > $A[15122] = 11;

php > echo $A[15122];

11

php > echo $A[3];

PHP Notice: Undefined offset: 3 in php shell code on line 1

php > $A["hello world"] = 13;

Linux Terminal

Sample PHP

session

6

 based on what we know so far …

oworst-case complexity assuming the dictionary contains n entries

oObservation: operations are fast when we know where to look

 Goal: efficient lookup and insert for large dictionaries

o about O(1)

unsorted array with

(key, value) data

(key, value) array

sorted by key

linked list with

(key, value) data

lookup O(n) O(log n) O(n)

insert O(1) amortized O(n) O(1)

Implementing Dictionaries

Linear

search

adding to an

unbounded

array

Binary

search

Linear

search

on list

Add to

the front

of the list

Move other

elements out of the way

7

Dictionaries with Sparse Numerical Keys

8

Example

A dictionary that maps zip codes (keys) to neighborhood

names (values) for the students in this room

 zip codes are 5-digit numbers -- e.g., 15213

o use a 100,000-element array with indices as keys?

o possibly, but most of the space will be wasted:

only about 200 students in the room

only some 43,000 zip codes are currently in use

 Use a much smaller m-element array
here m=5

o reduce a key to an index in the range [0,m)

here reduce a zip code to an index between 0 to 4

do zipcode % 5

 This is the first step towards a hash table

0

1

2

3

4

m = 5

This array

is called the

table

m is the

capacity of

the table9

Example

 We now perform a sequence of

insertions and lookups

o insert (15213, “CMU”)

 compute table index as

15213 % 5 = 3

 insert “CMU” at index 3

insert (15213, “CMU”)

insert (15122, “Kennywood”)

lookup 15213

lookup 15219

lookup 15217

insert (15217, “Squirrel Hill”)

lookup 15217

lookup 15219

m = 5

key value

0

1

2

3 “CMU”

4

10

Example

o insert (15122, “Kennywood”)

 compute table index as

15122 % 5 = 2

 insert “Kennywood” at index 2

insert (15213, “CMU”)

insert (15122, “Kennywood”)

lookup 15213

lookup 15219

lookup 15217

insert (15217, “Squirrel Hill”)

lookup 15217

lookup 15219

key value

0

1

2 “Kennywood”

3 “CMU”

4

11

Example

o lookup 15213

 compute table index as

15213 % 5 = 3

 return contents of index 3

 “CMU”

insert (15213, “CMU”)

insert (15122, “Kennywood”)

lookup 15213

lookup 15219

lookup 15217

insert (15217, “Squirrel Hill”)

lookup 15217

lookup 15219

key

value

0

1

2 “Kennywood”

3 “CMU”

4

12

Example

o lookup 15219

 compute table index as

15219 % 5 = 4

 nothing at index 4

 report there is no value for 15219

insert (15213, “CMU”)

insert (15122, “Kennywood”)

lookup 15213

lookup 15219

lookup 15217

insert (15217, “Squirrel Hill”)

lookup 15217

lookup 15219

key

no value

0

1

2 “Kennywood”

3 “CMU”

4



13

Example

o lookup 15217

 compute table index as

15217 % 5 = 2

 return contents of index 2

 “Kennywood”

 This is incorrect!

owe never inserted an entry with key 15217

o it should signal there is no value

insert (15213, “CMU”)

insert (15122, “Kennywood”)

lookup 15213

lookup 15219

lookup 15217

insert (15217, “Squirrel Hill”)

lookup 15217

lookup 15219

key

value

We need to

store both the key

and the value --

the whole entry

0

1

2 “Kennywood”

3 “CMU”

4

14

Example

o lookup 15217

 compute table index as

15217 % 5 = 2

 check the key at index 2

15122 ≠ 15217

 entry at index 2 is not about this key

 lookup now returns a whole entry

insert (15213, “CMU”)

insert (15122, “Kennywood”)

lookup 15213

lookup 15219

lookup 15217

insert (15217, “Squirrel Hill”)

lookup 15217

lookup 15219

key

no value for 15217

0

1

2 (15122,

“Kennywood”)

3 (15213,

“CMU”)

4


15

Example

o insert (15217, “Squirrel Hill”)

 compute table index as

15217 % 5 = 2

 there is an entry in there

 check its key

15122 ≠ 15217

 entry at index 2 is not about this key

 We have a collision

o different entries map to the same index

0

1

2 (15122,

“Kennywood”)

3 (15213,

“CMU”)

4

insert (15213, “CMU”)

insert (15122, “Kennywood”)

lookup 15213

lookup 15219

lookup 15217

insert (15217, “Squirrel Hill”)

lookup 15217

lookup 15219

key



16

Dealing with Collisions

Two common approaches

 Open addressing

o if a table index is taken, store the new entry at a predictable

index nearby

 linear probing: use next free index (modulo m)

quadratic probing: try table index + 1, then +4, then +9, etc.

 Separate chaining

o do not store the entries in the table itself but in buckets

bucket for a table index contain all the entries that map to that index

buckets are commonly implemented as chains

 a chain is a NULL-terminated linked list

17

Collisions are Unvoidable

 If n > m

o pigeonhole principle

 “If we have n pigeons and m holes and n > m, one hole will have more

than one pigeon”

o This is a certainty

 If n > 1

o birthday paradox

 “Given 25 people picked at random, the probability that 2 of them share

the same birthday is > 50%”

o This is a probabilistic result

18

Example, continued

with linear probing

o insert (15217, “Squirrel Hill”)

 compute table index as

15217 % 5 = 2

 there is an entry in there

 check its key: 15122 ≠ 15217

 try next index, 3

 there is an entry in there

 check its key: 15213 ≠ 15217

 try next index, 4

 there is no entry in there

 insert (15217, “Squirrel Hill”) at index 4

0

1

2 (15122,

“Kennywood”)

3 (15213,

“CMU”)

4 (15217,

“Squirrel Hill)

insert (15213, “CMU”)

insert (15122, “Kennywood”)

lookup 15213

lookup 15219

lookup 15217

insert (15217, “Squirrel Hill”)

lookup 15217

lookup 15219

m = 5

key







19

Example, continued

with linear probing

o Lookup 15217

 compute table index as

15217 % 5 = 2

 there is an entry in there

 check its key: 15122 ≠ 15217

 try next index, 3

 there is an entry in there

 check its key: 15213 ≠ 15217

 try next index, 4

 there is an entry in there

 check its key: 15217 = 15217

 return (15217, “Squirrel Hill”)

0

1

2 (15122,

“Kennywood”)

3 (15213,

“CMU”)

4 (15217,

“Squirrel Hill)

insert (15213, “CMU”)

insert (15122, “Kennywood”)

lookup 15213

lookup 15219

lookup 15217

insert (15217, “Squirrel Hill”)

lookup 15217

lookup 15219

key







20

Example, continued

with linear probing

o Lookup 15219

 compute table index as

15219 % 5 = 4

 there is an entry in there

 check its key: 15217 ≠ 15219

 try next index, 5 % 5 = 0

 there is no entry in there

 report there is no entry for 15219

0

1

2 (15122,

“Kennywood”)

3 (15213,

“CMU”)

4 (15217,

“Squirrel Hill)

insert (15213, “CMU”)

insert (15122, “Kennywood”)

lookup 15213

lookup 15219

lookup 15217

insert (15217, “Squirrel Hill”)

lookup 15217

lookup 15219

key





21

Example, continued

with separate chaining

 Each table position contains a chain

o a NULL-terminated linked

list of entries

o the chain at index i contains

all entries that map to i

0

1

2

3

4

insert (15213, “CMU”)

insert (15122, “Kennywood”)

lookup 15213

lookup 15219

lookup 15217

insert (15217, “Squirrel Hill”)

lookup 15217

lookup 15219

(15122,

“Kennywood”)

(15213,

“CMU”)

m = 5

22

Example, continued

with separate chaining

o insert (15217, “Squirrel Hill”)

 compute table index as

15217 % 5 = 2

 points to a chain node

 check its key: 15122 ≠ 15217

 try next node

 there is no next node

 create new node and

insert (15217, “Squirrel Hill”) in it

0

1

2

3

4

insert (15213, “CMU”)

insert (15122, “Kennywood”)

lookup 15213

lookup 15219

lookup 15217

insert (15217, “Squirrel Hill”)

lookup 15217

lookup 15219

(15122,

“Kennywood”)

(15213,

“CMU”)

(15127,

“Squirrel Hill”)

In practice, it is

easier to insert

new nodes at the

beginning of a chain





23

Example, continued

with separate chaining

o lookup 15217

 compute table index as

15217 % 5 = 2

 points to a chain node

 check its key: 15122 ≠ 15217

 try next node

 check its key: 15217 = 15217

 return (15217, “Squirrel Hill”)

0

1

2

3

4

insert (15213, “CMU”)

insert (15122, “Kennywood”)

lookup 15213

lookup 15219

lookup 15217

insert (15217, “Squirrel Hill”)

lookup 15217

lookup 15219

(15122,

“Kennywood”)

(15213,

“CMU”)

(15127,

“Squirrel Hill”)





24

Example, continued

with separate chaining

o lookup 15219

 compute table index as

15219 % 5 = 4

 there is no chain node

 report there is no entry for 15219

0

1

2

3

4

insert (15213, “CMU”)

insert (15122, “Kennywood”)

lookup 15213

lookup 15219

lookup 15217

insert (15217, “Squirrel Hill”)

lookup 15217

lookup 15219

(15122,

“Kennywood”)

(15213,

“CMU”)

(15127,

“Squirrel Hill”)



25

Cost Analysis

26

Setup

 Assume

o the dictionary contains n entries

o the table has capacity m

o collisions are resolved using separate chaining

 the analysis is similar for open addressing with linear probing

 but not as visually intuitive

 What is the cost of lookup and insert?

oObserve that insert costs at least as much as lookup

we need to check if an entry with that key is already in the dictionary

 if so, replace that entry (update)

 if not, add a new node to the chain (proper insert)

27

Worst Possible Layout

 All entries are in the same bucket

o look for a key that

belongs to this bucket

but that is not

in the dictionary

 Looking up a key has cost O(n)

o find the bucket -- O(1)

o going through all n nodes in the chain

0

m-1

m …

n

28

Best Possible Layout

 All buckets have the same number of entries

o all chains have the same length

n/m

o n/m is called the

load factor of the table

 in general, the load factor is a

fractional number, e.g., 1.2347

 Looking up a key has

worst-case cost O(n/m)

o find the bucket -- O(1)

o go through all n/m nodes in the chain

0

m-1

m …

n/m

…

…

…

…

29

Best Possible Layout

Cost is O(n/m)

 Can we arrange so that n/m

is about constant?

o Yes! Resize the table when

n/m reaches a fixed threshold c
 often, we choose c = 1.0

 When inserting, double the size of the table

when n/m reaches c

 The cost of insert becomes O(1) amortized
 like with unbounded arrays

0

m-1

m …

n/m < c

…

…

…

…

c is a constant

30

Best Possible Layout

Why O(1) amortized?

 Setup

o dictionary contains n entries

o table has capacity m

o n/m < c

 After inserting a new entry,

o either (n+1)/m < c

o or (n+1)/m ≥ c

0

m-1

m …

n/m < c

…

…

…

…

c is a constant

Resize the table

31

Best Possible Layout

Why O(1) amortized?

 Case (n+1)/m < c

o go to the right bucket

o check if it contains an entry

with this key

examine about n/m nodes

 that’s at most c nodes

o insert or update the entry

This insert costs O(1)

0

m-1

m …

(n+1)/m < c

…

…

…

…

c is a constant

Since (n+1)/m < c,

the next lookup

also costs O(1)

32

Best Possible Layout

Why O(1) amortized?

 Case (n+1)/m ≥ c

o double the table capacity to 2m

o insert all entries into the new table

n times O(1)

 that’s O(n)

This insert costs O(n)

o The new load factor is

(n+1)/2m < c

 because

(n+1)/2m < 2n/2m = n/m < c

0

2m-1

2m

…

…

…

…

…

(n+1)/2m < c

…

…

…

…

…

Thus, the next

lookup costs O(1)

If we keep on being in

the best possible layout

If we keep on being in

the best possible layout

If we keep on being in

the best possible layout

If we keep on being in

the best possible layout

33

Best Possible Layout

Why O(1) amortized?

 After inserting a new entry,

o either (n+1)/m < c

 costs O(1)

o or (n+1)/m ≥ c

 costs O(n)

but the next n inserts will cost O(1)

 Just like with unbounded array

omany cheap operations can pay for the rare expensive ones

 Thus, insert has O(1) amortized cost

o because lookup depends on what was inserted in the table,

it has cost O(1)

This is cheap!

This is expensive!

Assuming we still have

the best possible layout …

34

Best Possible Layout

 Assuming chains always have the same length and the

table is self-resizing

o insert costs O(1) amortized

amortized because some

insertions trigger a table resize

o lookup costs O(1)

 lookup never triggers a resize

 But is this a reasonable assumption to make?

35

Most insertions cost O(1),

but a few cost O(n)

Lookups always cost O(1)

Without this assumption,

both lookup and insert cost

O(n) in the worst case

Best Possible Layout

 What does it take to be in this ideal case?

o The indices associated with the keys in the table need to be

uniformly distributed over [0,m)

o This happens when the keys are chosen at random over the

integers

 Is this typical?

o Keys are rarely random

e.g., if we take first digit of zip code (instead of last)

 many students from Pennsylvania: lots of 1

 many students from the West Coast: lots of 9 (mapped to 4, modulo 5)

oWe shouldn’t count on it

 Making this assumption is not reasonable

36

Best Possible Layout

 Can we arrange so that we always end up in this ideal case?
unless we are really, really unlucky

oWe want the indices associated to keys to be scattered

be uniformly distributed over the table indices

bear little relation to the key itself

 Run the key through a pseudo-random number generator

o “random number generator”: result appears random
 uniformly distributed

 (apparently) unrelated to input

o “pseudo”: always returns the same result for a given key
 deterministic

numerical key PRNG
uniformly distributed

number
% m table index

37

Best Possible Layout

 Arrange so that we always end up in the ideal case
unless we are really, really unlucky

o by running the key through a pseudo-random number generator

 Then, lookup has O(1) average case complexity

o because it will almost always be in the ideal case

but we if we are really, really unlucky

 all keys may end up in the same bucket

 the worst-case complexity remains is O(n)

 And insert has O(1) average and amortized complexity

numerical key PRNG
uniformly distributed

number
% m table index

38

Hash Tables

This is a hash table

o a PRNG is an example of a hash function

a function that turns a key into a number on which to base the table index

o its result is a hash value

o it is then turned into a hash index in the range [0, m)

numerical key PRNG
uniformly distributed

number
% m table index

hash function hash value hash index

numerical key hash function hash value % m hash index

39

Hash Table Complexity

 Complexity of insert, assuming

o the dictionary contains n entries

o the table has capacity m

o and …

Bad

hash function

Good

hash function

No resizing O(n) (Left as exercise)

UBA-style

resizing
(Left as exercise) O(1) average and amortized

Output is

uniformly distributed

and unrelated to input

Double the size of

the table when load

factor exceeds target

From good hash function From UBA-style resizing

40

Amortized

A
v
e

ra
g

e

Hash Table Complexity

 Complexity of lookup, assuming

o the dictionary contains n entries

o the table has capacity m

o and …

Bad

hash function

Good

hash function

No resizing O(n) (Left as exercise)

UBA-style

resizing
(Left as exercise) O(1) average

Output is

uniformly distributed

and unrelated to input

insert doubles the size of

the table when load

factor exceeds target

From good hash function

and insert producing chains

of about the same length41

A
v
e

ra
g

e

Pseudo-Random Number Generators

42

Linear Congruential Generators

 A common form of PRNG is

f(x) = a * x + c mod d

 for appropriate constants a, c an d

 With 32-bit ints and handling overflow via modular arithmetic,

we choose d = 232

mod d is automatic

 To get uniform distribution, we pick

o a ≠ 0

o c and d to be relative primes

 This is called a linear congruential generator (LCG)

oCost is O(1)

43

Linear Congruential Generators

f(x) = a * x + c mod d

a ≠ 0, and c and d relatively prime

d = 232

 Implemented in the C0 rand library

#use <rand>

o a = 1664525

o c = 1013904223

 Do it yourself?

int lgc(int x) {

return 1664525 * x + 1013904223 ;

}

The rand library is a bit more general.

It’s interface is:

// typedef ___ rand_t;

rand_t init_rand (int seed);

int rand(rand_t gen):

Look it up!

44

Cryptographic Hash Functions

 Hash functions are used pervasively in cryptography

 Cryptographic hash functions have additional

requirements

o practically impossible to find x given h(x)

o practically impossible to find x and a different y such that

h(x) = h(y)

 Cryptographic hash functions are overkill for use in hash

tables

45

Non-numerical Keys

46

Hashing Non-numerical Keys

 Simply transform the key into a number first (cheaply)

 The whole transformation from key to hash value is called

the hash function

o often implemented as a single function

number PRNG hash value % m hash index

hash function

key hash function hash value % m hash index

key transformation

47

Dictionaries Summary

 We can use hash tables to implement efficient dictionaries

o type of keys can be anything we want

oO(1) average cost for lookup

oO(1) average and amortized cost for insert

oCollision resolved via separate chaining or open addressing

Open addressing is more common in practice

 uses less space

 They are called hash dictionaries

key hash function hash value % m hash index

48

 Complexity assuming

o the dictionary contains n entries

o the table has capacity m

*average = by using a good hash function

**amortized = by resizing the table

o The same analysis applies for open addressing hash tables

unsorted array with

(key, value) data

(key, value) array

sorted by key

linked list with

(key, value) data
Hash Tables

lookup O(n) O(log n) O(n)
O(n)

O(1) average*

insert O(1) amortized O(n) O(1)
O(n)

O(1) average* and amortized**

Dictionaries Summary

49

What about Sets?

 A set can be understood as a special case of a dictionary

o keys = entries

These are the elements of the set

o lookup can simply return true or false

 this now checks set membership

 A set implemented as a hash dictionary is called a

hash set

50

