
Priority Queues

 Work lists: data structures that

o store elements and

o give them back one at a time – in some order

 Stacks: retrieve the element inserted most recently

 Queues: retrieve the element that has been there longest

 Priority queues: retrieve

the most “interesting” element

Review

Today

1

The Work List Interface

 Recall the work list interface template:

typedef void* elem; // Decided by client

// typedef ______* wl_t;

bool wl_empty(wl_t W)

/*@requires W != NULL; @*/ ;

wl_t wl_new()

/*@ensures \result != NULL && wl_empty(\result); @*/ ;

void wl_add(wl_t W, elem e)

/*@requires W != NULL && e != NULL; @*/

/*@ensures !wl_empty(W); @*/ ;

elem wl_retrieve(wl_t W)

/*@requires W != NULL && !wl_empty(W); @*/

/*@requires \result != NULL; @*/ ;

Work List Interface

Now,

fully generic

This is not the

interface of an actual

data structure but

a general template

for the work lists

we are studying

2

Priority Queues

3

Priority Queues

… retrieve the most “interesting” element

 Elements are given a priority

o retrieves the element with the highest priority

o several elements may have the same priority

 Examples

o emergency room

highest priority = most severe condition

o processes in an OS

highest priority = well, it’s complicated

o homework due

Highest priority = …

4

Towards a Priority Queue Interface

 It will be convenient

to have

a peek

function

o it returns

the highest

priority

element

without

removing it

typedef void* elem; // Decided by client

// typedef ______* pq_t;

bool pq_empty(pq_t Q)

/*@requires Q != NULL; @*/ ;

pq_t pq_new()

/*@ensures \result != NULL && pq_empty(\result); @*/ ;

void pq_add(pq_t Q, elem e)

/*@requires Q != NULL && e != NULL; @*/

/*@ensures !pq_empty(Q); @*/ ;

elem pq_rem (pq_t Q)

/*@requires Q != NULL && !pq_empty(Q); @*/

/*@ensures \result != NULL; @*/ ;

elem pq_peek (pq_t Q)

/*@requires Q != NULL && !pq_empty(Q); @*/

/*@ensures \result != NULL && !pq_empty(Q); @*/ ;

Priority Queue Interface This is the

work list interface

with names changed

Added

5

How to Specify Priorities?

1. Mention it as part of pq_add

void pq_add(pq_t Q, elem e, int priority)

oHow do we assign a priority to an element?

 the same element should always be given the same priority

priorities should form some kind of order

oDo bigger numbers represent higher or lower priorities?

Potential for

lots of errors



People are bad

at being

consistent

6

How to Specify Priorities?

2. Make the priority part of an elem

o and provide a way to retrieve it

int get_priority(elem e)

oHow do we assign a priority to an element?

 the same element should always be given the same priority

priorities should form some kind of order

oDo bigger numbers represent higher or lower priorities?

Same issues

as (1)



Same issues

as (1)

The problem is that assigning

a priority to an element is hard

for people

but given two elements

saying which one has

higher priority is easier

7

How to Specify Priorities?

3. Have a way to tell which of two elements has higher priority

bool has_higher_priority(elem e1, elem e2)

o it returns true if e1 has strictly higher priority than e2

o It is the client who should provide this function

only they know what elem is

o For the priority queue library to be generic, we turn it into a

type definition

typedef bool has_higher_priority_fn(elem e1, elem e2);

and have pq_new take a priority function as input


Given two elements,

saying which one has

higher priority is easier

8

The Priority Queue Interface

typedef void* elem; // Decided by client

typedef bool has_higher_priority_fn(elem e1, elem e2);

// typedef ______* pq_t;

bool pq_empty(pq_t Q)

/*@requires Q != NULL; @*/ ;

pq_t pq_new(has_higher_priority_fn* prio)

/*@requires prio != NULL; @*/

/*@ensures \result != NULL && pq_empty(\result); @*/ ;

void pq_add(pq_t Q, elem e)

/*@requires Q != NULL && e != NULL; @*/

/*@ensures !pq_empty(Q); @*/ ;

elem pq_rem (pq_t Q)

/*@requires Q != NULL && !pq_empty(Q); @*/

/*@ensures \result != NULL; @*/ ;

elem pq_peek (pq_t Q)

/*@requires Q != NULL && !pq_empty(Q); @*/

/*@ensures \result != NULL && !pq_empty(Q); @*/ ;

Priority Queue Interface

We commit to the

priority function when

creating the queue

f(e1, e2) returns true if e1

has strictly higher priority

than e2

9

Unsorted array/list Sorted array/list AVL trees Heaps

add O(1) O(n) O(log n) O(log n)

rem O(n) O(1) O(log n) O(log n)

peek O(n) O(1) O(log n) O(1)

Priority Queue Implementations

Cost of add

using arrays are

amortized

10

Heaps

11

Heaps

 A heap is a type of binary tree used to implement priority

queues

 Since add and rem have cost O(log n),

a heap is a balanced binary tree

o in fact, they are as balanced as a tree can be

 Since peek has cost O(1), the highest

priority element must be at the root

o in fact, the elements on any path from a

leaf to the root are ordered in increasing

priority order

highest

priority

lower

priority

Nothing to do with

the memory segment

12

Heaps Invariants

1. Shape invariant

2. Ordering invariant

o The priority of a child is lower than

or equal to the priority of its parent

or equivalently

o The priority of a parent is higher than

or equal to the priority of its children

h
ig

h
e
r p

rio
rity

point of view

of child

point of view

of parent

Both points of view

will come handy

13

The Many Things Called Heaps

 A heap is a type of binary tree used to implement priority

queues

 A heap is also any priority queue where priorities are

integers

o it is a min-heap if smaller numbers represent higher priorities

o it is a max-heap if bigger numbers represent higher priorities

 A heap is the segment of memory we called allocated

memory

This is a significant

source of confusion

14

Min-heaps

 Any priority queue where priorities are integers and

smaller numbers represent higher priorities

 In practice, most priority queues are implemented as

min-heaps

o and heap is also shorthand for min-heap

 Most of our examples will be min-heaps

1. Shape invariant

2. Ordering invariant

The value of a child is ≥ the value of its parent

or equivalently

The value of a parent is ≤ the value of its children

more confusion!

la
rg

e
r v

a
lu

e

15

Activity

 Draw a min-heap with values 1, 2, 2, 9, 7

16

Activity

 Draw a min-heap with values 1, 2, 2, 9, 7

1

22

97

1

22

79

1

92

72

1

72

29

… and several more

17

Insertion into a Heap

18

Strategy

 Maintain the shape invariant

 Temporary break and then

restore the ordering invariant

la
rg

e
r v

a
lu

e

Min-heap version

This is similar to what we did for AVL trees

• maintain the ordering invariant

• temporary break and then restore the height invariant

19

Example

 We start by putting the new element in the only place that

maintains the shape invariant

o but doing so may break the ordering invariant

oHow to fix it?

2

7

8

4

49

2

7

18

4

49

insert 1

1 must go hereThis is a min-heap

This violates the

ordering invariant

20

Swapping up

 How to fix the violation?

o swap the child with the parent

o Swapping up may introduce

a new violation

2

7

18

4

49

swap up

2

1

78

4

49

We swapped

7 and 1

This introduces a new violation of

the ordering invariant one level up

21

Swapping up

 How to fix the violation?

o swap the child with the parent

 We stop when no new violation

is introduced

o or we reach the root

swap up

1

2

78

4

49

2

1

78

4

49

We swapped

2 and 1

There are no more violations.

This is a valid min-heap

22

Adding an Element

 General procedure

1. Put the added element in the one place that

maintains the shape invariant

 the leftmost open slot on the last level

 or, if the last level is full, the leftmost slot on the next level

2. Repeatedly swap it up with its parent

until the violation is fixed

or we reach the root

o There is always at most one violation

 The overall process is called sifting up

 This costs O(log n)

o because we make at most O(log n) swaps

For a heap with n elements

23

Removing the Minimal Element of a Heap

24

Strategy

 Maintain the shape invariant

 Temporary break and then

restore the ordering invariant

la
rg

e
r v

a
lu

e

Min-heap versionSame as insertion

25

Example

 We must return the root

 We replace it with the only element that maintains the

shape invariant

 Which violation to fix first?

rem

9

2

8

4

47

1

2

98

4

47

We must return 1

We replace it with 9

This causes

two violations

This causes

two violations

26

Swapping down

 Which violation to fix first?

o If we swap 4 and 9, we end up with three violations

 Can we do better?

4

2

8

9

47

9

2

8

4

47



swap down

27

Swapping down

 If we swap 9 and 2, we end up with one violation

o at most two in general

 When swapping down, always swap with the child with

the highest priority

o smallest value in a min-heap

swap down

2

9

8

4

47

9

2

8

4

47

28

Swapping down

 Always swap the child with the highest priority

 We stop when no new violations are introduced

o or we reach a leaf

swap down

2

8

9

4

47

2

9

8

4

47

29

Removing an Element

 General procedure

1. Return the root

2. Replace it with the element in the one

place that maintains the shape invariant

 the rightmost element on the last level

3. Repeatedly swap it down with its child that has highest priority

until all violations are fixed

or we reach a leaf

o This guarantees there are always at most two violations

 The overall process is called sifting down

 This costs O(log n)

o because we make at most O(log n) swaps

For a heap with n elements

30

Unsorted array/list Sorted array/list AVL trees Heaps

add O(1) O(n) O(log n) O(log n)

rem O(n) O(1) O(log n) O(log n)

peek O(n) O(1) O(log n) O(1)

Priority Queue Implementations

Cost of add

using arrays are

amortized

31

Only if we can access

the bottom-most

right-most node in O(1)

Representing Heaps

32

How to Represent a Heap?

 Borrowing from BSTs,

we could use pointers

o left and right child

needed when sifting down

o parent node

needed when sifting up

 That’s a lot of pointers to keep track of!

o It also takes up a lot of space

 Can we do better?

2

4

47

typedef struct heap_node heap;

struct heap_node {

elem data;

heap* parent;

heap* left;

heap* right;

};

Try writing the swap functions!



33

Understanding Heaps

 Let’s number the nodes level by level starting at 1

 Observations:

o If a node has number i, its left child has number

o If a node has number i, its right child has number

o If a node has number i, its parent has number

2

8

9

4

47

1

2 3

64 5

2i

2i + 1

i/2

34

Understanding Heaps

o If a node has number i, its left child has number 2i

o If a node has number i, its right child has number 2i + 1

o If a node has number i, its parent has number i/2

 By numbering nodes this way, we can navigate the tree up

and down using arithmetic

2

8

9

4

47

1

2 3

64 5

35

Understanding Heaps

 By numbering nodes this way, we can navigate the tree up

and down using arithmetic

 These numbers are contiguous and start at 1

2

8

9

4

47

1

2 3

64 5

36

Understanding Heaps

 These numbers are contiguous and start at 1

 Do we know of any data structures that allows accessing

data based on consecutive integers?

Arrays!

2

8

9

4

47

1

2 3

64 5

37

Representing Heaps using Arrays

2

8

9

4

47

1

2 3

64 5

0 1 2 3 4 5 6

2 4 8 7 4 9

For simplicity,

we do not use index 0
• If a node has number i, its left child has number 2i

• If a node has number i, its right child has number 2i + 1

• if a node has number i, its parent has number i/2

38

Representing Heaps using Arrays

 add will initially put a new element at index 7

 remove will yank the element at index 6

2

8

9

4

47

1

2 3

64 5

0 1 2 3 4 5 6

2 4 8 7 4 9

We are better off

having unused positions

39

Representing Heaps using Arrays

 add will initially put a new element at index 7

 remove will yank the element at index 6

0 1 2 3 4 5 6 7 8 9

2 4 8 7 4 9

2

8

9

4

47

1

2 3

64 5

We are better off

having unused positions

40

Bounded Priority Queues

41

Types of Work Lists

 The work lists we considered

so far were unbounded

o there was no maximum to the

number of elements they could

hold

 A bounded work list has a

capacity fixed at creation time

owe can’t add elements once full

 In practice

o stacks are typically unbounded

o queues can be either

o priority queues are often bounded

typedef void* elem; // Decided by client

typedef bool has_higher_priority_fn(elem e1, elem e2);

// typedef ______* pq_t;

bool pq_empty(pq_t Q)

/*@requires Q != NULL; @*/ ;

pq_t pq_new(has_higher_priority_fn* prio)

/*@requires prio != NULL; @*/

/*@ensures \result != NULL && pq_empty(\result); @*/ ;

void pq_add(pq_t Q, elem e)

/*@requires Q != NULL && e != NULL; @*/

/*@ensures !pq_empty(Q); @*/ ;

elem pq_rem (pq_t Q)

/*@requires Q != NULL && !pq_empty(Q); @*/

/*@ensures \result != NULL; @*/ ;

elem pq_peek (pq_t Q)

/*@requires Q != NULL && !pq_empty(Q); @*/

/*@ensures \result != NULL && !pq_empty(Q); @*/ ;

Priority Queue Interface

42

The Bounded Priority Queue Interface

 pq_new now takes the

capacity of the priority queue

 We need a new function to

check if it is full

o pq_full

 We cannot insert an element

into a full priority queue

 A priority queue is not full

after removing an element

typedef void* elem; // Decided by client

typedef bool has_higher_priority_fn(elem e1, elem e2);

// typedef ______* pq_t;

bool pq_empty(pq_t Q)

/*@requires Q != NULL; @*/ ;

bool pq_full(pq_t Q)

/*@requires Q != NULL; @*/ ;

pq_t pq_new(int capacity, has_higher_priority_fn* prio)

/*@requires capacity > 0 && prio != NULL; @*/

/*@ensures \result != NULL && pq_empty(\result); @*/ ;

void pq_add(pq_t Q, elem e)

/*@requires Q != NULL && !pq_full(Q) && e != NULL; @*/

/*@ensures !pq_empty(Q); @*/ ;

elem pq_rem (pq_t Q)

/*@requires Q != NULL && !pq_empty(Q); @*/

/*@ensures \result != NULL && !pq_full(Q); @*/ ;

elem pq_peek (pq_t Q)

/*@requires Q != NULL && !pq_empty(Q); @*/

/*@ensures \result != NULL && !pq_empty(Q); @*/ ;

Bounded Priority Queue Interface

43

