AVL Trees

Cost of the BST Operations

1

Our Goal

 Develop a data structure that has guaranteed O(log n) worst-case complexity for lookup, insert and find_min
 > always!

	Unsorted array	Array sorted by key	Linked list	Hash Table	
lookup	O(n)	O(log n)	O(n)	O(1) average	O(log n)
insert	O(1) amortized	O(n)	O(1)	O(1) average and amortized	O(log n)
find_min	O(n)	O(1)	O(n)	O(n)	O(log n)

• Do binary search trees achieve this?

Complexity

• Do lookup, insert and find_min have O(log n) complexity?

○ But we are interested in the **worst-case** complexity

 Do lookup, insert and find_min have O(log n) complexity for every BST?

Complexity

 Do lookup, insert and find_min have O(log n) complexity for every BST?

 Consider this sequence of insertions into an initially empty BST

Back to Square One

 Develop a data structure that has guaranteed O(log n) worst-case complexity for lookup, insert and find_min
 > always!

	Unsorted array	Array sorted by key	Linked list	Hash Table	BST	
lookup	O(n)	O(log n)	O(n)	O(1) average	O(n)	O(log n)
insert	O(1) amortized	O(n)	O(1)	O(1) average and amortized	O(n)	O(log n)
find_min	O(n)	O(1)	O(n)	O(n)	O(n)	O(log n)

 BSTs are not the data structure we were looking for O What else?

Balanced Trees

An Equivalent Tree

 Is there a BST with the same elements that yields O(log n) cost?

• How about this one?

○ It contains the same elements,

 \circ it is sorted,

○ but the nodes are arranged differently

Reframing the Problem

- Depending on the tree, BST lookup can cost
 O(log n) or
 O(n)
- Is there something that remains the same cost-wise?
 - Can we come up with a cost parameter that gives the same complexity in every case?
 - The cost of lookup is determined by how far down the tree we need to go
 - if the key is in the tree, the worst case is when it is in a leaf
 - if it is not in the tree, we have to reach a leaf to say so

 The number of nodes on the longest path from the root to a leaf is called the **height** of the tree

Reframing the Problem

lookup for a tree of height h has complexity O(h)
 always!

○ same for insert and find_min

• But ...

 \circ *h* can be in *O*(*n*) or in *O*(*log n*)

 \succ where *n* is the number of nodes in the tree

The Height of a Tree

- The length of the longest path from the root to a leaf
- Let's define it mathematically

Balanced Trees

• On a balanced tree, lookup, insert and find_min cost O(log n)

Self-balancing Trees

New goal:

o make sure that a tree remains balanced as we insert new nodes

... and continues to be a valid BST

• Trees with this property are called self-balancing

○ There are lots of them

We will study this one

- Red-black trees
- Splay treesB-trees

> AVL trees

D-IIE

▶ ...

Why so many?

- there are many ways to guarantee that the tree remains balanced after each insertion
- some of these tree types have other properties of interest

Self-balancing Trees

"the tree stays balanced after each insertion" is too vague
 ∩ h ∈ O(log n) is an asymptotic behavior
 > we can't check it on any given tree

Recall the definition

 \circ More fundamentally, h needs to be a function in $h \in O(\log n)$

Self-balancing Trees

"the tree stays balanced after each insertion" is too vague
 h ∈ *O*(*log n*) is an asymptotic behavior
 w e can't check it on any given tree

• We want algorithmically-checkable constraints that

- 1. guarantee that $h \in O(\log n)$
- 2. are cheap to maintain
 - ➤ at most O(log n)

We do so by imposing an additional representation invariants on trees

 \succ on top of the ordering invariant

 \bigcirc this balance invariant, when valid, ensures that $h \in O(\log n)$

A Bad Balance Invariant

- Require that
 - \odot (the tree be a BST)
 - all the paths from the root to a leaf have height either h or h-1
 - the leaves at height *h* be on the left-hand side of the tree
- Does it satisfy our requirements?
 - 1. guarantees that $h \in O(\log n)$
 - Definitely!
 - 2. cheap to maintain at most O(log n)
 - ≻ Let's see

A Bad Balance Invariant

We changed all the pointers to maintain the balance invariant!
 > O(n)

2. cheap to maintain — at most $O(\log n)$

AVL Trees

AVL Trees

Landis

The first self-balancing trees (1962)

That's what the balance invariant

of AVL trees is called

• Height invariant

At every node, the heights of the left and right subtrees differ by at most 1

An AVL tree satisfies two invariants
 the ordering invariant
 the height invariant

The Invariants of AVL Trees

 \odot The nodes are ordered

 At every node, the heights of the left and right subtrees differ by at most 1

• At any node, there are 3 possibilities

- Is it sorted?
- Do the heights of the two subtrees of every node differ by at most 1?

- Is it sorted?
- Do the heights of the two subtrees of every node differ by at most 1?

X

NO

- Is it sorted?
- Do the heights of the two subtrees of every node differ by at most 1?
 It doesn't hold at node 15
- We say there is a violation at node 15

- Is it sorted?
- Do the heights of the two subtrees of every node differ by at most 1?

X

- Is it sorted?
- Do the heights of the two subtrees of every node differ by at most 1?
 There is a violation at node 15

and another violation at node 10

YES

- Is it sorted?
- Do the heights of the two subtrees of every node differ by at most 1?

The height invariant does **not** imply that the length of every path from the root to a leaf differ by at most 1

Rotations

Insertion Strategy

- 1. Insert the new node as in a BST
 o this preserves the ordering invariant
 o but it may break the height invariant
- 2. Fix any height invariant violation
 - o fix the **lowest** violation

> this will take care of all other violations

We will see why later

• This is a common approach

 \odot of two invariants, preserve one and temporarily break the other

○ then, patch the broken invariant

➤ cheaply

Example 1

Example 2

Example 1 Revisited

 If this example was part of a bigger tree, what would it look like?

Example 2

Example 2

Left Rotation

• This transformation is called a left rotation

○ Note that it maintains the ordering invariant

We do a left rotation when C has become too tall after an insertion

Right Rotation

• The symmetric situation is called a right rotation

 \odot It too maintains the ordering invariant

We do a right rotation when A has become too tall after an insertion

Single Rotations Summary

Right and left rotations are single rotations

one of the outer subtrees has become too tall
Example 3

• The fix is **not** a single rotation at 10

Double Rotations

We can generalize this example to the case where the nodes have subtrees

Right-left Double Rotation

• Here's the general pattern

The ordering invariant

is maintained

 We do this double rotation when the subtree rooted at y has become too tall after an insertion

Left-right Double Rotation

• The symmetric transformation is a left-right double rotation

The ordering invariant

is maintained

 We do this double rotation when the subtree rooted at y has become too tall after an insertion

Double Rotations Summary

Double rotations maintain the ordering invariant

We do one of them when

 the lowest violation is at the root
 one of the inner subtrees has become too tall

Why is it Called a *Double* Rotation?

AVL Rotation When-to

Self-balancing Requirements

• Does the height constraint satisfy our requirements?

1. It guarantees that $h \in O(\log n)$

2. It is cheap to maintain — at most O(log n)

- \geq each type of rotation costs O(1)
- > at most one rotation is needed for each insertion

So, maintaining the height invariant costs O(1)

Left as exercise

Height Analysis

Insertion into an AVL Tree

 Assume we are inserting a node into an AVL tree of height h

One of two things can happen:

1. This causes a height violation

 \circ we fix it with a rotation

 \rightarrow > the resulting tree is a valid AVL tree

- o the fixed tree still has height h
 - ➤ the tree does not grow
- 2. This does not cause a violation
 the resulting tree has height h or h+1
 > the tree may grow only when there is no violation

()

Let's

see

why

Fixing the Lowest Violation

 Assume an insertion causes a violation

possibly more than one

We will focus on the subtree under the lowest violation

- We will find that fixing it yields a subtree with the same height h as the original subtree
- This necessarily resolves all violations above it

- because the height of this subtree has not changed
- if it satisfied the height invariant for the nodes above it before, it still satisfies it after

Fixing the lowest violation fixes the whole tree

The Lowest Violation

 Let's expand the tree No violation possible • T cannot be empty • the new node can have been inserted in its left or right subtree Insertion in T_L is symmetric Let's consider insertion in T_R h h+1 h-2 h-1 To have a violation The right subtree \succ T_R must be taller than T_L has become too tall h-1 vs. h-2 \succ T_R must have grown after the insertion from h-1 to h

The Lowest Violation

○ Let's examine each case in turn

Insertion in the Outer Subtree

• How tall are T_i and T_o ?

 $\circ h_o = h-2$

- > T_o needs to be as tall as possible to causes the violation
- $\circ h_i = h_o = h-2$
 - > h_i may be either h-2 or h-3

 \geq but if h_i were h-3, the lowest violation would be here

• T_i and T_o have height h-2

 This is the situation where we do a single left rotation

○ Is this an AVL tree?

Insertion in the Outer Subtree

OBST insertion and the rotations maintains the ordering invariant

T_L, T_i and T'_o are AVL trees
> because x was the lowest violation
T_L-x-T_i is an AVL tree of height h-1
> because both T_L and T_i have height h-2
(T_L-x-T_i)-y-T'_o is an AVL tree of height h
> because T'_o also has height h-1

The height invariant is restored

Insertion in the Inner Subtree

• How tall are T_i and T_o ?

 $\circ h_i = h-2$

 $> T_i$ needs to be as tall as possible to causes the violation

 $\circ h_o = h_i = h-2$

> h_o may be either h-2 or h-3

> but if h_o were h-3, the lowest violation would be here

h-1

T'_i contains at least the inserted node

let's expand it

 \odot T₁ and T₂ have height h-2 or h-3

> one of them has height h-2

 \odot the inserted node could be

> the root – if T_1 and T_2 are empty

 \succ in T₁

h

 \succ in T₂

Insertion in the Inner Subtree

• Is this an AVL tree?

○ BST insertion and the rotations maintains the ordering invariant

• Is this an AVL tree?

○ T_L , T_1 , T_2 and T_o are AVL trees > because x was the lowest violation ○ T_L -x- T_1 is an AVL tree of height h-1 > because T_L has height h-2 and > T_1 has height either h-2 or h-3 ○ T_2 -z- T_o is an AVL tree of height h-1 > because T_2 has height either h-2 or h-3 > T_o has height h-2 and ○ $(T_L$ -x- T_i)-y- $(T_2$ -z- T_o) is an AVL tree of height h

The height invariant is restored

Summary

When inserting into an AVL tree of height *h* If there is no violation, the tree height remains *h* or grows to *h*+1
 If there is a violation, the tree height remains *h*

To fix a violation

- o perform a rotation on the lowest violation
 - > a single rotation if the node was inserted in its outer subtree
 - > a double rotation if the node was inserted in its inner subtree
- One rotation fixes the whole tree
 - The resulting tree is again an AVL tree
 - lookup, insert and find_min cost O(log n) in it
 - \succ where *n* is the number of nodes

Implementation

The AVL Dictionary Interface

This is exactly the same interface we had for BST dictionaries
 the client can't tell the difference

• We modify the BST *implementation* to use AVL trees

The AVL Dictionary Implementation

• We make surgical changes to the BST dictionary implementation

 because AVL trees are BSTs and the BST implementation *mostly* works

• Specifically,

- we extend the representation invariant to account the height invariant of AVL trees
- insert now needs to perform rotations to rebalance the tree when needed
- O lookup and find_min remains unchanged
 - because an AVL tree is a special case of a BST

3

2

avl_lookup

The implementation remains unchanged
 but we rename all the ...bst... functions ...avl...

find_min stays the same too
 it now costs O(log n)

Inserting into an AVL Tree

 After each recursive call, we rebalance the tree

- rebalance_left after an insertion in the left subtree
- rebalance_right after an insertion in the right subtree
- This guarantees we fix the lowest violation
- For insert to cost O(log n)
 rebalance_left/right must cost O(1)

Let's look at one of them

rebalance_right

• We call it right after an insertion in the right subtree

o rebalance_right must have cost O(1)

rebalance_right

We use the height of various subtrees to determine
 o if there is a violation

 \odot if the insertion happened in the inner or outer subtree

o rebalance_right must have cost O(1)

> so height, rotate_left and rotate_right must cost O(1)

height

• We can transcribe the mathematical definition

and get

int height(tree* T)
//@requires is_tree(T);
//@ensures \result >= 0;
{
 if (T == NULL) return 0;
 return 1 + max(height(T->left), height(T->right));
}

height

• By transcribing the mathematical definition, we get

int height(tree* T)
//@requires is_tree(T);
//@ensures \result >= 0;
{
 if (T == NULL) return 0;
 return 1 + max(height(T->left), height(T->right));
}

○ If T has *n* nodes, height(T) costs O(n)

➢ it recursively goes over every node in T

But we need height to cost O(1)
 otherwise insert will cost more than O(log n)

What can we do?

height

- Rather than computing the height of a tree by traversing it, we can store it
 we add a height field in each node
- Then, the function height simply returns the contents of this field
 > or 0 if T is NULL
 O Its cost is now O(1)

• This is a **space-time tradeoff**

we are using a bit of extra space
 to save a lot of time

Rotations

• We implement single rotations by transcribing the figure

We implement double rotations as two single rotations from rebalance_right
 The cost is O(1)

T->right = rotate_right(T->right);

 $T = rotate_left(T);$

• Can it be this simple?

Rotations

```
• Can it be this simple?
```

```
tree* rotate_left(tree* T)
//@requires T != NULL && T->right != NULL;
{
    tree* temp = T->right;
    T->right = T->right->left;
    temp->left = T;
    return temp;
}
```


- The height fields of nodes x and y are now wrong!
 We need to update them
 We can do so based on the height of their subtrees
- Let's write a general function:
 - > fix_height costs O(1)
 - □ because height costs O(1)

```
void fix_height(tree* T)
//@requires is_tree(T) && T != NULL;
{
    int hl = height(T->left);
    int hr = height(T->right);
    T->height = 1 + max(hl, hr);
}
```

Rotations Revisited

• We implement single rotations by transcribing the figure

by updating two pointers

and then fixing the height of the affected nodes

• rotate_left costs O(1)

rebalance_right Revisited

• We also need to fix the height when there is no violation

New Leaves

typedef struct tree_node tree; struct tree_node { tree* left; int data; tree* right; int height; // >= 0 };

 When insertion creates a new leaf, we need to set its height to 1

Representation Invariants

The AVL Representation Invariant

An AVL tree is a BST that satisfies the height invariant
additionally, the height fields must all contain the true height

avl_insert Revisited

• We can track the representation invariants at each step of

rebalance_right Revisited

rebalance_right

○ takes a tree whose two subtrees are AVL trees

but itself may not be a valid AVL tree

○ return an AVL tree

This is what we learned from avl_insert

Rotations revisited

• We expect rotate_left to

o takes a tree whose two subtrees are AVL trees

but itself may not be a valid AVL tree

 \circ return an AVL tree

implement double rotations

○ these contracts do **not hold** in this case

Rotations revisited

 Because we implement double rotations using single rotations, we must deploy weaker contracts

Maintaining the Height

typedef struct tree_node tree; struct tree_node { tree* left; int data; tree* right; int height; // >= 0 };

• We can use the same contracts in fix_height

