
Binary Search Trees



Reflecting on Dictionaries
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 Complexity of various implementations of dictionaries

o assuming it contains n entries

 Hash dictionaries are clearly the best implementation
O(1) lookup and insertion are hard to beat!

Unsorted array Array sorted by key Linked list Hash Table

lookup O(n) O(log n) O(n) O(1)
average

insert O(1)
amortized

O(n) O(1) O(1)
average and amortized

Cost
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Cost

 Hash dictionaries are clearly the best implementation
O(1) lookup and insertion are hard to beat!

or are they?

 It’s O(1) average

owe could be (very) unlucky and incur an O(n) cost

e.g., if we use a poor hash function

 It’s O(1) amortized

o from time to time, we need to resize the table

 then the operation costs O(n)

 Operations like finding the entry with

the smallest key cost O(n)

owe have to check every entry

Always read

the fine prints!

Always read

the fine prints!

Using hash dictionaries is too risky

or not good enough

for applications that require a

guaranteed (short) response time

But they are great for

applications that don’t

have such constraints
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 Develop a data structure that has guaranteed O(log n) 

worst-case complexity for lookup, insert and find_min
always!

oO(1) would be great but we can’t get that

Unsorted 

array

Array sorted

by key
Linked list Hash Table

lookup O(n) O(log n) O(n) O(1) 
average

O(log n)

insert O(1) 
amortized

O(n) O(1) O(1)
average and amortized

O(log n)

find_min O(n) O(1) O(n) O(n) O(log n)

Goal

ExerciseExerciseExerciseExercise

Returns the

entry with the

smallest key
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Getting Started

 The only O(log n) so far is lookup in sorted arrays

 That’s binary search

o Let’s start there

Unsorted 

array

Array sorted

by key
Linked list Hash Table

lookup O(n) O(log n) O(n) O(1) 
average

O(log n)

insert O(1) 
amortized

O(n) O(1) O(1)
average and amortized

O(log n)

find_min O(n) O(1) O(n) O(n) O(log n)
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Searching Sorted Data
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Searching for a Number

 Consider the following sorted array

 When searching for a number x using binary search,

we always start by looking at the midpoint, index 4

 Then, 3 things can happen

o x = 12 (and we are done)

o x < 12

o x > 12

We always look

at this element

0 1 2 3 4 5 6 7 8 9

-2 0 4 7 12 19 22 42 65

12
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Searching for a Number

 If x < 12, the next index we look at is necessarily 2

 If x > 12, the next index we look at is necessarily 7

Next, we may look

at these elements

0 1 2 3 4 5 6 7 8 9

-2 0 4 7 12 19 22 42 65

if x > 12if x < 12

4

12

42

8



Searching for a Number

 Assume x < 12, so we look at 4

o if x = 4, we are done

o if x < 4, we necessarily look at 0

o if x > 4, we necessarily look at 7

Then, we may look

at these elements

0 1 2 3 4 5 6 7 8 9

-2 0 4 7 12 19 22 42 65

if x > 12if x < 12

if x > 4if x < 4

0 7

4

12

42
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0 1 2 3 4 5 6 7 8 9

-2 0 4 7 12 19 22 42 65

Searching for a Number

 Assume x < 4, so we look at 0

o if x = 0, we are done

o if x < 0, we necessarily look at -2

Then, we may look

at this element
-2

if x > 12if x < 12

if x > 4if x < 4

if x < 0

0 7

4

12

42
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Searching for a Number

 We can map out all possible sequences of elements 

binary search may examine, for any x 

This is called a decision tree:

at every step, it tells us how

to decide what to do next

We are essentially

hoisting the array by

its midpoint, its two sides

by their midpoint, etc

0 1 2 3 4 5 6 7 8 9

-2 0 4 7 12 19 22 42 65

-2

if x > 12if x < 12

if x > 4if x < 4

if x < 0

0 7

4

12

19

if x > 42if x < 42

if x < 22

22 65

42
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Searching for a Number

 An array provides direct access to all elements

o This is overkill for binary search

o At any point, it needs direct access to at most two elements

0 1 2 3 4 5 6 7 8 9

-2 0 4 7 12 19 22 42 65

-2

if x > 12if x < 12

if x > 4if x < 4

if x < 0

0 7

4

12

19

if x > 42if x < 42

if x < 22

22 65

42
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Searching for a Number

 We can achieve the same access pattern by pairing up 

each element with two pointers

o one to each of the two elements that may be examined next

 We are losing direct access to arbitrary elements,

o but it retains access to the elements that matter to binary search

12

4 42

6522

19

70

-2
Arrays gave us

more power

than needed
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Towards an Implementation

 We can capture this idea with this type declaration:

o a data element

o pointers to the 2

elements we may

look at next

 This is called

a node

 This arrangement of data in memory is called a tree

typedef struct tree_node tree;

struct tree_node {

tree* left;

int data;

tree* right;

};
12

4 42

6522

19

70

-2

left data right

or simply a node

note that it is

recursive

note that it is

recursive
a struct tree_node
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Constructing this Tree

 Let’s build the first

few nodes of this

example

tree* T = alloc(tree);

T->data = 12;

T->left = alloc(tree);

T->left->data = 4;

T->right= alloc(tree);

T->right->data = 42;

T->left->left = alloc(tree);

…

typedef struct tree_node tree;

struct tree_node {

tree* left;

int data;

tree* right;

};

12

4 42

6522

19

70

-2

left data right

T
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The End of the Line

 What should

the blank

left/right

fields

point

to?

oNULL

each sequence of left/right pointers works like a NULL-terminated list

o a dummy node

not very useful here

typedef struct tree_node tree;

struct tree_node {

tree* left;

int data;

tree* right;

};

12

4 42

6522

19

70

-2

left data right





We used dummy nodes to get

direct access to the end of a list
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Searching

 Searching for 7

o 7 < 12: go left

o 7 > 4: go right

o 7 = 7: found

 We are doing the same steps as binary search

 Starting from an n-element array, the cost is O(log n)

12

4 42

6522

19

70

-2

left data right



Follow the pointer

in the left field

If the tree is obtained

as in this example17



Searching

 Searching for 5

o 5 < 12: go left

o 5 > 4: go right

o 5 < 7: go left

nowhere to go

o not there

 We are doing the same steps as binary search

 Starting from an n-element array, the cost is O(log n)

12

4 42

6522

19

70

-2

left data right



If the tree is obtained

as in this example18



 Develop a data structure that has guaranteed O(log n) 

worst-case complexity for lookup, insert and find_min
always!

o lookup has cost O(log n)

oWhat about insert and find_min?

Target

data structure

lookup O(log n)

insert O(log n)

find_min O(log n)

Recall our Goal

in this setup
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Insertion

 Inserting 5

o 5 < 12: go left

o 5 > 4: go right

o 5 < 7: go left

put it there

 We are doing the same steps we would do to search for it,

and then put it where it should have been

o so that we find it when searching for it next time

 For an n-element array, this costs O(log n)

12

4 42

6522

19

70

-2

left data right

5

If the tree is obtained

as in this example
We couldn’t get this with sorted arrays
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Finding the Smallest Key

 Keep going left

o left from 12 to 4

o left from 4 to 0

o left from 0 to -2 

nothing to its left

o the smallest

key is -2

 Starting from an n-element array, we can go left at most 

O(log n) times

o The cost is O(log n)

12

4 42

6522

19

70

-2

left data right

If the tree is obtained

as in this example21



 Develop a data structure that has guaranteed O(log n) 

worst-case complexity for lookup, insert and find_min
always!

o lookup, insert and find_min

all have cost O(log n)

Target

data structure

lookup O(log n)

insert O(log n)

find_min O(log n)

Recall our Goal



in this setup




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Trees
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Terminology

 This arrangement of data is called a (binary) tree

o each item in it is called a node

o the part of a tree hanging from a node is called a branch

or subtree

12

4 42

6522

19

70

-2

a tree

a nodea nodea node

a branch

(or subtree)24



Terminology

 The node at the top is called the root of the tree

o the nodes at the bottom are the leaves of the tree

o the other nodes are called inner nodes

12

4 42

6522

19

70

-2

the root

a leafa leaf

an inner nodean inner node

Trees grow upside down

in Computer Science!

a tree
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Terminology

 Given any node

o the node to its left is its left child

o the node to its right is its right child

o the node above it is its parent

12

4 42

6522

19

70

-2

a node

its left child its right child

their parent

.. and Computer Science

mixes botanical trees

and family trees!
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Concrete Tree Diagrams

 When drawing trees, we generally omit the details of the 

memory diagrams

o draw just the data in a node

not the pointer fields

o and the connection to its children

we always draw the root at the top
12

42

6522

19

4

70

-2

the root

a leafa leaf

27



Pictorial Abstraction

 We will often reason about trees that are arbitrary

o their actual content is unimportant, so we abstract it away

oWe draw a generic tree as

a triangle

oWe represent the empty tree

by simply writing “Empty”
Empty

the root is here
(if the tree is not empty)
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What do Trees Look Like?

 Abstract trees come in many shapes

 When working with trees, we need to account for all these 

possibilities

owe will forget some

 Is there a simpler description?

EMPTY

?
…

the

empty

tree

a tree

with just

the root

a root

and two

children

a tree

with just the

left subtree

a tree

with just the

right subtree

and

many

more

29



What Trees Look Like

 A tree can be

o either empty

o or a root with

a tree on its left and

a tree on its right

 Every tree reduces to these two cases

EMPTY

EMPTY

EMPTY EMPTY EMPTY EMPTY

EMPTY EMPTY EMPTY EMPTY

the

empty

tree

a tree

with just

the root

a root

and two

children

a tree

with just the

left subtree

a tree

with just the

right subtree30



What Trees Look Like

 A tree can be

o either empty

o or a root with

a tree on its left and

a tree on its right

 We only need to consider these two cases when

owriting code about trees

o reasoning about trees

EMPTY

31



A Minimal Tree Invariant

 We only need to consider these two cases when

writing code about trees

 Let’s apply this to write a basic invariant

about trees of entries

o Just check that the

data field is never NULL

 This is a recursive function

o the base case is about the empty tree

o the recursive case is about every 

tree that is not empty

with a root

and two subtrees

bool is_tree(tree* T) {

// Code for empty tree

if (T == NULL) return true;

// Code for non-empty tree

return is_tree(T->left)

&& T->data != NULL

&& is_tree(T->right);

}

EMPTY

Recall we are using trees to implement dictionaries:

• we store entries in nodes

• valid entries are non-NULL

typedef struct tree_node tree;

struct tree_node {

tree* left;

entry data;   // != NULL

tree* right;

};

Recall we are using trees to implement dictionaries:

• we store entries in nodes

• valid entries are non-NULL

Recall we are using trees to implement dictionaries:

• we store entries in nodes

• valid entries are non-NULL
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A Minimal Tree Invariant

 We just check that the

data field is never NULL

 But trees have constraints on their structure

o a node does not point to an ancestor

o a node has at most one parent

 What additional constraints on contents do we need to use 

trees to implement dictionaries?





bool is_tree(tree* T) {

// Code for empty tree

if (T == NULL) return true;

// Code for non-empty tree

return is_tree(T->left)

&& T->data != NULL

&& is_tree(T->right);

}

EMPTY

How to check them

is left as an exercise
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Binary Search Trees
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Binary Search Trees

 What additional constraints on the contents do we need to 

use trees to implement dictionaries?

 Because lookup emulates binary search, the data in the 

tree need to be ordered

o smaller values on the left

o bigger values on the right

 A tree whose nodes are ordered is called a

binary search tree

12

42

6522

19

4

70

-2

Ordered

35



The BST Invariant

 A tree whose nodes are

ordered is called a

binary search tree

 We can write a specification function that check BSTs

bool is_bst(tree* T) {

return is_tree(T)

&& is_ordered(T);

}

We will see later

how to implement this

12

42

6522

19

4

70

-2

Ordered

A BST is a valid tree …

… whose nodes are ordered

36



Looking Up Keys
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Implementing lookup

 Leverage the structure of the tree!

o empty: the key is not found

o non-empty:

 if root contains the key, found

 if key is smaller than the root’s go left

 if key is bigger than the root’s go right

 In code:

entry bst_lookup(tree* T, key k)

//@requires is_bst(T);

{

// Code for empty tree

if (T == NULL) return NULL;

// Code for non-empty tree

if (k == T->data) return T->data;

if (k < T->data) return bst_lookup(T->left, k);

//@assert k > T->data;

return bst_lookup(T->right, k);

}

12

42

6522

19

4

70

-2

EMPTY

looking up 19

lookup works only on BST’s

we go left by recursing on the left subtree

we go right by recursing on the right subtree


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Implementing lookup

 But < and > work only for integers!

o also, keys and entries are not the same thing in general

 We want a dictionary that uses trees

o to store entries of any type

o and look them up using keys of any type

entry bst_lookup(tree* T, key k)

//@requires is_bst(T);

{

// Code for empty tree

if (T == NULL) return NULL;

// Code for non-empty tree

if (k == T->data) return T->data;

if (k < T->data) return bst_lookup(T->left, k);

//@assert k > T->data;

return bst_lookup(T->right, k);

}

EMPTY

12

42

6522

19

4

70

-2



looking up 19
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Implementing lookup

 But < and > work only for integers!

o also, keys and entries are not the same thing in general

 We want a dictionary that uses trees

o to store entries of any type entry

o and look them up using keys of any type key

 We need functions that

o extract the key from an entry: entry_key

o compare two keys: key_compare

 It is for the client to decide on the type of keys and entries

o So the client shall provide these functions

just like for hash dictionariesjust like for hash dictionaries

40



A Client Interface

 The BST dictionary needs a client interface that

o requests the client to provide types entry and key

o declares a function to extract the key of an entry

o declares a function to compare two keys

 We could make it fully generic

o but let’s keep things simple

// typedef ______* entry;

// typedef ______ key;

key entry_key(entry  e)

/*@requires e != NULL; @*/ ;

int key_compare(key k1, key k2) ;

Client Interface

returns

• < 0 if k1 is smaller than k2

• 0 if k1 and k2 are the same

• > 0 if k1 is larger than k2

41



Implementing lookup

 With it, we can write a general implementation

oWe can now even provide a useful postcondition

either lookup returns NULL

 no entry in T has key k

or the key of the returned entry is the same as k

entry bst_lookup(tree* T, key k)

//@requires is_bst(T);

//@ensures \result == NULL

|| key_compare(entry_key(\result), k) == 0;

{

// Code for empty tree

if (T == NULL) return NULL;

// Code for non-empty tree

int cmp = key_compare(k, entry_key(T->data));

if (cmp == 0) return T->data;

if (cmp < 0) return bst_lookup(T->left, k);

//@assert cmp > 0;

return bst_lookup(T->right, k);

}

EMPTY We save the outcome of the

comparison in the variable cmp

go left

go right

found!
• < 0 if k1 is smaller than k2

• 0 if k1 and k2 are the same

• > 0 if k1 is larger than k2

just like for

hash dictionaries

42



Checking Ordering
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Ordered Trees – I

 The data in every node must be

o bigger than its left child’s

o smaller than its right child

 In code:

bool is_ordered(tree* T)

//@requires is_tree(T);

{

// Code for empty tree

if (T == NULL) return true;

// Code for non-empty tree

return (T->left == NULL || T->left->data < T->data)

&& (T->right == NULL || T->data < T->right->data)

&& is_ordered(T->left)

&& is_ordered(T->right);

}

TL TR

y

zx

For simplicity, 

assume int data

The empty tree is ordered

If T has a left child, it must be smaller

The left subtree must be ordered

and similarly

on the right

and similarly

on the right

x < y < z

EMPTY
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Ordered Trees – I

 The data in every node must be

o bigger than its left child’s 

o smaller than its right child

 Is this enough?

o This is true of this tree

o but it is not ordered

 To be ordered, we want TL < y < TR

o not x < y < z

42

49

996

12

880



TL TR

y

zx

x < y < z

lookup cannot

find 88 and 6

This is a global constraint:
we need to check the whole subtrees

This is a local constraint:
it only checks the children of each node
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Ordered Trees – II

 The data in every node must be

o bigger than everything in its left subtree

o smaller than everything in its right subtree

 We need two helper functions

o gt_tree that checks k > TL (i.e., TL < k)

o lt_tree that checks k < TR

 gt_tree has cost O(n)
 if T contains n nodes

o because it compares k 

with every node in T



TL TR

k

TL < k < TR

bool gt_tree(key k, tree* T)    // checks that T < k

//@requires is_tree(T);

{

// Code for empty tree

if (T == NULL) return true;

// Code for non-empty tree

return key_compare (k, entry_key(T->data)) > 0

&& gt_tree(k, T->left)

&& gt_tree(k, T->right);

}

EMPTY

lt_tree is similarlt_tree is similar
46



Ordered Trees – II

 The data in every node must be

o bigger than everything in its left subtree

o smaller than everything in its right subtree

 In code:

 is_ordered costs O(n2)
 if T contains n nodes

o because it calls gt_tree

and lt_tree on each node

bool gt_tree(key k, tree* T) {…}   // O(n)

bool lt_tree(key k, tree* T) {…}    // O(n)

bool is_ordered(tree* T)

//@requires is_tree(T);

{

// Code for empty tree

if (T == NULL) return true;

// Code for non-empty tree

key k = entry_key(T->data);

return is_ordered(T->left)   && gt_tree(k, T->left)

&& is_ordered(T->right) && lt_tree(k, T->right);

}

TL TR

k

TL < k < TR

EMPTY


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Ordered Trees – III

 Can we do better than O(n2)?

 As we examine each key k,

keep track of its allowed range

o if lo < k < hi, then

 lo < kL < k for the key kL of its left child (if any)

 k < kR < hi for the key kR of its right child (if any)

o if k is the root, then –∞ < k < ∞

 For arbitrary keys,

o use entries as the bounds and entry_key to extract their key

o use key_compare to compare k with another key

o use NULL as –∞ and ∞

hilo

k


Even though we typically

don’t care about the cost

of specification functions

This assumes integer keys

NULL is a value of type entry

that is not a valid entry
48



Ordered Trees – III

 As we examine each key k,

keep track of its allowed range

 In code:

 Complexity: O(n)
 if T contains n nodes

owe test every node in the tree

bool is_ordered(tree* T, entry lo, entry hi)

//@requires is_tree(T);

{

// Code for empty tree

if (T == NULL) return true;

// Code for non-empty tree

key k = entry_key(T->data);

return (lo == NULL || key_compare(entry_key(lo), k) < 0)

&& (hi == NULL || key_compare(k, entry_key(hi)) < 0)

&& is_ordered(T->left, lo, T->data)

&& is_ordered(T->right, T->data, hi);

}

hilo

k


EMPTY

Check that lo < k < hi

Check that lo < kL < k

Check that k < kR < hi

Check that lo < k < hi

We carry around the range (lo, hi)

as additional parameters

49



Ordered Trees – III

 We need to update is_bst slightly

bool is_ordered(tree* T, entry lo, entry hi) { … }

bool is_bst(tree* T) {

return is_tree(T)

&& is_ordered(T, NULL, NULL);

}

hilo

k


Initially

lo  =  –∞

Initially

hi  = ∞

50



Inserting Entries
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Inserting into a BST

 Do the same steps we would do to search for this entry, 

and then put it where it should have been

 The code follows the possible shapes

of the tree 

void bst_insert(tree* T, entry e)

//@requires is_bst(T) && e != NULL;

{

// Code for empty tree

…

// Code for non-empty tree

…

}

12

42

6522

19

4

70

-2

inserting 5

5
EMPTY
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Inserting into an Empty BST

 We simply create a node for

the new entry

 Does this achieve what we want?

oNo: T is a copy of the caller’s tree

 changing T does not change the original

 We need to return the

new node to the caller

o bst_insert must return

a tree

void bst_insert(tree* T, entry e)

//@requires is_bst(T) && e != NULL;

{

// Code for empty tree

if (T == NULL) {

tree* R = alloc(tree);

R->data = e;

T = R;

}

// Code for non-empty tree

…

}

5

inserting 5

EMPTY

Sets left and

right to NULL

Alloc. Mem.Local Mem.

D
caller

bst_insert e

T

x

bst_insert(D, x);

Decommissioned

upon returning

R
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Inserting into an Empty BST

 We simply create a node for

the new entry and return it

 The returned tree must

be a valid BST

tree* bst_insert(tree* T, entry e)

//@requires is_bst(T) && e != NULL;

//@ensures is_bst(\result) && \result != NULL;

{

// Code for empty tree

if (T == NULL) {

tree* R = alloc(tree);

R->data = e;

return R;

}

// Code for non-empty tree

…

}

5

inserting 5

EMPTY

Sets left and

right to NULL Alloc. Mem.Local Mem.

D
caller

bst_insert

T

e

x

tree* E = bst_insert(D, x);

R

E

Decommissioned

upon returning
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Inserting in a Non-empty BST

 If an entry with the same key is present, we overwrite it

oWhen inserting in the left 

subtree, we reattach the 

tree returned by the 

recursive call

 the pointer is the same 

except if it was NULL

o and similarly on the right

tree* bst_insert(tree* T, entry e)

//@requires is_bst(T) && e != NULL;

//@ensures is_bst(\result) && \result != NULL;

//@ensures bst_lookup(\result, entry_key(e)) == e;

{

// Code for empty tree

if (T == NULL) {

tree* R = alloc(tree);

R->data = e;

return R;

}

// Code for non-empty tree

int cmp = key_compare(entry_key(e), entry_key(T->data));

if (cmp == 0) T->data = e;

else if (cmp < 0) T->left = bst_insert(T->left, e);

else { //@assert cmp > 0;

T->right = bst_insert(T->right, e);

}

return T;

}

EMPTY

We save the outcome of the

comparison in the variable cmp

• < 0 if k1 is smaller than k2

• 0 if k1 and k2 are the same

• > 0 if k1 is larger than k2

Additional postcondition
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Inserting into a BST

 We make bst_insert

more readable by

omoving the code that 

creates a new leaf 

into a helper function

o explicitly setting its 

children to NULL

tree* leaf(entry e)

//@requires e != NULL;

//@ensures is_bst(\result) && \result != NULL;

{

tree* T = alloc(tree);

T->data = e;

T->left = NULL;     // not necessary

T->right = NULL;   // not necessary

return T;

}

tree* bst_insert(tree* T, entry e)

//@requires is_bst(T) && e != NULL;

//@ensures is_bst(\result) && \result != NULL;

//@ensures bst_lookup(\result, entry_key(e)) == e;

{

// Code for empty tree

if (T == NULL) return leaf(e);

// Code for non-empty tree

int cmp = key_compare(entry_key(e), entry_key(T->data));

if (cmp == 0) T->data = e;

else if (cmp < 0) T->left = bst_insert(T->left, e);

else { //@assert cmp > 0;

T->right = bst_insert(T->right, e);

}

return T;

}

EMPTY

Refactoring code to make it

more readable is important

for maintainability
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BST Dictionaries
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Are we There Yet?

 Our target dictionary interface is

 So far, we have implemented lookup and insertion

// typedef ______* dict_t;

dict_t  dict_new()

/*@ensures \result != NULL; @*/ ;

entry dict_lookup(dict_t D, key k)

/*@requires D != NULL; @*/

/*@ensures \result == NULL

|| key_compare(entry_key(\result), k) == 0; @*/ ;

void dict_insert(dict_t D, entry e)

/*@requires D != NULL && e != NULL; @*/

/*@ensures dict_lookup(D, entry_key(e)) == e; @*/ ;

entry dict_min(dict_t D)

/*@requires D != NULL; @*/ ;

Library Interface

Like hash

dictionaries

… plus

find_min

// typedef ______* entry;

// typedef ______ key;

key entry_key(entry  e)

/*@requires e != NULL; @*/ ;

int key_compare(key k1, key k2) ;

Client Interface

with this client

interface
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Are we There Yet?

entry bst_lookup(tree* T, key k);

tree* bst_insert(tree* T, entry e);

 They do not match!

o bst_insert returns a tree* but

dict_insert does not return anything

oNULL is a valid BST but not a valid dictionary

// typedef ______* dict_t;

dict_t  dict_new()

/*@ensures \result != NULL; @*/ ;

entry dict_lookup(dict_t D, key k)

/*@requires D != NULL; @*/

/*@ensures \result == NULL

|| key_compare(entry_key(\result), k) == 0; @*/ ;

void dict_insert(dict_t D, entry e)

/*@requires D != NULL && e != NULL; @*/

/*@ensures hdict_lookup(D, entry_key(e)) == e; @*/ ;

entry dict_min(dict_t D)

/*@requires D != NULL; @*/ ;

Library Interface

?
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Implementing BST Dictionaries

 We can define a header that

contains a pointer to a tree

o and possibly other data

 and wrappers around

the BST functions
 they mediate between 

trees and dicts

oHere’s the specification function

for BST dictionaries

othe dictionary itself can’t be NULL

 this satisfies the dictionary interface

obut the underlying BST can

 that’s how we represent the empty dictionary

struct dict_header {

tree* root;

int size; // example of other data

};

typedef struct dict_header dict;

bool is_dict(dict* D) {

return D != NULL

&& is_bst(D->root);

}

ignoring

other data

12

42

6522

19

4

70

-2

root

size 9
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Implementing BST Dictionaries

 We define wrappers around the BST functions
 they mediate between the trees and dicts

Lookup Insertion

 Creating a dictionary

o allocates a header and

o sets the root to the empty BST

struct dict_header {

tree* root;

int size; // example of other data

};

typedef struct dict_header dict;

entry dict_lookup(dict* D, key k)

//@requires is_dict(D);

//@ensures \result == NULL

|| key_compare(entry_key(\result), k) == 0;

{

return bst_lookup(D->root, k);

}

void dict_insert(dict* D, entry e)

//@requires is_dict(D) && e != NULL;

//@ensures dict_lookup(D, entry_key(e)) == e;

//@ensures is_dict(D);

{

D->root = bst_insert(D->root, e);

}

dict* dict_new()

//@ensures is_dict(\result);

{

dict* D = alloc(dict);

D->root = NULL;

return D;

}root

… …

dict_new creates the empty dictionary
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Implementing BST Dictionaries

 We are only left with implementing find_min

 The abstract client dict_t is just dict*

 That’s it!

struct dict_header {

tree* root;

int size; // example of other data

};

typedef struct dict_header dict;

entry dict_min(dict* D)

//@requires is_dict(D);

{

if (D->root == NULL) return NULL;

tree* T = D->root;

while (T->left != NULL)

T = T->left;

return T->data;

}

12

42

6522

19

4

70

-2

typedef dict* dict_t;


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The BST Dictionary Library

// BSTs and auxiliary functions

typedef struct tree_node tree;

struct tree_node {

entry data; // data != NULL

tree* left;

tree* right;

};

// Representation invariant

bool is_bst (tree* T)  { … }

// BST auxiliary functions

entry bst_lookup(tree* T, key k)

//@requires is_bst(T);

//@ensures \result == NULL

|| key_compare(entry_key(\result), k) == 0;

{ … }

tree* bst_insert(tree* T, entry e)

//@requires is_bst(T) && e != NULL;

//@ensures is_bst(\result) && \result != NULL;

//@ensures bst_lookup(\result, entry_key(e)) == e;

{ … }

// Implementing the dictionary

// Concrete type

struct dict_header {

tree* root;

};

typedef struct dict_header dict;

// Representation invariant

bool is_dict (dict* D) {

return D != NULL && is_bst(D->root);

}

Im
p

le
m

e
n

ta
tio

n

// Implementation of interface functions

dict* dict_new()

//@ensures is_dict(\result);

{

dict* D = alloc(dict);

D->root = NULL;

return D;

}

entry dict_lookup(dict* D, key k)

//@requires is_dict(D);

//@ensures \result == NULL

|| key_compare(entry_key(\result), k) == 0;

{

return bst_lookup(D->root, k);

}

void dict_insert(dict* D, entry e)

//@requires is_dict(D) && e != NULL;

//@ensures dict_lookup(D, entry_key(e)) == e;

//@ensures is_dict(D);

{

D->root = bst_insert(D->root, e);

}

entry dict_min(dict* D)

//@requires is_dict(D);

{

if (D->root == NULL) return NULL;

tree* T = D->root;

while (T->left != NULL)

T = T->left;

return T->data;

}

// Client type

typedef dict* dict_t;

How

// typedef ______* dict_t;

dict_t  dict_new()

/*@ensures \result != NULL; @*/ ;

entry dict_lookup(dict_t D, key k)

/*@requires D != NULL; @*/

/*@ensures \result == NULL

|| key_compare(entry_key(\result), k) == 0; @*/ ;

void dict_insert(dict_t D, entry e)

/*@requires D != NULL && e != NULL; @*/

/*@ensures hdict_lookup(D, entry_key(e)) == e; @*/ ;

entry dict_min(dict_t D)

/*@requires D != NULL; @*/ ;

Library Interface

// typedef ______* entry;

// typedef ______ key;

key entry_key(entry  e)

/*@requires e != NULL; @*/ ;

int key_compare(key k1, key k2) ;

Client Interface

What63



Using BST Dictionaries

 We can now use this new implementation of dictionaries 

for our application

o once we write an appropriate client definition file

 We could easily make this library fully generic

# cc0 -d produce.c0 bstdict.c0 produce-main.c0

Linux Terminal

Library

file bstdict.c0

Application 

file produce-main.c0

Client definitions

file produce.c0
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 Develop a data structure that has guaranteed O(log n) 

worst-case complexity for lookup, insert and find_min
always!

 We have succeeded

o or have we …

Target

data structure

lookup O(log n)

insert O(log n)

find_min O(log n)

Recall our Goal






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