Binary Search Trees

Reflecting on Dictionaries

Cost

® Complexity of various implementations of dictionaries
O assuming it contains n entries

Unsorted array Array sorted by key Linked list Hash Table
lookup O(n) O(log n) O(n) 9e(a192
insert O(1) o(n) O(1) o(1)

amortized average and amortized

® Hash dictionaries are clearly the best implementation
» O(1) lookup and insertion are hard to beat!

Cost

® Hash dictionaries are clearly the best implementation
» O(1) lookup and insertion are hard to beat!

or are they?

® [t's O(1) average

Always read

O we could be (very) unlucky and incur an O(n) cost the fine prints!
> e.g., if we use a poor M

® [t's O(1) amortized
O from time to time, we need to resize the table

» then the operation costs O(n) _ —— _
Using hash dictionaries is too risky

or not good enough
for applications that require a

® Operations like finding the entry with quaranteed (shorf) response ime

the smallest key cost O(n) A
O we have to check every entry But they are great for

applications that don’t
have such constraints

Goal

® Develop a data structure that has guaranteed O(log n)
worst-case complexity for lookup, insert and find_min

» always!

o O(1) would be great but we can'’t get that

Returns the
entry with the
smallest key

Unsorted | Array sorted | ;4o jist Hash Table / \
array by key
lookup | O(n) O(log n) o(n) o) / O(log n) \
insert gogti]z-e)d O(n) O(l) averaggn(d];rlortized O(Iog n)
find_min O(n) O(1) O(n) O(n) O(log n)

Getting Started

® The only O(log n) so far is lookup in sorted arrays

Unsorted

Array sorted

Linked list Hash Table
array by key
lookup | O(n) O(n) o) O(log n)
insert a(m)ogti]z-e)d O(n) O(l) averaggn(d];rlortized O(Iog n)
find_min | O(n) 0(1) O(n) O(n) O(log n)

® That's binary search
O Let’s start there

Searching Sorted Data

Searching for a Number

® Consider the following sorted array

0 1 2 3 (a) 5 6 7 8

-2 0 4 7 12 19 22 42 65

® \When searching for a number x using binary search,
we always start by looking at the midpoint, index 4

12

_
We always look
at this element

® Then, 3 things can happen
O x =12 (and we are done)
OX<12
OX>12

Searching for a Number

® |f x < 12, the next index we look at Is necessarily 2
® |f x > 12, the next Index we look at Is necessarily 7

12
f::;f;////// \\\\\\\\\\\iij;fi*

4 42 ﬁ Next, we may look

at these elements
0 1 2 3 5 6\6) 8

-2 0 4 7 12 19 22 42 65

Searching for a Number

® Assume x < 12, so we look at 4

OIf x =4, we are done

O if x <4, we necessarily look at O
O If x > 4, we necessarily look at 7

12

if
4
|fx</

0

\‘x>4
2

N

42

|

Then, we may look
at these elements

0

v

12

19

22

42

65

10

Searching for a Number

® Assume X <4, sowe look at 0
OIf x =0, we are done

O If x <0, we necessarily look at -2

12

N

Then, we may look
at this element

4 42
|fx</ \‘x>4
0 7
ifx<0/
|

-2
0 (1) 2 3 (4) 5 8

2 0 4 I 12 19 22 42 65

Searching for a Number

® \We can map out all possible sequences of elements

binary search may examine, for any x

This is called a decision tree;
at every step, it tells us how
to decide what to do next

11

X

12

4
|fx</

\‘x>4

T

fx>12)7/

42
|fx<4/

We are essentially
hoisting the array by
Its midpoint, its two sides
by their midpoint, etc

N‘x>42
65

0 7 22
If X < O/ If X < 22/
) 19
0 1 2 3 5 8
2 0 4 7 12 19 22 42 65

12

Searching for a Number

® An array provides direct access to all elements
O This is overkill for binary search
O At any point, it needs direct access to at most two elements

12
f:(/ N
4 42
|fx</ \‘x>4 |fx<4/

N‘x>42

0 7 22 65
If X < (/ If X < 22/
) 19
0 1 2 3 5 8
-2 0 4 7 12 19 22 42 65

13

Searching for a Number

® \We can achieve the same access pattern by pairing up

each element with two pointers

O one to each of the two elements that may be examined next

/O

12

L N

,

/

-2

® \We are losing direct access to arbitrary elements,

42

,

/

19

Arrays gave us
more power
than needed

O but It retains access to the elements that matter to binary search

14

Towards an Implementation

® \We can capture this idea with this type declaration:

typedef struct tree_node tree;
struct tree_node {

tree* |eft; L
int data; >I: note tha'F Itis a struct tree_node
recursive

tree* right; | left _data _right

or simply a node

I3 A |12 e

O a data element

O pointers to the 2 plala » a2«
elements we may
look at next / \ / \
f 0 7 f 22 65
® Thisiscalled / /
a node 2 19

® This arrangement of data in memory is called a tree

15

Constructing this Tree

® |et's build the first
few nodes of this
example

tree* T = alloc(tree);
T->data = 12;

T->left = alloc(tree);
T->left->data = 4;
T->right= alloc(tree);
T->right->data = 42;
T->left->left = alloc(tree);

left data right

typedef struct tree_node tree;
struct tree_node {

tree* left;

int data;

tree* right;

2

/O

12

L

T~

42

16

tree* left;

The End of the Line e

® \What should
the blank
left/right
flelds
point

T

I3

typedef struct tree_node tree;
struct tree_node {

left data right

/0120\

to?

O NULL

\ /

65

19

» each sequence of left/right pointers works like a NULL-terminated list

O a dummy node
» not very useful here

X

—

We used dummy nodes to get
direct access to the end of a list

® Searching for 7
O/ <12:go left
O 7 > 4: go right
o7/ =7:found

Searching

/

Follow the pointer
In the left field

d

left data right

/.

12

'

® \We are doing the same steps as binary search

plele

19

® Starting from an n-element array, the cost is O(log n)

17

AN

If the tree Is obtained
as in this example

18

® Searching for 5
O 5 <12:go left
O 5 > 4: go right

05 <7:.go left
» nowhere to go

O not there

Searching

left data right

/.

12

'

® \We are doing the same steps as binary search

plele

19

® Starting from an n-element array, the cost is O(log n)

AN

If the tree Is obtained
as in this example

Recall our Goal

® Develop a data structure that has guaranteed O(log n)
worst-case complexity for lookup, insert and find_min

» always!
Target
O lookup has cost O(log n) data structure
/\
in this setup lookup O(log n)
insert O(log n)
find_min O(log n)

O What about insert and find_min?

® Inserting 5
O 5 <12:go left
O 5 > 4: go right

05 <7:.go left
» put it there

Insertion

left data right

/.

12 | &

plele

19

® \We are doing the same steps we would do to search for It,
and then put it where it should have been

O so that we find it when searching for it next time

® For an n-element array, this costs O(

20

_—

We couldn’t get this with sorted arrays

g e

If the tree Is obtained
as in this example

Finding the Smallest Key

left data right

® Keep going left |12 e
O left from 12 to 4 / \
O left from 4 to O STalx STala
O left from O to -2 (/ \ / \
» nothing to its left
O the smallest PO 7 p |22 65

key Is -2

v
(2] 19

® Starting from an n-element array, we can go left at most
O(log n) times
O The cost is O(log n)

If the tree Is obtained
as in this example

22

Recall our Goal

® Develop a data structure that has guaranteed O(log n)
worst-case complexity for lookup, insert and find_min

» always!

O lookup, insert and find_min
all have cost O(log n)

/\

in this setup

Target
data structure
lookup O(log n)
insert O(log n)
find_min O(log n)

<\

23

Trees

Terminology

® This arrangement of data is called a (binary) tree
O eachitemin it is called a node
O the part of a tree hanging from a node is called a branch

» or subtree T
| / . K\
/N /N
atree =
f 0] 4 , 22 65
/ /
2 19

|

a branch
24 (or subtree)

Terminology

® The node at the top Is called the root of the tree
O the nodes at the bottom are the |leaves of the tree
O the other nodes are called inner nodes

Trees grow upside down
_ !the root in Computer Science!

ot LN N

,O 7 ,2

a leaf

25

Terminology

® Given any node
O the node to its left is its left child
O the node to its right is its right child

O the node above it is its parent .. and Computer Science
mixes botanical trees
1 and family trees!

ﬂ/] ‘\\
Its left Q /f - .\\ V[S/I‘ight child /f “ .\\
f 0] 4 f 22 65

/ /

their parent
-2 19

Concrete Tree Diagrams

® \When drawing trees, we generally omit the details of the
memory diagrams

O draw just the data in a node
» not the pointer fields

O and the connection to its children !the root

» we always draw the root at the top

a leaf

28

Pictorial Abstraction

® \We will often reason about trees that are arbitrary
O their actual content is unimportant, so we abstract it away

O We draw a generic tree as ———the root is here

a triangle

(if the tree is not empty)

o We represent the empty tree

by simply writing “Empty” Empty

What do Trees Look Like? o

® Abstract trees come In many shapes

1L i
the a tree a root a tree a tree and
empty with just and two with just the with just the many
tree the root children left subtree right subtree more

® \When working with trees, we need to account for all these
possiblilities
O we will forget some

® s there a simpler description?

What Trees Look Like

® A tree can be
O either empty EMPTY

O or a root with
a tree on its left and
a tree on its right

® Every tree reduces to these two cases

EMPTY O O/Q\O

the atree a root atree
empty with just and two with just the
30 tree the root children left subtree

atree
with just the
right subtree

31

What Trees Look Like

® A tree can be
O either empty EMPTY

O or a root with
a tree on its left and
a tree on its right

® \We only need to consider these two cases when
O writing code about trees
O reasoning about trees

A Minimal Tree Invariant

® \We only need to consider these two cases when

writing code about trees

® |et's apply this to write a basic invariant
about trees of entries

O Just check that the
data field is never NULL

EMPTY L
L

AN

bool is_tree(tree* T) {
_ // Code for empty tree
It (T == NULL) return true;

,, // Code for non-empty tree
return is_tree(T->left)
&& T->data = NULL
&& is_tree(T->right);

}

32

typedef struct tree_node tree;
struct tree_node {

tree* left:
—entry data; /= NULL __>

tree* right; /\

I3
/

A

Recall we are using trees to implement dictionaries:
« We store entries in nodes
« valid entries are non-NULL

® This is a recursive function
O the base case Is about the empty tree

O the recursive case Is about every
tree that is not empty
» with a root
» and two subtrees

33

A Minimal Tree Invariant

® \We just check that the

data field is never NULL Y

_

AN

.

(

bool is_tree(tree* 1) {
| // Code for empty tree
It (T == NULL) return true;

,, // Code for non-empty tree
return is_tree(T->left)
&& T->data = NULL
&& is_tree(T->right);

}

® But trees have constraints on their structure

O a hode does not point to an ancestor
O a node has at most one parent

IS left as an exercise

® \What additional constraints on contents do we need to use

trees to implement dictionaries?

How to check them /

X

34

Binary Search Trees

35

Binary Search Trees

® \What additional constraints on the contents do we need to
use trees to implement dictionaries?

® Because lookup emulates binary search, the data in the
tree need to be ordered

O smaller values on the left
O bigger values on the right

® A tree whose nodes are ordered iIs called a
binary search tree

The BST Invariant

® A tree whose nodes are
ordered Is called a
binary search tree

® \We can write a specification function that check BSTs

bool is_bst(tree* T) { . .
return is_ tree(T) _/]A BST is a valid tree ...
! &&1s_ordered(T):—=—— \whose nodes are ordered

/\

We will see later
how to implement this

37

Looking Up Keys

Implementing lookup

® | everage the structure of the tree! looking up 19

O
O

empty: the key is not found
non-empty:
» If root contains the key, found

> if key is smaller than the root’s go left

> if key is bigger than the root’s

® |In code:

EMPTY LU
L

AN

38

entry bst_lookup(tree* T, key k)

go right

l/@requires is_bst(T);

{
/I Code for empty tree
| I (T == NULL) return NULL;

I/l Code for non-empty tree

If (k == T->data) return T->data;

If (k < T->data) return bst_lookup(T->left, k);
l/@assert k > T->data;

% we go left by recursing on the left subtree

| lookup works only on BST’s

return bst_lookup(T->right, k);

}

we go right by recursing on the right subtree

Implementing lookup

entry bst_lookup(tree* T, key k) looking up 19
l/@requires is_bst(T);
{

/I Code for empty tree

EMPTY L> If (T == NULL) return NULL;
=

// Code_for non-empty tree
' aDreturn T->data;
cturn bst_lookup(T->left, k);

\ /[
\%
S AA
D
7
%)
o)

return bst_lookup(T->right, k);

}

® But < and > work only for integers!
O also, keys and entries are not the same thing in general

® \We want a dictionary that uses trees
O to store entries of any type
O and look them up using keys of any type

40

Implementing looku

® But < and > work only for integers!
O also, keys and entries are not the same thing

® \We want a dictionary that uses trees
O to store entries of any type
O and look them up using keys of any type

P

In general

entry
key

N\

® \\We need functions that

just like for hash dictionaries

O extract the key from an entry: entry key
O compare two keys: key compare

/

® |t Is for the client to decide on the type of keys and entries

O So the client shall provide these functions

A Client Interface

® The BST dictionary needs a client interface that
O requests the client to provide types entry and key
O declares a function to extract the key of an entry
O declares a function to compare two keys

(Client Interface o)

/] typedef * entry;

/] typedef key; returns
e < 0If K1 is smaller than k2

key entry_key(entry) :

[*@requires e = NULL; @* ; / * 0ifkland k2 are the same

« > 0if k1 is larger than k2

int key_compare(key k1, key k2) : %(

L

® \We could make it fully generic
O but let’s keep things simple

41

Implementing lookup

® With it, we can write a general implementation

EMPTY

_

AN

.

(

42

entry bst_lookup(tree* T, key k)
l/@requires is_bst(T);
l/@ensures \result == NULL
|| key_compare(entry key(\result), k) == 0;

{

| /I Code for empty tree We save the outcome of the
if (T == NULL) return NULL; comparison in the variable
/I Code for non-empty tree =T

> : .
int = key_compare(k, entry_key(T->data)); * < O!f k1 is smaller than k2
if (cmp == 0) return T->data; found! 0if k1l and k2 are the same
if (cmp < 0) return bst_lookup(T->left, k); L1 lof « > 0if k1 is larger than k2
l/@assert cmp > 0; go lett

|

return bst_lookup(T->right, k);

}

go right

O We can now even provide a useful postcondition -

» either lookup returns NULL
Q noentryin T has key k

just like for
hash dictionaries

» or the key of the returned entry is the same as k

43

Checking Ordering

Ordered Trees — |

® The data in every node must be © ©
O bigger than its left child’s
o smaller than its right child

® |n code:

EMPTY

L

AN

44

.

(

Ll /I Code for empty tree /

>

bool is_ordered(tree* 1)
l/@requires is_tree(T);
{

It (T == NULL) return true;

/I Code for non-empty tree
return (T->left == NULL || T->left->data < T->data) —
&& (T->right == NULL || T->data < T->right->data)

[\

X<y<z

JThe empty tree is ordered

If T has a left child, it must be smaller

&& is_ordered(T->left)

&& is_ordered(T->right);
}

The left subtree must be ordered

For simplicity,
assume int data

N

X

and similarly
on the right

45

Ordered Trees — |

® The data in every node must be

O bigger than its left child’s
o smaller than its right child

® |s this enough?
O This is true of this tree @

lookup cannot
find 88 and 6

@O @ © &

O but it I1Is not ordered

X

® T0 be ordered, we want T, <y < Tg %

This is a global constraint:
we need to check the whole subtrees

onotx<y<z

This is a local constraint:
it only checks the children of each node

46

Ordered Trees — ||

® The data in every node must be

O bigger than everything in its left subtree
O smaller than everything in its right subtree

® \We need two hel
O gt _tree that chec

ner functions

O It tree that chec

KS k< Tk

bool gt_tree(key k, tree* T)
l/@requires is_tree(T);
{

empTy Ll // Code for empty tree

T if (T == NULL) return true;

}

return key _compare (k, entry_key(T->data)) >0

|\> /I Code for non-empty tree
(&& gt_tree(k, T->left)
&& gt_tree(k, T->right);

/| checks that T < k

It tree is similar

Ksk>T, (e, T,

T <k<Tg

< k)

® gt tree has cost O(n)
» If T contains n nodes

O because it compares k
with every node in T

7

v

a7

® The data in every node must be

Ordered Trees — ||

O bigger than everything In its left subtree
O smaller than everything in its right subtree

In code:

bool gt _tree(key k, tree* T){...} // O(n)
bool It _tree(key k, tree* T){...} // O(n)

bool is_ordered(tree* 1)
l/@requires is_tree(T);
{

L| // Code for empty tree

T if (T == NULL) return true;

k> /[Code for non-empty tree
key i« = entry_key(T->data);
(return is_ordered(T->left) && gt _tree(k, T->left)
&& is_ordered(T->right) && It_tree(k, T->right);

}

T <k<Tg

® s ordered costs O(n?)
» If T contains n nodes

O because it calls gt _tree
and It tree on each node

v

48

Ordered Trees — |l

® Can we do better than O(n?)? —————— Even though we typicaly

® As we examine each key Kk,

don’t care about the cost
of specification functions

keep track of its allowed range

oif lo < k < hi, then oo
» o <k <k forthe key k, of its left child (if any)
» k < kg < hi for the key kg of its right child (if any) /\
O If k Is the root, then —~ < k < <0

BN

This assumes integer keys

® For arbitrary keys,

/ O,

O use entries as the bounds and entry key to extract their key
O use key compare to compare k with another key

o use NULL as —~ and © ——

NULL is a value of type entry
that is not a valid entry

Ordered Trees — |l

lo
® As we examine each key Kk,
keep track of its allowed range
We carry around the range (o, hi)
® |In code: as additional parameters / O,

bool is_ordered(tree* T, entry o, entry hi)
l/@requires is_tree(T);

{
/| Code for empty tree
— If (T == NULL) return true,

-

I\ /| Code for non-empty tree
~ key i = entry_key(T->data):
return (lo == NULL || key_compare(entry_key(lo), k) < 0)7
&& (hi == NULL || key_compare(k, entry_key(hi)) < 0)

—

hi

Check that lo < k < hi

&& is_ordered(T->left, lo, T->data)

'Check that lo < k <k

|

&& is_ordered(T->right, T->data, hi);

}

® Complexity: O(n)
» If T contains n nodes

O we test every node In the tree
49

Check that k < kg < hi

Ordered Trees — |l

o

® \We need to update is_bst slightly

bool is_ordered(tree* T, entry lo, entry hi) { ... }
bool is_bst(tree* T) {
return is_tree(T)

&& is_ordered(T, NULL, NULL);

| // \
Initially Initially
lo = — hi = «

51

Inserting Entries

52

Inserting into a BST

® Do the same steps we would do to search for this entry,
and then put it where it should have been

® The code follows the possible shapes
of the tree

EMPTY

2

/<O7\>

U

void bst_insert(tree* T, entry)
l/@requires is_bst(T) && e '= NULL;

{
/[Code for empty tree

—

/I Code for non-empty tree

}

inserting 5

53

Inserting Into an Empty BST

® \We simply create a node for inserting 5

the new entry

void bst_insert(tree* T, entry e)
l/@requires is_bst(T) && e '= NULL;
{

EMPTY

Ll // Code for empty tree

T if (T == NULL) {

tree* = = alloc(tree); Sets left and
R->data = €; right to NULL

T=R;
}

// Code for non-empty tree

}

We need to return the
new node to the caller

O bst_insert must return
a tree

Ui

’ N
| 5 I
\ /
SN

® Does this achieve what we want?

O No: T is a copy of the caller’s tree
» changing T does not change the original

bst_insert(D, x);

N Local Mem.

caller
D | it

o [of——{)

Alloc. Mem.

7

Decommissioned
upon returning

—_— —_— —_— —_— | — —_— —_— —_— —_—

-

Inserting Into an Empty BST

® \We simply create a node for inserting 5
the new entry and return it (5

(tree*))st_insert(tree* , entry e)

//@requi i = = NI |-
@ensures is_bst(\result) && \result '= NULL, LD

{

A

L2 >|/]f 8035 fNOLrJEBp{ty ree (iree* E =bst_insert(D, X);
tree* R = alloc(tree); Sets left and
R->Iita = e right to NULL Local Mem. Alloc. Mem.

caller

1

} D| e+ 1
|

/| Code for non-empty tree x | ® ;
}... I
E | & I

|

I

® The returned tree must

be a valid BST /

Decommissioned

upon returning

55

Inserting In a Non-empty BST

® |f an entry with the same key Is present, we overwrite it

tree* bst_insert(tree* T, entry)

l/@requires is_bst(T) && e '= NULL;

l/@ensures is_bst(\result) && \result '= NULL;
l/@ensures bst_lookup(\result, entry key(e)) == e;

{

EMPTY

|>> /I Code for empty tree

If (T == NULL) {
tree* R = alloc(tree);
R->data = €;
return R;

}

L /I Code for non-empty tree
int = key compare(entry _key(e), entry key(T->data));
if (cmp == 0) T->data = e;

else if (cmp < 0) T->left = bst_insert(T->left, e);

N/

else { //@assert cmp > 0O;
T->right = bst_insert(T->right, e);
}

return T;

}

/

Additional postcondition

/

\\

e < 0if k1 is smaller than k2
Oif k1 and k2 are the same
« > 0if k1 is larger than k2

2

We save the outcome of the

comparison in the variable

\\

O When inserting Iin the left
subtree, we reattach the
tree returned by the
recursive call

» the pointer is the same
except if it was NULL

O and similarly on the right

56

Inserting into a BST

EMPTY

L

tree* leaf(entry e)

l/@requires e != NULL;

l/@ensures is_bst(\result) && \result = NULL;

{
tree* T = alloc(tree);
T->data = €;
T->left = NULL;
T->right = NULL;
return T,

\

tree* bst_insert(tree* T, entry e)

l/@requires is_bst(T) && e '= NULL;

l/@ensures is_bst(\result) && \result = NULL;
l/@ensures bst_lookup(\result, entry_key(e)) == e;

{

// not necessary
// not necessary

Ll /I Code for empty tree
if (T == NULL) retur

L /I Code for non-empty tree

if (cmp == 0) T->data = e;
else if (cmp < 0) T->left = bst_insert(T->left, e);
else {//[@assert cmp > O;
T->right = bst_insert(T->right, e);
}

return T;

int = key_compare(entry_key(e), entry_key(T->data));

® \We make bst_insert
more readable by

O moving the code that
creates a new leaf
iInto a helper function

O explicitly setting its
children to NULL

/N

Refactoring code to make it
more readable is important
for maintainability

57

BST Dictionaries

Are we There Yet?

® Our target dictionary interface Is

(Library Interface 6
Il typedef * dict_t;
- dict_t dict_new()
l_‘lk_e has_h [*@ensures \result I= NULL; @*/ ;
dictionaries
entry dict_lookup(dict_t D, key k)
[*@requires D != NULL; @*/
[*@ensures \result == NULL
|| key_compare(entry_key(\result), k) == 0; @*/;
void dict_insert(dict_t D, entry e)
[*@requires D !I= NULL && e = NULL; @*/
[*@ensures dict_lookup(D, entry _key(e)) == e; @*/ ;
plu_s entry dict_min(dict_t D)
find_min ? I*@requires D = NULL; @*/ : I)
_ S

with this client
interface

i

Client Interface

<)

I/ typedef
I/ typedef

* entry;

key;

key entry _key(entry)
[*@requires e != NULL,

int key_compare(key k1, key k2) ;
.

@*/;

® So far, we have implemented lookup and insertion

58

59

Are we There Yet?

entry bst_lookup(tree* T, key k);

st_insert(tree* , entry e);

® They do not match!
O bst_Insert returns a tree* but

Library Interface 6
/] typedef * dict_t;
dict_t_dict_newg
4_/*@ensures \result 1= NULL: > @*/ ;
entry dict | ict key k)
a_/*@requires D = NULL, @*/
[*@ensures \result == NULL
|| key_compare(entry key(\result), k) == 0; @*/;
QuoiDict_insasiaict 10, entry <)
a_/*@requires D !I= NULL @ e |= NULL; @*/
[*@ensures hdict_lookup(D, entry _key(e)) == ¢; @* ;
entry dict_min(dict
a_/*@requires D '= NULL; > @*/ ; I)
. S

dict_insert does not return anything
O NULL is a valid BST but not a valid dictionary

Implementing BST Dictionaries

® \We can define a header that et diet header {
Contalns a p()lnter to a tree it;?es’;zf:;Ot/;/ example of other data
O and pOSSiny Other data i;/pedef struct dict_header dict;
® and wrappers around i

the BST functions | 9

» they mediate between
frees and dicts

O Here’s the specification function
for BST dictionaries

— Othe dictionary itself can’t be NULL
bool is_dict(dict* D) { _ o o _
return D 1= NULL » this satisfies the dictionary interface
&& is_bst(D->root);]
b O but the underlying BST can
" ignoring » that’'s how we represent the empty dictionary
other data

60

61

Implementing BST Dictionaries |:

struct dict_header {
tfree* root;
int size; // example of other data

typedef struct dict_header dict;

® \We define wrappers around the BST functions
» they mediate between the trees and dicts

Lookup

Insertion

entry dict_lookup(dict* D, key k)
l/@requires is_dict(D);
[[@ensures \result == NULL

{
}

return bst_lookup(D->root, K);

|| key_compare(entry key(\result), k) == 0; l/@ensures is_dict(D);

void dict_insert(dict* D, entry e)
//@requires is_dict(D) && e '= NULL;
//@ensures dict_lookup(D, entry _key(e)) == ¢;

{
}

D->root = bst_insert(D->root, e);

® Creating a dictionary
O allocates a header and

O sets the root to the empty BST S rmaie NULL:

root '__H'I

e

dict* dict_new()
//[@ensures is_dict(\result);

{
dict*) = alloc(dict);

return D;

}

dict_new creates the empty dictionary

Implementing BST Dictionaries

® \We are only left with implementing find_min

entry dict_min(dict* D)
l/@requires is_dict(D);
{

If (D->root == NULL) return NULL;

tree* T = D->root;

while (T->left I= NULL)

T = T->left;
return T->data;

}

® The abstract client dict tis just dict*

typedef dict* dict_t;

® That's it! v

62

struct dict_header {
tree* root;
int size; // example of other data

5
typedef struct dict_header dict;

The

BST Dictionary Library

/[BSTs and auxiliary functions
typedef struct tree_node tree;
struct tree_node {
entry data;

tree* left;

tree* right;

%

// data '= NULL

/I Representation invariant
bool is_bst (tree* T) {...}

// BST auxiliary functions
entry bst_lookup(tree* T, key k)
/l@requires is_bst(T);
/l@ensures \result == NULL
|| key_compare(entry_key(\result), k) == 0;
{...}

tree* bst_insert(tree* T, entry €)

ll@requires is_bst(T) && e '= NULL;

l/@ensures is_bst(\result) && \result '= NULL;
l/@ensures bst_lookup(\result, entry _key(e)) == e;

(.}

/l Implementing the dictionary
/I Concrete type

struct dict_header {

tree* root;

Ji
typedef struct dict_header dict;

/I Representation invariant
bool is_dict (dict* D) {

return D = NULL && is_bst(D->root);
}

/I Implementation of interface functions
dict* dict_new()
ll@ensures is_dict(\result);
{
dict* D = alloc(dict);
D->root = NULL,
return D;

}

entry dict_lookup(dict*
ll@requires is_dict(D);
/l@ensures \result == NULL

|| key_compare(entry_key(\result), k) ==
{

return bst_lookup(D->root, k);

}

, key k)

void dict_insert(dict* D, entry €)
ll@requires is_dict(D) && e '= NULL;
ll@ensures dict_lookup(D, entry_key(e)) == e;
ll@ensures is_dict(D);
{

D->root = bst_insert(D->root, e);

}

entry dict_min(dict* D)
l/@requires is_dict(D);
{
If (D->root == NULL) return NULL;
tree* T = D->root;
while (T->left I= NULL)
T = T->left;
return T->data;

}

/Il Client type
typedef dict* dict_t;

uonejuswa|duw]

(Client Interface [
Il typedef * entry;
Il typedef key;
key entry_key(entry)
[*@requires e '= NULL; @* ;
int key_compare(key k1, key k2) ;
. 9,
Library Interface 8
Il typedef *dict_t;
dict_t dict_new()
[*@ensures \result '= NULL; @* ;
entry dict_lookup(dict_t D, key k)
[*@requires D '= NULL; @*/
[*@ensures \result == NULL
|| key_compare(entry_key(\result), k) == 0; @?*/;
void dict_insert(dict_t D, entry €)
[*@requires D '= NULL && e '= NULL; @*/
[*@ensures hdict_lookup(D, entry_key(e)) == €; @*/ ;
entry dict_min(dict_t D)
@~/ ;

N

63

How

[*@requires D !'= NULL;
_

What

Using BST Dictionaries

® \We can now use this new implementation of dictionaries
for our application

O once we write an appropriate client definition file

Client definitions Application
file produce.cO file produce-main.cO
Linux Terminal

ccO -d produce.cO bstdict.cO produce-main.cO

Library
file bstdict.cO

® \We could easily make this library fully generic

64

65

Recall our Goal

® Develop a data structure that has guaranteed O(log n)
worst-case complexity for lookup, insert and find_min

» always!
Target
® \We have succeeded data structure
lookup O(log n) \/
insert O(log n) \/
find_min O(log n) \/

O or have we ...

