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Cost of the BST Operations
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 Develop a data structure that has guaranteed O(log n) 

worst-case complexity for lookup, insert and find_min
always!

 Do binary search trees achieve this?

Unsorted 

array

Array sorted

by key
Linked list Hash Table

lookup O(n) O(log n) O(n) O(1) 
average

O(log n)

insert O(1) 
amortized

O(n) O(1) O(1)
average and amortized

O(log n)

find_min O(n) O(1) O(n) O(n) O(log n)

Our Goal

BST?
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Complexity

 Do lookup, insert and find_min have O(log n) complexity?

o Yes, in this tree

o But we are interested in the worst-case complexity

 Do lookup, insert and find_min have O(log n) complexity 

for every BST?

12

42

6522

19

4

70

-2
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Complexity

 Do lookup, insert and find_min have O(log n) complexity 

for every BST?

oConsider this sequence of insertions 

into an initially empty BST

o It produces this tree:

o Then to lookup 70, we have to

go through all the nodes

This is O(n)

 If the insertion sequence is

sorted, lookup costs O(n)

insert 10

insert 20

insert 30

insert 40

insert 50

insert 60

10

20

30

40

50

60

This tree has degenerated

into a linked list!

Exercise: find a sequence

that yields O(n) cost for find_min

Inserting 70 would also cost O(n)
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Back to Square One

 Develop a data structure that has guaranteed O(log n) 

worst-case complexity for lookup, insert and find_min
always!

 BSTs are not the data structure we were looking for

oWhat else?

Unsorted 

array

Array sorted

by key
Linked list Hash Table BST

lookup O(n) O(log n) O(n) O(1) 
average

O(n) O(log n)

insert O(1) 
amortized

O(n) O(1)
O(1)

average and 

amortized

O(n) O(log n)

find_min O(n) O(1) O(n) O(n) O(n) O(log n)

Something

else …
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Balanced Trees
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An Equivalent Tree

 Is there a BST with the

same elements that

yields O(log n) cost?

 How about this one?

o It contains the same elements,

o it is sorted,

o but the nodes are arranged differently

40

50

60

20

3010

10

20

30

40

50

60
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Reframing the Problem

 Depending on the tree, BST lookup can cost

oO(log n)  or

oO(n)

 Is there something that remains the same cost-wise?
Can we come up with a cost parameter that

gives the same complexity in every case?

o The cost of lookup is determined by

how far down the tree we need to go

 if the key is in the tree, the worst case

is when it is in a leaf

 if it is not in the tree, we have to reach

a leaf to say so

o The number of nodes on the longest path from the root to a leaf 

is called the height of the tree

A path from the

root to a leaf
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Reframing the Problem

 lookup for a tree of height h has complexity O(h)

o always!

o same for insert and find_min

 But …

o h can be in O(n) or in O(log n)

where n is the number of nodes in the tree

h
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The Height of a Tree

 The length of the longest path from the root to a leaf

 Let’s define it mathematically

TL TR

height(     EMPTY ) =  0

height                           =  1 + max  height             , height
TL

TR

This is a

recursive definition

This is a

recursive definition
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Balanced Trees

 A tree is balanced if h  O(log n)

owhere h is its height and

n is the number of nodes

 On a balanced tree, lookup, insert and find_min cost O(log n)

h

40

50

60

20

3010

10

20

30

40

50

60

Not balanced Balanced

11

Well, kind of:

we can’t talk about

asymptotic complexity

on a single instance



Self-balancing Trees

New goal:

omake sure that a tree remains balanced as we insert new nodes

 Trees with this property are called self-balancing

o There are lots of them

AVL trees

Red-black trees

Splay trees

B-trees

…

… and continues to be a valid BST

We will study this one

Why so many?

o there are many ways to guarantee that the 

tree remains balanced after each insertion

o some of these tree types have other 

properties of interest
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Self-balancing Trees

 “the tree stays balanced after each insertion” is too vague

o h  O(log n) is an asymptotic behavior

we can’t check it on any given tree

 Recall the definition

oWe can fit any given h by

picking a bigger n0

picking a bigger c

oMore fundamentally, h needs to be a function in h  O(log n)

13

We can’t say a given

tree is not balancedn

log n

h
e
ig

h
t

n0

h

 c

c log n



Self-balancing Trees

 “the tree stays balanced after each insertion” is too vague

o h  O(log n) is an asymptotic behavior

we can’t check it on any given tree

 We want algorithmically-checkable constraints that

1. guarantee that h  O(log n)

2. are cheap to maintain

 at most O(log n)

 We do so by imposing an additional representation 

invariants on trees
on top of the ordering invariant

o this balance invariant, when valid, ensures that h  O(log n)

14

Specifically, we can’t say a

given tree is not balanced



A Bad Balance Invariant

 Require that

o (the tree be a BST)

o all the paths from the root to a leaf

have height either h or h-1

o the leaves at height h be on the

left-hand side of the tree

 Does it satisfy our requirements?

1. guarantees that h  O(log n)

Definitely!

2. cheap to maintain — at most O(log n)

Let’s see

h-1h



The tree is perfectly

balanced except possibly

on the last level
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A Bad Balance Invariant

 Does it satisfy our requirements?

1. guarantees that h  O(log n)

 Let’s

insert 5 in

this tree

oWe changed all the pointers to maintain the balance invariant!

O(n)

2. cheap to maintain — at most O(log n)

h-1h



40

5020

3010

30

5010

205 40

insert 5



It is sorted The shape is right
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AVL Trees
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AVL Trees

The first self-balancing trees (1962)

 Height invariant

At every node, the heights of the left and right subtrees

differ by at most 1

 An AVL tree satisfies two invariants

o the ordering invariant

o the height invariant

Adelson-Velsky Landis

That’s what the balance invariant

of AVL trees is called
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The Invariants of AVL Trees

o The nodes are ordered

oAt every node, the heights of the left and right subtrees

differ by at most 1

 At any node, there are 3 possibilities

x

L R

L  <  x  <  R

h h

x

L
R

L  <  x  <  R

h h-1

x

L
R

L  <  x  <  R

h-1 h

Height invariantHeight invariantHeight invariant

Ordering invariant
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Is this an AVL Tree?

 Is it sorted?

 Do the heights of the two subtrees

of every node differ by at most 1?

10

155





YES
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Is this an AVL Tree?

 Is it sorted?

 Do the heights of the two subtrees

of every node differ by at most 1?

10

15

20

5





YES
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Is this an AVL Tree?

 Is it sorted?

 Do the heights of the two subtrees

of every node differ by at most 1?

o It doesn’t hold at node 15

 We say there is a violation at node 15

10

15

20

5

7

25





NO
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Is this an AVL Tree?

 Is it sorted?

 Do the heights of the two subtrees

of every node differ by at most 1?

10

15

20

5

7

25





YES

13
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Is this an AVL Tree?

 Is it sorted?

 Do the heights of the two subtrees

of every node differ by at most 1?

o There is a violation at node 15 

and another violation at node 10

10

15

2013

5

7

17 25

30





NO
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Is this an AVL Tree?

 Is it sorted?

 Do the heights of the two subtrees

of every node differ by at most 1?

10

15

2013

11

5

73

176 25

30





The height invariant does not imply

that the length of every path from

the root to a leaf differ by at most 1

YES

25



Rotations
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Insertion Strategy

1. Insert the new node as in a BST

o this preserves the ordering invariant

o but it may break the height invariant

2. Fix any height invariant violation

o fix the lowest violation

 this will take care of all other violations

 This is a common approach

o of two invariants, preserve one and temporarily break the other

o then, patch the broken invariant

 cheaply

We will see why later
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1010

Example 1

15

20

15

2010

10

15

insert 20 Fix

Inserting 20 as in a BST

causes a violation

at node 10

This is the only tree

with these elements

that satisfies both

the ordering and

the height invariants
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Example 2

10

15

2013

5

25

10

15

2013

5 insert 25 Fix ?

10

Inserting 25 as in a BST

causes a violation

at node 10

There are a lot of AVL trees

with these elements:

which one to pick?
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C

C

10

Example 1 Revisited

 If this example was part of a bigger tree, what would it look 

like?

15

20

15

2010

Fix

A

B BA

We inserted

20 here

This is where the subtrees

A, B and C must go to

preserve the ordering invariant
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C

C

Example 2

10

15

2013

5

15

20

25

10

135

10

15

2013

5 insert 25

A

B 25

A B

C

A

B

These are the

trees A, B, C

in example 2

These are the

trees A, B, C

in example 2

These are the

trees A, B, C

in example 2

This is C after

inserting 25

This is where nodes 10, 15

and the trees A, B, C go

after the fix
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Example 2

10

15

2013

5

15

20

25

10

135

10

15

2013

5 insert 25

25

Same thing without

highlighting the trees

Same thing without

highlighting the trees

Same thing without

highlighting the trees
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Left Rotation

 This transformation is called a left rotation

oNote that it maintains the ordering invariant

 We do a left rotation when C has become too tall after an 

insertion

x

y

A

B C

y

C

x

A B

A  <  x  <  B  <  y  <  C

left rotation

A  <  x  <  B  <  y  <  C
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Right Rotation

 The symmetric situation is called a right rotation

o It too maintains the ordering invariant

 We do a right rotation when A has become too tall after an 

insertion

y x

A  <  x  <  B  <  y  <  C

right rotation

A  <  x  <  B  <  y  <  C

C

x

A B

A

y

B C

34



Single Rotations Summary

 Right and left rotations are single rotations

o They maintain the ordering invariant

 We do one of them when

o the lowest violation is at the root

o one of the outer subtrees has become too tall

y x

A  <  x  <  B  <  y  <  C

right on y

A  <  x  <  B  <  y  <  C

C

x

A B

A

y

B C

left on x

That’s either y or x

That’s either A or C

respectively
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Example 3

 The fix is not a single rotation at 10

13

1510

10

15

insert 13

10

15

13

10

Fix

Inserting 13 as in a BST

causes a violation

at node 10

This is the only tree

with these elements

that satisfies both

the ordering and

the height invariants
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Double Rotations

 We can generalize this example to the case where the 

nodes have subtrees

 This is called a double rotation

o specifically a right-left double rotation

13

1510

10

15

13

10

B C

A

D A B C D

right-left rotation

This is where the subtrees

A, B, C and D must go to

preserve the ordering invariant
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Right-left Double Rotation

 Here’s the general pattern

 We do this double rotation when the

subtree rooted at y has become too

tall after an insertion

x

z

A

D

y

x

A B

A < x < B < y < C < z < D

right-left rotation

y

B C

z

C D

A < x < B < y < C < z < D

The ordering invariant

is maintained
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Left-right Double Rotation

 The symmetric transformation is a left-right double rotation

 We do this double rotation when the

subtree rooted at y has become too

tall after an insertion

z y

x

A B

A < x < B < y < C < z < D

left-right rotation
z

C D

A < x < B < y < C < z < D

D

x

A

y

B C

The ordering invariant

is maintained

39



Double Rotations Summary

oDouble rotations maintain the ordering invariant

 We do one of them when

o the lowest violation is at the root

o one of the inner subtrees has become too tall

A < x < B < y < C < z < D

left-right

at z

y

x

A B

z

C D

z

D

x

A

y

B C

A < x < B < y < C < z < D

right-left

at x

x

z

A

D

y

B C

A < x < B < y < C < z < D

That’s either z or x

That’s the subtree

rooted at y

40



Why is it Called a Double Rotation?

 We can view a double 

rotation as a sequence 

of two single rotations

o this is convenient when 

implementing AVL trees

13

1510

10

15

10

15

13

10

13

15

10

insert 13

41



42

AVL Rotation When-to

If the insertion

that caused the lowest

violation       happened … here here

… then do a …
right

single

rotation

at x

left/right

double

rotation

at x

here here

right/left

double

rotation

at x

left

single

rotation

at x

x

x



Self-balancing Requirements

 Does the height constraint satisfy our requirements?

1. It guarantees that h  O(log n)

2. It is cheap to maintain — at most O(log n)

each type of rotation costs O(1)

at most one rotation is needed for each insertion

So, maintaining the height invariant costs O(1)

Left as exercise




We will see why next
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Height Analysis

44



Insertion into an AVL Tree

 Assume we are inserting a node

into an AVL tree of height h

One of two things can happen:

1. This causes a height violation

owe fix it with a rotation

 the resulting tree is a valid AVL tree

o the fixed tree still has height h

 the tree does not grow

2. This does not cause a violation

o the resulting tree has height h or h+1

 the tree may grow only when there is

no violation

h

hFix

h or h+1

Let’s

see

why

Let’s

see

why

45



Fixing the Lowest Violation

 Assume an insertion

causes a violation
possibly more than one

 We will focus on the subtree under the lowest violation

oWe will find that fixing it

yields a subtree with the

same height h as the

original subtree

o This necessarily resolves

all violations above it

because the height of this subtree has not changed

 if it satisfied the height invariant for the nodes above it before,

it still satisfies it after

Fix

h hFix

Fixing the lowest violation

fixes the whole tree46



The Lowest Violation

 Let’s expand the tree

o T cannot be empty

o the new node can have been inserted in its left or right subtree 

 Let’s consider insertion in TR

o To have a violation

TR must be taller than TL

 h-1 vs. h-2

TR must have grown after the insertion

 from h-1 to h

T

No violation possible

TR

h

Insertion in TL is symmetric

TL
h-2

h-1
T’R

h+1

TL
h-2

h

The right subtree

has become too tall

47



The Lowest Violation

 Let’s expand the right subtree

o TR cannot be empty

o the new node can have

been inserted in its left

or right subtree

o Let’s examine each case in turn

No

violation

possible
Ti

h

h-2 h-1

TR

To

TR

h+1

h-2 h
To Ti

h+1

h-2 h

48



Insertion in the Outer Subtree

 How tall are Ti and To?

o ho = h-2

To needs to be as tall as possible to causes the violation

o hi = ho = h-2

hi may be either h-2 or h-3

but if hi were h-3, the lowest violation would be here

To

Ti

h

h-2 h-1
To Ti

h+1

h-2 h
ho

hi hi
ho+1

Ti and To have the same height

49



Insertion in the Outer Subtree

 Ti and To have height h-2

 This is the situation 

where we do a

single left rotation

o Is this an AVL tree?

To

Ti

h

TL
h-2 h-1

To Ti

h+1

TL
h-2 h

T'o
h-2h-2 h-2 h-1

h-2
Ti

T'oTL
h-2 h-1

left

rotation

50



Insertion in the Outer Subtree

 Is this an AVL tree?

o BST insertion and the rotations maintains the ordering invariant

o TL, Ti and T'o are AVL trees

because x was the lowest violation

o TL–x–Ti is an AVL tree of height h-1

because both TL and Ti have height h-2

o (TL–x–Ti)–y–T'o is an AVL tree of height h

because T'o also has height h-1

To

Ti

h+1

TL
h-2 h

T'o
h-2 h-1

h

h-2
h-1

Ti
T'oTL

h-2 h-1

left

rotation

x

xy
y

TL <  x  < Ti <  y  < T'o TL <  x  < Ti <  y  < T'o

The height invariant

is restored


51



Insertion in the Inner Subtree

 How tall are Ti and To?

o hi = h-2

Ti needs to be as tall as possible to causes the violation

o ho = hi = h-2

ho may be either h-2 or h-3

but if ho were h-3, the lowest violation would be here

Ti

Ti

h

h-2 h-1
To

h+1

h-2 h

To
ho

hi hi+1 ho

Ti and To have the same height
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Insertion in the Inner Subtree

 Ti and To have height h-2

 T'i contains at least the inserted node
 let’s expand it

o T1 and T2 have height h-2 or h-3

one of them has height h-2

o the inserted node could be

 the root – if T1 and T2 are empty

 in T1

 in T2

Ti

h

TL
h-2 h-1

To T'i

h+1

TL
h-2 h

To
h-2h-2 h-1 h-2

Ti

T1

h-1
T2

T'i

could be anywhere
53



Insertion in the Inner Subtree

 This is the situation 

where we do a

double right/left rotation

o Is this an AVL tree?

Ti

h

TL
h-2 h-1

To

h+1

TL
h-2 h

To
h-2h-2 h-1 h-2

Ti

T1 T2

double

rotation

TL
h-2

To
h-2

T1 T2

height h-2 or h-3height h-2 or h-3
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Insertion in the Inner Subtree

 Is this an AVL tree?

o BST insertion and the rotations maintains the ordering invariant

h
h-1

Ti

double

rotation
TL

h-2
To

h-2
T1 T2

h-1

h+1

TL
h-2 h

To
h-1 h-2

T1 T2

TL < x < T1 < y < T2 < z < To

x

z
y

x z

y

TL < x < T1 < y < T2 < z < To
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Insertion in the Inner Subtree

 Is this an AVL tree?

o TL, T1, T2 and To are AVL trees

because x was the lowest violation

o TL–x–T1 is an AVL tree of height h-1

because TL has height h-2 and

T1 has height either h-2 or h-3

o T2–z–To is an AVL tree of height h-1

because T2 has height either h-2 or h-3

To has height h-2 and

o (TL–x–Ti)–y–(T2–z–To) is an AVL tree of height h

h
h-1

Ti

double

rotation
TL

h-2
To

h-2
T1 T2

h-1

h+1

TL
h-2 h

To
h-1 h-2

T1 T2

x

z
y

x z

y

The height invariant

is restored


56



Summary

 When inserting into an AVL tree of height h

o If there is no violation, the tree height remains h or grows to h+1

o If there is a violation, the tree height remains h

 To fix a violation

o perform a rotation on the lowest violation

a single rotation if the node was inserted in its outer subtree

a double rotation if the node was inserted in its inner subtree

 One rotation fixes the whole tree

o The resulting tree is again an AVL tree

o lookup, insert and find_min cost O(log n) in it

where n is the number of nodes
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Implementation
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The AVL Dictionary Interface

 This is exactly the same interface we had for BST dictionaries

o the client can’t tell the difference

oWe modify the BST implementation to use AVL trees

// typedef ______* dict_t;

dict_t  dict_new()

/*@ensures \result != NULL; @*/ ;

entry dict_lookup(dict_t D, key k)

/*@requires D != NULL; @*/

/*@ensures \result == NULL

|| key_compare(entry_key(\result), k) == 0; @*/ ;

void dict_insert(dict_t D, entry e)

/*@requires D != NULL && e != NULL; @*/

/*@ensures dict_lookup(D, entry_key(e)) == e; @*/ ;

entry dict_min(dict_t D,)

/*@requires D != NULL; @*/ ;

Library Interface

// typedef ______* entry;

// typedef ______ key;

key entry_key(entry  e)

/*@requires e != NULL; @*/ ;

int key_compare(key k1, key k2) ;

Client Interface

except that it’s much faster
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The AVL Dictionary Implementation

 We make surgical changes to the BST dictionary 

implementation

o because AVL trees are BSTs

and the BST implementation mostly works

 Specifically, 

owe extend the representation invariant to account the height 

invariant of AVL trees

o insert now needs to perform rotations to rebalance the tree 

when needed

o lookup and find_min remains unchanged

because an AVL tree is a special case of a BST 1

2

3

Order in

which we will

examine them

60



avl_lookup

 The implementation remains unchanged

o but we rename all the …bst… functions …avl…

 If T is an AVL tree

with n nodes, then

o it has height O(log n)

o so avl_lookup costs O(log n)

 find_min stays the same too

o it now costs O(log n)

61

entry avl_lookup(tree* T, key k)

//@requires is_avl(T);

//@ensures \result == NULL

|| key_compare(entry_key(\result), k) == 0;

{

// Code for empty tree

if (T == NULL) return NULL;

// Code for non-empty tree

int cmp = key_compare(k, entry_key(T->data));

if (cmp == 0) return T->data;

if (cmp < 0) return avl_lookup(T->left, k);

//@assert cmp > 0;

return avl_lookup(T->right, k);

}

EMPTY

We will implement it later

1



Inserting into an AVL Tree

 After each recursive call, 

we rebalance the tree
 rebalance_left after an 

insertion in the left subtree

 rebalance_right after an 

insertion in the right subtree

o This guarantees we fix the 

lowest violation

 For insert to cost O(log n)

o rebalance_left/right must 

cost O(1)

tree* avl_insert(tree* T, entry e)

//@requires is_avl(T) && e != NULL;

//@ensures is_avl(\result) && \result != NULL;

//@ensures avl_lookup(\result, entry_key(e)) == e;

{

// Code for empty tree

if (T == NULL) return leaf(e);

// Code for non-empty tree

int cmp = key_compare(entry_key(e), entry_key(T->data));

if (cmp == 0) T->data = e;

else if (cmp < 0) {

T->left = avl_insert(T->left, e);

T = rebalance_left(T);

else { //@assert cmp > 0;

T->right = avl_insert(T->right, e);

T = rebalance_right(T);

}

return T;

}

added

added

Let’s look at one of them

The tree layout

does not change

62

2



rebalance_right

 We call it right after an insertion in the right subtree

o rebalance_right must have cost O(1)

tree* rebalance_right(tree* T)

//@requires T != NULL && T->right != NULL;

{

if (height(T->right) - height(T->left) == 2) {   // violation!

if (height(T->right->right) > height(T->right->left)) {

// Single rotation

T = rotate_left(T);

} else

{ //@assert height(T->right->left) > height(T->right->right);

// Double rotation

T->right = rotate_right(T->right);

T = rotate_left(T);

}

}

return T;

}

The insertion was in T->right

The insertion was in the outer subtree

we perform a single rotation

The height

invariant

doesn’t hold

The insertion was in the inner subtree

we perform a double rotation

Just return T

if it holds
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rebalance_right

 We use the height of various subtrees to determine

o if there is a violation

o if the insertion happened in the inner or outer subtree

o rebalance_right must have cost O(1)

 so height, rotate_left and rotate_right must cost O(1)

tree* rebalance_right(tree* T)

//@requires T != NULL && T->right != NULL;

{

if (height(T->right) - height(T->left) == 2) {   // violation!

if (height(T->right->right) > height(T->right->left)) {

// Single rotation

T = rotate_left(T);

} else

{ //@assert height(T->right->left) > height(T->right->right);

// Double rotation

T->right = rotate_right(T->right);

T = rotate_left(T);

}

}

return T;

}

The insertion was in the outer subtree

The insertion was in the inner subtree

The height

invariant

doesn’t hold
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height

 We can transcribe the mathematical definition

and get
int height(tree* T)

//@requires is_tree(T);

//@ensures \result >= 0;

{

if (T == NULL) return 0;

return 1 + max(height(T->left), height(T->right));

}

TL TR

height(     EMPTY ) =  0

height                           =  1 + max  height             , height
TL

TR
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height

 By transcribing the mathematical definition, we get

o If T has n nodes, height(T) costs O(n)

 it recursively goes over every node in T

 But we need height to cost O(1)

o otherwise insert will cost more than O(log n)

 What can we do?

int height(tree* T)

//@requires is_tree(T);

//@ensures \result >= 0;

{

if (T == NULL) return 0;

return 1 + max(height(T->left), height(T->right));

}
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height

 Rather than computing the height of a

tree by traversing it, we can store it

owe add a height field

in each node

 Then, the function height simply

returns the contents of this field
or 0 if T is NULL

o Its cost is now O(1)

 This is a space-time tradeoff

owe are using a bit of extra space

to save a lot of time

int height(tree* T)

//@requires is_tree(T);

//@ensures \result >= 0;

{

return T == NULL ? 0 : T->height;

}

typedef struct tree_node tree;

struct tree_node {

tree* left;

int data;

tree* right;

int height; // >= 0

};

Return 0 if T is NULL

and T->height otherwise

The new height field in the nodes

Computing the height of the tree

over and over




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Rotations

 We implement single rotations by transcribing the figure

by updating two pointers

o The cost is O(1)

 We implement double rotations as two single rotations

o The cost is O(1)

 Can it be this simple?

tree* rotate_left(tree* T)

//@requires T != NULL && T->right != NULL;

{

tree* temp = T->right;

T->right = T->right->left;

temp->left = T;

return temp;

}

x

y

y

x
left rotation

// Double rotation

T->right = rotate_right(T->right);

T = rotate_left(T);

from

rebalance_right
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Rotations

 Can it be this simple?

 The height fields of nodes x and y are now wrong!

oWe need to update them

oWe can do so based on the height of their subtrees

 Let’s write a general function:
 fix_height costs O(1)

 because height costs O(1)

tree* rotate_left(tree* T)

//@requires T != NULL && T->right != NULL;

{

tree* temp = T->right;

T->right = T->right->left;

temp->left = T;

return temp;

}

x

y

y

x
left rotation

void fix_height(tree* T)

//@requires is_tree(T) && T != NULL;

{

int hl = height(T->left);

int hr = height(T->right);

T->height = 1 + max(hl, hr);

}


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Rotations Revisited

 We implement single rotations by transcribing the figure

by updating two pointers

and then fixing the height of the affected nodes

 rotate_left costs O(1)

tree* rotate_left(tree* T)

//@requires T != NULL && T->right != NULL;

{

tree* temp = T->right;

T->right = T->right->left;

temp->left = T;

fix_height(T);

fix_height(temp);

return temp;

}

x

y

y

x
left rotation

node x

node y


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rebalance_right Revisited

 We also need to fix the height when there is no violation

tree* rebalance_right(tree* T)

// T must be immediate result of a right-insertion

//@requires T != NULL && T->right != NULL;

{

if (height(T->right) - height(T->left) == 2) {   // violation!

if (height(T->right->right) > height(T->right->left)) {

// Single rotation

T = rotate_left(T);

} else {

//@assert height(T->right->left) > height(T->right->right);

// Double rotation

T->right = rotate_right(T->right);

T = rotate_left(T);

}

} else { // No rotation needed, but tree may have grown

fix_height(T);

}

return T;

}

Fixes the heights when

no rotation was performed

When we handle a violation,

the rotations fix the heights


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New Leaves

 When insertion creates a new leaf,

we need to set its height to 1

typedef struct tree_node tree;

struct tree_node {

tree* left;

int data;

tree* right;

int height; // >= 0

};

tree* leaf(entry e)

//@requires e != NULL;

//@ensures is_avl(\result) && \result != NULL;

{

tree* T = alloc(tree);

T->data = e;

T->left = NULL;     // not necessary

T->right = NULL;   // not necessary

T->height = 1;

return T;

}
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Representation Invariants
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The AVL Representation Invariant

 An AVL tree is a BST that satisfies the height invariant

o additionally, the height fields must all contain the true height

 We can use them to

give precise contracts

to all other functions

bool is_specified_height(tree* T)

//@requires is_tree(T);

{

if (T == NULL) return true;

return is_specified_height(T->left)      // height(T->left)  is correct

&& is_specified_height(T->right)     // height(T->right) is correct

&& T->height == max(height(T->left),

height(T->right)) + 1;   // height(T) is correct

}

bool is_balanced(tree* T)

//@requires is_tree(T);

{

if (T == NULL) return true;

return abs(height(T->left) - height(T->right)) <= 1

&& is_balanced(T->left)

&& is_balanced(T->right);

}

bool is_avl(tree* T) {

return is_tree(T) && is_ordered(T, NULL, NULL)

&& is_specified_height(T)

&& is_balanced(T);

}

our old is_bst

checks the height

checks the height invariant

Checks that the height field

in each node contains

the true height of its subtree

Checks the height invariant

The AVL representation invariant
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avl_insert Revisited

 We can track the representation invariants at each step of

insertion
tree* avl_insert(tree* T, entry e)

//@requires is_avl(T) && e != NULL;

//@ensures is_avl(\result) && \result != NULL;

//@ensures avl_lookup(\result, entry_key(e)) == e;

{

// Code for empty tree

if (T == NULL) return leaf(e);

// Code for non-empty tree

//@assert is_avl(T->left) && is_avl(T->right);

int cmp = key_compare(entry_key(e), entry_key(T->data));

if (cmp == 0) T->data = e;

else if (cmp < 0) {

T->left = avl_insert(T->left, e);

//@assert is_avl(T->left) && is_avl(T->right);

T = rebalance_left(T);

//@assert is_avl(T);

else { //@assert cmp > 0;

T->right = avl_insert(T->right, e);

//@assert is_avl(T->left) && is_avl(T->right);

T = rebalance_right(T);

//@assert is_avl(T);

}

return T;

}

added

added

added

added

added

If T is an AVL tree,

its subtrees are too

T->left is an AVL tree by the

postcondition of avl_insert

T->right did not change

rebalance_left restores T

into a valid AVL tree

SimilarSimilarSimilar


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rebalance_right Revisited

 rebalance_right

o takes a tree whose two subtrees are AVL trees

but itself may not be a valid AVL tree

o return an AVL tree

tree* rebalance_right(tree* T)

// T must be immediate result of a right-insertion

//@requires T != NULL && T->right != NULL;

//@requires is_avl(T->left) && is_avl(T->right);

//@ensures is_avl(\result);

{

if (height(T->right) - height(T->left) == 2) {   // violation!

if (height(T->right->right) > height(T->right->left)) {

// Single rotation

T = rotate_left(T);

} else {

//@assert height(T->right->left) > height(T->right->right);

// Double rotation

T->right = rotate_right(T->right);

T = rotate_left(T);

}

} else { // No rotation needed, but tree may have grown

fix_height(T);

}

return T;

}

This is what

we learned

from avl_insert

T may not be an AVL tree

but T itself may not be an AVL tree

T is again an AVL tree

T may not be an AVL tree

T is again an AVL tree

T may not be an AVL tree

T is again an AVL tree


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Rotations revisited

 We expect rotate_left to

o takes a tree whose two subtrees are AVL trees

but itself may not be a valid AVL tree

o return an AVL tree

 This would be true if used to 

implement single rotations only

 But we are also using it to 

implement double rotations

o these contracts do

not hold in this case

tree* rotate_left(tree* T)

//@requires T != NULL && T->right != NULL;

//@requires is_avl(T->left) &&  is_avl(T->right);

//@ensures is_avl(\result);

{

tree* temp = T->right;

T->right = T->right->left;

temp->left = T;

fix_height(T);

fix_height(temp);

return temp;

}

but T itself may not be an AVL tree


// Double rotation

T->right = rotate_right(T->right);

T = rotate_left(T);
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Rotations revisited

 Because we implement double rotations using single 

rotations, we must deploy weaker contracts

tree* rotate_left(tree* T)

//@requires T != NULL && T->right != NULL;

//@requires is_specified_height(T->left);

//@requires is_specified_height(T->right);

//@ensures is_specified_height(\result);

{

tree* temp = T->right;

T->right = T->right->left;

temp->left = T;

fix_height(T);

fix_height(temp);

return temp;

}

This only says that

the heights are right


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Maintaining the Height

 We can use the same contracts in fix_height

typedef struct tree_node tree;

struct tree_node {

tree* left;

int data;

tree* right;

int height; // >= 0

};

void fix_height(tree* T)

//@requires is_tree(T) && T != NULL;

//@requires is_specified_height(T->left);

//@requires is_specified_height(T->right);

//@ensures is_specified_height(T);

{

int hl = height(T->left);

int hr = height(T->right);

T->height = (hl > hr ? hl+1 : hr+1);

}

Assuming the subtrees have valid height fields,

it will make the height field in the whole tree valid
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