Transition to C

® CO, C1

Huse <util> File simple.cO

[*** |Interface ***/

Int absval(int x)

[*@requires X > int_min(); @*/
[*@ensures \result >= 0; @*/ ;

struct point2d {
INt X;
Inty;
}

[*** Implementation ***/
Int absval(int x)
[/@requires x > int_min();
[/@ensures \result >= 0;

1
}

refurn x <0 ? -x: x;

Review

#use <conio>

File test.cO

iInt main() {

struct point2d*
P->x = -15;
P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);

= alloc(struct point2d);

print(); printint(P->x); print("\n");
print(); printint(P->y); print("\n");
return O;

S

A simple library

A

A sample application that uses it

How we

compile

and run
them

Linux Terminal

ccO -d simple.cO test.cO
.Ja.out

X coord: -15
y coord: 30
0

The C Language

C

® C was designed in 1972 to implement Unix

O People didn’'t know how to design good languages {
back then Dennis Ritchie

O C Is a terrible language

® C is pervasively used for system-level programming
O C Is very fast

® CO/C1 s a safe subset of C with contract annotations

Preempts many pitfalls of C Teaches good programming practices

® C is much more powerful than C0O/C1
O with great powers come great responsibilities
O and a lot dangers

The C Preprocessor

The C Preprocessor Language

® A typical C program consists of statements written in two
languages

O the C preprocessor language
» these directives all start with #

O C proper

® The first thing the C compiler does is to call the
C preprocessor

O a program that processes all the C preprocessor directives
O and produces code that is entirely in C proper

C compiler

. C Rest of the C
some_file.c ::>f‘> preprocessor > Compiler f‘>::> a.out

The C Preprocessor

® The C compiler first calls the C preprocessor

C compiler

. ::> C Rest of the C ::>
somlﬂle\c f‘> preprocessor /\ > Compiler f‘> a.out

C proper +
preprocessor directives

C proper only

Executable

® This happens behind the scenes when compiling a C
program

O but the C preprocessor can also be run independently as the

Unix command cpp
~

v You won't need this

Useful C Preprocessor Directives

® File inclusion

® Macro definitions

® Conditional compilation
® Macro functions

N\

There are many ... but this is
many more ... all we'll need

File Inclusion

® Used to dump the contents of a file in the current program

O similar to CO’s directive
» but not exactly 'More on this later

This is akin to CQO’s

—

O Includes system file stdio.h in the current program

O Includes local file lib/xalloc.h in the current program

T~

We never had a need
for this in CO

10

Header Files

® The only thing we

O by convention they end in @
» e.g., stdio.h

® A header file contains

O a library’s interface
» function prototypes
> type definitions

O other preprocessor directives

® Nothing prevents including other types
of files

O but it's rarely a good idea

/

An endless source of bugs

In a C file i1Is a header file

Never

#include
a .c file

Macro Definitions

® A way to give a name to a constant

O Example
0x80000000

® The program can then use the macro symbol

® The preprocessor replaces every occurrence of
with 0x80000000

C compiler

. C Rest of the C
some_file.c ::>f‘> preprocessor /\ > Compiler f‘>::> a.out

NN A

May contain replaced with its definition

11

Macro Definitions

® A way to give a hame to a constant

Amacro__ 0x80000000
/L \
A (macro) symbol its definition

® By convention, macro symbols are written in ALL CAPS

® This is a convenient way to give names to constants
O like , the smalllest value of type int

I

In CO, int_min() had to be a function
because only types and functions
can be defined at the top level

Macro Definitions

® Macros definitions can be any expression _
Not the most obvious

O nhot just constants definition of INT_MAX,
but bear with us

INT MIN-1 —

O Then, the preprocessor will expand
INT_MAX /2

to
0x80000000 -1/2

which C understands as
0x80000000 - (1 /2)

that is not what we meant X

® The C preprocessor does not understand operator
precedence

13

14

Macro Definitions

® The C preprocessor does not understand precedences
O Add parentheses to communicate intention

i (INT_MIN - 1) >

O Now, the preprocessor will expand
INT_MAX /2

to
(0x80000000 - 1) / 2

which Is what we meant \/

® Use macro definitions with care

O You will not need to define any macro in this course
» but you will need to know what they do

Conditional Compilation

® Allows compiling (or not) a program segment depending
on whether a symbol is defined

O Example

printf();

» If the symbol DEBUG has been defined

printf();
will be compiled as part of the program

» otherwise, it is cut out and never reaches the compiler proper

O DEBUG can be defined with

> — No need to define it as anything

» or on the compilation command —

More on this later

16

Conditional Compilation

® \We can provide an clause
O Example

X86_optimize(code);

generic_optimize(code);

® \We can also test if a symbol is not defined

O Example
ﬁ If is not defined,
0x80000000 define it

Macro Function Definitions

® \We can define macros with arguments
O Example
X*y
O Then, the preprocessor will expand
MULT(L+2,3-5)/2

The C preprocessor

to does not understand

1+2*3-5/2 operator precedence
which is not what we meant X

O We need to add lots of parentheses
(%) * (¥)) v

® Use macro function definitions with extreme care

O You will not need to define any macro function in this course

» but we will use exactly 3 of them
17

Contracts Emulation

® C does not have contracts
O this means you are on your own when code doesn’t work

® Some CO contracts can be emulated

® The header file contracts.h provides the macro functions

O (condition)
O (condition) — They serve the same

.. purposes as //@requires,
O (condltlon) [/@ensures and //@assert

//[@loop_invariant can be
emulated through judicious
uses of

19

Contracts Emulation

® The header file contracts.h
provides the macro function

O
O
O

Declares assert

(condition)
(condition)
(condition)

Undefine
were it to already
have been defined

_——

If we are not in mode,
define ASSERT to do nothing

Otherwise, define it as assert

SN

Same thing for
and

File lib/contracts.h

Do nothing
N
(COND) ((void)0)
(COND) ((void)0)
(COND) ((void)0)

(COND) assert(COND)
(COND) assert(COND)
(COND) assert(COND)

20

-only Code

® contracts.h also defines the macro function

(cmd)

O It executes the command cmd only if the symbol IS

defined

® This is useful to debug code with print statements

(

O The commanc

orintf(),

can be arbitrary

(

orintf(); bst_print(T); printf("\n"));

21

Translating a CO Program to C — |

22

High-level Approach

® \We translate each file separately
O test.cO - test.c

® The library interface becomes a header file
O simple.cO - simple.h, simple.c

23

Translating a Library to C

Huse <util> File simple.cO

[*** |Interface ***/

Int absval(int x)

[*@requires X > int_min(); @*/
[*@ensures \result >= 0; @*/ ;

struct point2d {
Nt X;
Inty;
I3

[*** Implementation ***/
Int absval(int x)
[/@requires x > int_min();
[/@ensures \result >= 0;

1
}

return x <0 ? -x: x;

\

J

We are not done
translating this code

(9)
[*** |nterface ***/ File simple.h
Int absval(int x)
[*@requires X > int_min(); @*/
[*@ensures \result >= 0; @* ;
struct point2d {
Int X;
inty;
L};
[** Implementation **+/ [Flle simple.c

24

Translating a Library Interface to C

Interfac[e>

(S

L}’

[*x* |nterface ***/ File simple.h

Int absval(int x)
[*@requires X > Iint_min(); @*/

This is valid C code
already

/

|

[*@ensures \result >=0; @* ;

struct point2d {
Int x;
inty;

Prototype contracts
are comments in C

J\
@ ... and '@ ...; @*/

do not have special meaning

We will need to update
this header file slightly
later

Translating a Library to C

® Translating the implementation, line by line

[=+ Implementation =/ [FlESMPEC — » Thjg j5 valid C up to here

jl> int absval(int x)

{ O absval Is mentioned in the header file
simple.h
> we need to It

25

26

Translating a Library to C

® Translating the implementation, line by line

< M’*/
jl> int absval(int x)

File simple.c

O Next we need to translate the
precondition

» [[@requires becomes
In the body of the function

» for this, we have to contracts.h

A\

We keep it in local
directory lib/

Translating a Library to C

® Translating the implementation, line by line

File simple.c

[*** Implementation ***/

<\ > / This is now a comment
Int absval(int x) /

jl> EITEEIUITTEE 5% & (it i) O int_min() is not predefined in C
{

(x>); O but the symbol
1 » 1S defined in the system header file

» to represents the smallest integer

27

28

Translating a Library to C

® Translating the implementation, line by line

i >

Int absval(int x)

jl> /l@requires x > int_min();

{
(x > INT_MIN);

O Next is the postcondition

» [[@ensures becomes
before every return statement

O in general, every place the function may return

» because we are returning a complex
expression, we need to save it in a
temporary variable
Q callit since it contains the value of \result

Translating a Library to C

® Translating the implementation, line by line

[+ Implementation =/ E2SREES) o Al remaining code
» either was added during the translation

» or was valid C already

Int absval(int x)
[/@requires X > int_min(); O We are done
/[l@ensures \result >= 0;:
{
(x > INT_MIN); ‘/
INt =X<0?-x:X
(result >= 0);

_> } result;

30

Translating a CO Program to C — |

31

Translating a Program File to C

® \We now translate the client of the library

File test.cO

#use <conio>

iInt main() {
struct point2d* =~ = alloc(struct point2d);
P->x = -15;
P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);

print(); printint(P->x); print(
print(); printint(P->y); print(
return 0;

);
);

=)

File test.c

We are not done
translating this code

32

Translating a Program File to C

® | et's proceed again line by line

File test.c

O The input/ouput system
functions of C are declared in
header file

33

Translating a Program File to C

® | et's proceed again line by line

int main() {

File test.c

O The function header is valid C

O The way allocated memory is
appropriated is different in C

» this is done by calling malloc

O malloc takes a size

» the number of bytes to allocate
Q in CO, alloc took a type

» the function sizeof computes the
number of bytes a type takes up
INn memory

» malloc 1s defined In
» sizeof Is predefined

Translating a Program File to C

® | et's proceed again line by line

File test.c

< h>D o malloc returns NULL when
it main® { there isn’'t enough me.mory
| struct point2d* - = malloc(sizeof(struct point2d)):; » the next dereference will be
unsafe

» which fails if there is
not enough memory

> better use that

34

Q and be really hard to debug
» A better approach is to abort

1 O The library xalloc.h defines

xmalloc T~

We keep it in local
directory lib/

Translating a Program File to C

® | et's proceed again line by line

File test.c

O assert is defined Iin system

qan > header file
iInt main() {
struct point2d* @alloc(sizeof(struct point2d));
P->x = -15;

: P->y = P->y + absval(P->x * 2);

35

Translating a Program File to C

® | et's proceed again line by line

File teste| O C has no dedicated print
functions for the primitive types
<] o .
o O Printing in C Is done using the
int main() { i ' ' '
struct point2d* = = xmalloc(sizeof(struct point2d)); function prlntf defined in
P->x = -15;
P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true); : :
jl> o printf takes a format string
with
) » placeholders for the values to print
» and these values as additional
arguments

N

printf takes a
variable number of arguments

36

37

Translating a Program File to C

® | et's proceed again line by lin

e

File test.c

int main() {
struct point2d* = = xmalloc(sizeof(struct point2d));
P->x = -15;
P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);
printf(, P->X);
printf(, P->y);
O;

%d means print the argument
as a decimal number

— /

There are lots of
different placeholders

O At this point, we have C code

we can compile

38

Compiling a C Program

Compiling a C Program

® Here’s how to compile our translated example

This is the name Local libraries
of the C compiler

~\ / Compiler flags ‘\ / Our code
A A
| 1 | 1

Linux Terminal

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c

Abort compilation
when there are
warnings
Keep extra
information
Display one more warning Define the
: _ Follow it bol
Display extra warnings pedantically SymDbo
Display all warnings Use the

C99 standard

39

Compiling a C Program

® Here’s how to compile our translated example

Local libraries

‘\/ Our code
|
| |

Linux Terminal

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c

O Notice that we only compile .c files
» not header file

® [el’s do it!

40

Compiling Our Program

Linux Terminal

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c
test.c: In function ‘main’:
test.c:6:38: invalid application of ‘sizeof’ to incomplete type ‘struct point2d’

struct point2d* P = xmalloc(sizeof());

test.c:7:4. dereferencing pointer to incomplete type ‘struct point2d’
P->x =-15;

test.c:8:17: implicit declaration of function ‘absval’; did you mean ‘abs’?

]

® Lots of errors!
O These three are about struct point2d and absval
O gcc does not know about these names when compliling test.c

Separate Compilation

® \When compiling multiple files in CO, they are combined In
a single file that gets compiled

® In C, each file Is compiled separately
O then the compiled files are combined into a.out by the linker

C compiler
filel.c | > > E—
file2.c | C :) sl t_he :) Linker a.out
. preprocessor C Compiler
file3.c [4‘) 4)

O Each file needs to know about all the names it uses
> the header files containing those names

43

Including Header Files

o simple.h to provides the missing names to test.c

File test.c

ol
Fin >
iInt main() {
struct point2d* = = xmalloc(sizeof(struct point2d));
P->x = -15;
P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);
printf(, P->X);
printf(, P->y);
O;

44

Including Header Files

® Before we compile again ...

File test.O

/ >
\
int main() {
struct point2d* > = xmalloc(sizeof(struct point2d));
P->x = -15;
P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);
printf(, P->X);
printf(, P->y);
O;

O A header file can end up
iIncluded multiple times

» often via other header files

O Let's see what happens if
we simple.h twice

Compiling Our Program

Linux Terminal

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c
In file included from test.c:5:0:

simple.h:10:8: redefinition of ‘struct point2d’
struct {

In file iIncluded from test.c:4:0:
simple.h:10:8: note: originally defined here

® siruct point2d is defined twice
O once each time we simple.h

® This Is an error e

CO notices this and skips
s beyond the first one

45

Header Guards

® Use conditional compilation to make sure the definitions Iin

a header file are included just once -
Zsome unique symbol
(6 . .
[*** |nterface ***/ File simple.hﬂ O If IS not deflned
» define it
-
< > > provide the interface definitions
Interface »| — O If IS defined
Int absval(int x) > do nothing

[*@requires X > int._min(); @*/
[*@ensures \result >= 0; @* ;

| O The first time we simple.h
struct point2d { _ _
int X; > IS not defined
inty; a the interface definitions are d
) O Any time after that

Q r > IS defined
Q the interface definitions are not d

46

Compiling Our Program

Linux Terminal

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c
test.c: In function ‘main’:

test.c:12:25: ‘true’ undeclared (first use in this function); did you mean ‘free’?

assert(P->y > P->x && true);

#

® One error only!
O true?

® Dool Is not a primitive type in C
O To use the booleans, we need to <stdbool.h>

47

48

Booleans

® Dbool Is not a primitive type in C

——wg O Touse booleans, we need
to <stdbool.h>

|
Fin Lh=>
iInt main() {

struct point2d* =~ = xmalloc(sizeof(struct point2d));

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

printf(, P->X);

printf(, P->y);

O;

Compiling Our Program

Linux Terminal

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c

#

® Success!

® Let'srunit

49

50

Translating a CO Program to C — lI

int main() {

Runn I N g Our Pro g raim ofuet po iz = xmalloc(sizeof(Struct pointzc))

P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);
printf(, P->X);
printf(, P->y);

® [et'srunit e

Linux Terminal

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c
.Ja.out

X coord : -15
y coord: 1073741854

® 1073741854 does not look right
O CO gave us back 30

® C does not initialize allocated memory to default value
O It uses whatever Is at that location

® |et's run it again

51

Running Our Program

® |et's run it again

int main() {

}

struct point2d* = = xmalloc(sizeof(struct point2d));
P->x = -15;
P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);
printf(, P->X);
printf(, P->y);
0;

O C does not initialize allocated memory to default value

Linux Terminal

./a.out

x coord : -15

y coord: 1073741854
.Ja.out

Assertion failed: (P->y > P->x && true), function main, file test.c, line 13.
Abort trap: 6

./a.out

X coord : -15

y coord: 30

./a.out

X coord : -15

y coord: 1879048222

® Different executions produce different values

O This Is an endless source of bugs
52

This was impossible in CO

® C does not initialize allocated memory to default value
O This makes C fast
O But this is dangerous

File test.c

O The obvious fix Is to
Initialize P->y

O But it is rarely this obvious

iInt main() { _
struct point2d* = = xmalloc(sizeof(struct point2d)); O A more systemaﬂc way to

P->x =-15; . e ae g
P>y = P_>y + absval(P->x * 2). find uninitialized memory
assert(P->y > P->x && true); bugs (and others) IS O use
printf(, P->X); the valgrind tool
printf(, P->y);

O;

53

Valgrind

® Just type valgrind in front of the executable

Linux Terminal

valgrind ./a.out

==9073== Memcheck, a memory error detector

==9073== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==9073== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==9073== Command: a.out

==9073==
==9073== Conditional jump or move depends on uninitialised value(s)
==9073==-_at 0x10891B: main (test.c:13) N

==9073==
x coord: -15

_ _ Approximate line where

a statement depending
on an unitialized value
has been executed

54

Pa¥

Initializing Memory

® C does not initialize allocated memory to default values
O Fix It by initializing P->y

File test.c

int main() { _
struct point2d* = xmalloc(sizeof(struct point2d)); O Let’s try NOW agaln

P->x = -15;
P>y =0;
P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);
printf(, P->X);
printf(, P->y);
O;

}

Initializing Memory

® | et's recompile and run it again

Linux Terminal

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c
.Ja.out

X coord: -15
y coord: 30

® This is the expected output
O Same as with CO

56

Initializing Memory

® Let's run it with valgrind too

valgrind ./a.out

pgelole] (o MENRS

y coord: 30

==9197==

==9197== HEAP_SUMNMARY"

==9197== In use at exit: 8 bytes in 1 blocks

==9197==__total heap usage: 2 allocs, 1 frees, 1,032 bytes allocated
==9197==

==0197== LEAK SUMMARY:

==819/7/== definitely lost: 8 bytes in 1 blocks

==919/7== Indirectly iost: U bytes In O blocks

==9197== possibly lost: O bytes in O blocks

==9197== still reachable: 0 bytes in 0 blocks

==9197== suppressed: 0 bytes in O blocks

==9197== Rerun with --leak-check=full to see details of leaked memory

58

Memory Leaks

® \When the program exits, 8 bytes are still in use
O that’s the struct point2d it allocated

® CO and C manage memory differently

O CO Is garbage-collected
» memory is reclaimed whenever needed

O In C, the programmer needs to free allocated memory once It is not
used any more

» memory is never reclaimed

® A program has a memory leak if unused memory Is not freed
O In long-running programs

O games, browsers, operating systems, ...
memory leaks cause the program to get slower and slower and
eventually crash

59

Memory Leaks

® A program has a memory leak if unused memory is not freed

O We avoid this by freeing allocated memory once it is not used any
more

O By the end of a program, no allocated memory shall be still in use

® The C motto

If you allocate Iit, you free It

60

Pa¥

Freeing Memory

® |n C, the programmer needs to free allocated memory
once it Is not used any more

iInt main() {
struct point2d*
P->x = -15;
P->y =0;

printf(

[:_)rintf(
(free(P);

O;
}

File test.c

= xmalloc(sizeof(struct point2d));

P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);

, P->X);
, P->y);

O Let’'s run valgrind again

Freeing Memory

® [et's run it with valgrind again

Linux Terminal

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c
valgrind ./a.out

X coord: -15

y coord: 30

==0519==

==9519== HEAP SUMMARY:

==9519== In use at exit: 0 bytes in 0 blocks

==9519== total heap usage: 2 allocs, 2 frees, 1,032 bytes allocated
==0519==

==9519== All heap blocks were freed<-- no leaks are possible

61

62

File test.c

ree(P) O

What does free(P) do?

® [t gives the memory pointed to by P back to the computer

S~
At address OxBB8
® The computer may
O leave It untouched
: P o
O use It for another malloc

O give it back to the OS
O ...

OxBB8

=

i i D
® P still contains the same address 2 BIICLSELD N

O but this address does not belong to the program any more

® P can be assigned to other values
e.g.. P = malloc(sizeof(struct point2d));,

63

C

Freeing Memory Wrong

® \We must not free memory before we are done using it

File test.c

int main() {
struct point2d*
P->x = -15;
P->y =0;
P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);

= xmalloc(sizeof(struct point2d));

O Let’'s run valgrind again

/J. This memory may be inaccessible

}

,p.LLDJ.LLD , P->X);
_free(P);
printf(, P->y); .
0;

\| or it contain different data

File test.c

Freeing Memory Wrong

® [et's run it with valgrind again

Linux Terminal

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c
valgrind ./a.out

)-(. .coord: -15 Line where the bad access occurred
==9550==_Invalid read of size 4

==9550== at 0x1089B0: main (test.c:17)

==9550== Address 0x522d044-is 4 bytes inside a block of size 8 free'd

==9550== at O0x4C30D3B: free (in /usr/lib/valgrind/vgpreload memcheck-amd64-linux.so)

==9550== by 0x1089AB: main (test.c:16)

==9550== Block was alloc'd at

==9550== at Ox4C2FBOF: malloc (in /usr/lib/valgrind/vgpreload _memcheck-amd64-
linux.so0)

==9550== by 0x1088D4: xmalloc (xalloc.c:29)

==9550== by 0x10891D: main (test.c:10)

65

Freeing Memory Wrong

® \We must not free memory more than once

File test.c

int main() {
struct point2d*
P->x = -15;
P->y = 0;
P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);

= xmalloc(sizeof(struct point2d));

printf(, P->X);
| , P->y);
free(P);
free(P);
O;

}

O Let’'s run valgrind again

File test.c

Freeing Memory Wrong

® [et's run it with valgrind again

Linux Terminal

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c
valgrind ./a.out

X coord: -15 Line where the memory was freed again

y coord: 30

==9631== Invalid free() / dlelete / delete[] / reallocg

==9631== at0x4C30D3B: free (in /usr/lib/vz#iind/vgpreload memcheck-amd64-linux.so)

==9631== by 0x1089D1: main (test.c:18)

==9631== Address 0x522d040 is 0 bytes inside a block of size 8 free'd

==9631== at 0x4C30D3B: free (in /usr/lib/valgrind/vgpreload memcheck-amd64-linux.so)

==9631== by 0x1089C5: main (test.c:17)

==9631== Block was alloc'd at

==9631== at Ox4C2FBOF: malloc (in /usr/lib/valgrind/vgpreload memcheck-amd64-
linux.s0)

==9631== by 0x1088D4: xmalloc (xalloc.c:29)

==9631== by 0x10891D: main (test.c:10)

67

Memory Ownership

Data Structure Libraries in C

® Data structures allocate memory (5

void* entry;
void* key;

» e.g., a BST implementation of a dictionary
key entry_key fn(entry e)
Q all the nodes of the BST [*@requires e = NULL; @* ;
Q the diCtionary header bool key _compare_fn(key k1, key k2)

] k/*@ens.ures. -1 <=\result && \result <=1; @*/; D
O This memory must be freed

(Library Interface 6

® But the client knows nothing about T e

dict_t dict_new(entry key fn*

I I key compare_fn* :)
the implementation reaures nty ey VL 48 compae UL @
[*@ensures \result '= NULL; @* ;
entry dict_lookup(dict_t D, key k)
I*@requires D '= NULL; @*/ ;
® The interface must provide a void dictinsert(dictt O, entry)
i . [*@requires D '= NULL && e '= NULL; @* ;
function to free it oty diot et ¢
[*@requires D '= NULL; @* ;

Void dict_free(dict_t D) Y
[*@requires D = NULL; @*/ i g
M

69

Data Structure Libraries in C

® Data structures allocate memory

O This memory must be freed
Q all the nodes of the BST and the dictionary header

® But what about the data itself
» e.g., the entries the client stored in the dictionary

O The library should not always free them
» because the client may need them later

O But sometimes it should
» because the client won’'t need them later

O In any case, only the client knows how to free the data

® L et the client tell the library whether it should free the data
or not

O specify who owns the data when freeing the data structure

70

Memory Ownership

® The library needs the client to specify
who owns the memory used by the
data

® The client can declare a function

that frees the data C

® dict free takes such a function as a
second argument

O If called with an actual function, 1t will use
It to free the data

O If called with NULL, 1t will leave the data
alone

(Client Interface 6

void* entry;
void* key;,

key entry_key_fn(entry e)
[*@requires e '= NULL; @* ;

bool key compare_fn(key k1, key k2)
[*@ensures -1 <= \result && \result <=1; @*/ ;

void entry_free_fn(entry T%

Library Interface 6
Il typedef *dict_t;
dict_t dict_new(entry key fn*)
key compare_fn*)

[*@requires entry_key != NULL && compare '= NULL @*/

[*@ensures \result '= NULL; @* ;
entry dict_lookup(dict_t D, key k)

I*@requires D '= NULL; @* ;
void dict_insert(dict_t D, entry e)

[*@requires D '= NULL && e '= NULL; @*/ ;
entry dict_min(dict_t D)

[*@requires D '= NULL; @* ;
void dict_free(dict_t entry_free_fn* Fr)

[*@requires D = NULL; @*; kg
\ \

71

Memory Ownership

® Library implementation

[*** BST dictionary Implementation ***/

(Library Interface Q)
Il typedef *dict_t;
dict_t dict_new(entry key fn* ,
key compare_fn*)

[*@requires entry_key != NULL && compare != NULL @*/

I*@ensures \result = NULL, @*
entry dict_lookup(dict_t D, key k)

[*@requires D !'= NULL; @*/ ;
void dict_insert(dict_t D, entry e)

[*@requires D '= NULL && e '= NULL; @* ;
entry dict_min(dict_t D)

[*@requires D '= NULL; @* ;

[*@requires D = NULL;

<mdict_free(dict_t , entry_free fn*

@

typedef struct tree_node tree;

/[l '= NULL

void tree_free(tree *T, entry_free fn *Fr) {
(is_bst(T));
(T == NULL) :
(Fr '= NULL) (*Fr)(T->data); If Fris not NULL,
tree_free(T->left, Fr); It is used to free the data
tree_free(T->right, Fr);
free(T); Free each node of the tree| | structtree_node {
} tree* left;
entry data;
_ _ _ tree* right;
void dict_free(dict *D, entry free fn *Fr) {):
(is_dict(D)); |
tree_free(D->root, Fr); Sttrr‘é‘;‘i'ocg?header{
}free(D); Free the dictionary header| |y |

typedef struct dict_header dict;

72

Summary

73

Balance Sheet

Lost

Gained

« Contracts

« Safety

« Garbage collection

* Memory initialization

* Preprocessor

* Whimsical execution

« Explicit memory management
« Separate compilation

