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Balance Sheet … so far

Lost Gained

• Contracts

• Safety

• Garbage collection

• Memory initialization

• Preprocessor

• Whimsical execution

• Explicit memory management

• Separate compilation

2



Arrays in C
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 Here’s how we create a 5-element int array

int *A = malloc(sizeof(int) * 5);

 In C arrays and pointers are the same thing*

oNo special array type

oNo special allocation instruction

malloc returns NULL when we have run out of memory

 we use xmalloc instead

Creating an Array

The type is int*,

not int[]

We use malloc like for pointers,

not a special array-only instruction

4 *on the heap



int *A = xmalloc(sizeof(int) * 5);

 But what does it do?

o It allocates contiguous space that can contain

5 ints on the heap

o and returns its address

Creating an Array

OS

OS
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Using an Array

 Arrays are accessed like in C0

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

o Like in C0, C arrays are 0-indexed

contains

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

7 12 1

A[0] A[1] A[2] A[3] A[4]

A[0] refers to the 1st int pointed to by A,

A[1] to the 2nd int pointed to by A,

…

A[4] to the 5th int pointed to by A

A

int main() {

int *A = xmalloc(sizeof(int) * 5);

...

}

0xBB0
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Pointer Arithmetic

 If A is a pointer, then *A is a valid expression

oWhat is it?

 A is an int*, so *A is an int

o it refers to the first element of the array

o *A is the same as A[0]

*A = 42;

sets A[0] to 42

int main() {

int *A = xmalloc(sizeof(int) * 5);

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

...

}

contains

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

7 12 1

A[0] A[1] A[2] A[3] A[4]

A 0xBB0
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Pointer Arithmetic

 A is the address of the first element of the

array

 What is the address of the next element?

o It’s A + one int over: A+1

o In general the address of the i-th element of A is A+i

 This is called pointer arithmetic

int main() {

int *A = xmalloc(sizeof(int) * 5);

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

*A = 42;

...

}

contains

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 1

A[0] A[1] A[2] A[3] A[4]

A 0xBB0

A plus i elements over

Not A plus i bytes over
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Pointer Arithmetic

 A+i is the address of A[i]

o so *(A+i) is A[i]

 the value of the element A[i]

o so

printf("A[1] is %d\n", *(A+1));

prints 7

 In fact, A[i] is just convenience syntax for *(A+i)

int main() {

int *A = xmalloc(sizeof(int) * 5);

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

*A = 42;

...

}

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 1

A[0] A[1] A[2] A[3] A[4]

*A *(A+1) *(A+2) *(A+3) *(A+4)

In the same way that p->next

is just convenience syntax

for (*p).next
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Pointer Arithmetic

 Pointer arithmetic is one of the most error-prone 

features of C

 But no C program needs to use it

o Every piece of C code can be rewritten without

 change *(A+i) to A[i]

 change A+i to … (later)

 Code that doesn’t use pointer arithmetic

o is more readable

o has fewer bugs

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 1

A[0] A[1] A[2] A[3] A[4]

*A *(A+1) *(A+2) *(A+3) *(A+4)

Danger
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Initializing Memory

 (x)malloc does not initialize

memory to default value

o A[3] could contain any value

 To allocate memory and initialize it to all zeros, use the 

function calloc

int *A = calloc(5, sizeof(int));

 calloc returns NULL if there is

no memory available

 lib/xalloc.h provides xcalloc

that aborts execution instead

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 1

A[0] A[1] A[2] A[3] A[4]

int main() {

int *A = xmalloc(sizeof(int) * 5);

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

*A = 42;

...

}

calloc takes two arguments,

while malloc takes only one

Number of elements Size of each element

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 0 1

A[0] A[1] A[2] A[3] A[4]

Now A[3] contains 0
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Freeing Arrays

 A was created in allocated memory

o on the heap

 Therefore we must free it before the program exits

o otherwise there is a memory leak

free(A);

 The C motto

If you allocate it, you free it

int main() {

int *A = xcalloc(5, sizeof(int));

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

*A = 42;

free(A);

}
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The Length of an Array

 In C0, we can know the length of an array

only in contracts

 In C, there is no way to find out the length of an array

oWe need to keep track of it

meticulously

 But free knows how much memory to give back to the OS

o The memory management part of the run-time keeps track of the 

starting address and size of every piece of allocated memory …

o… but none of this is accessible to the program

int main() {

int *A = xcalloc(5, sizeof(int));

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

*A = 42;

free(A);

}

C0 stores it secretly

It is written nowhere
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Arrays Summary

Arrays in C

 Arrays are pointers

 Created with (x)malloc

 does not initialize elements

or with (x)calloc

 does initialize elements

 Must be freed

 No way to find the length

Arrays in C0

 Arrays have a special type

 Created with alloc_array

 Initializes the elements to 0

 Garbage collected

 Length available in contracts



Undefined Behavior

Danger
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Out-of-bound Accesses

 What if we try to access A[5]?

printf("A[5] is %d\n", A[5]);

 In C0, this is a safety violation

o array access out of bounds

 In C, that’s *(A+5)

o the value of the 6th int starting from the address in A

 What will happen?

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 0 1

A[0] A[1] A[2] A[3] A[4]

This is outside of A

int main() {

int *A = xcalloc(5, sizeof(int));

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

*A = 42;

}
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Out-of-bound Accesses

 What will happen?

printf("A[5] is %d\n", A[5]);

 It could

o print some int and continue execution

o abort the program

o crash the computer

o do weirder things

(within the laws of physics)

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 0 1

A[0] A[1] A[2] A[3] A[4]

This is outside of A

Google joke:

order pizza for the whole team

int main() {

int *A = xcalloc(5, sizeof(int));

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

*A = 42;

}
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Out-of-bound 

Accesses

printf("A[5] is %d\n", A[5]);

could do different things on different runs

o it could work as expected most of the times but not always

 corrupt the data and crash in mysterious ways later

 Same thing with

printf("A[-1] is %d\n", A[-1]);

printf("A[1000] is %d\n", A[1000]);

 But

printf("A[10000000] is %d\n", A[10000000]);

will consistently crash the program
with a segmentation fault

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 0 1

A[0] A[1] A[2] A[3] A[4]

This is outside of A

# gcc -Wall …

# ./a.out

A[5] is 1879048222

A[1000] is -837332876

A[-1] is 1073741854

Segmentation fault (core dumped)

Linux Terminal
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Debugging Out-of-bound Accesses

 The code could work as expected most of the times but 

not always

o Extremely hard to debug

 Valgrind will often point out out-of-bound accesses

printf("A[5] is %d\n", A[5]);

# valgrind ./a.out

==14980== Invalid read of size 4

==14980==    at 0x1089C2: main (test.c:40)

==14980==  Address 0x522d054 is 0 bytes after a block of size 20 alloc'd

==14980==    at 0x4C31B25: calloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-

linux.so)

==14980==    by 0x108878: xcalloc (xalloc.c:16)

==14980==    by 0x108965: main (test.c:29)

…

Linux Terminal

Line where the bad access occurred

Line where it was allocated

In this code, ints are 4 bytes

A contains 5 ints,

so it’s 20 bytes long
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Debugging Out-of-bound Accesses

 Valgrind will often point out out-of-bound accesses

A[5] = 15122;

# valgrind ./a.out

==15847== Invalid write of size 4

==15847==    at 0x108982: main (test.c:46)

==15847==  Address 0x522d054 is 0 bytes after a block of size 20 alloc'd

==15847==    at 0x4C31B25: calloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-

linux.so)

==15847==    by 0x108838: xcalloc (xalloc.c:16)

==15847==    by 0x108925: main (test.c:29)

…

Linux Terminal

Line where the bad access occurred
In this code, ints are 4 bytes

Here we are writing to A[5]

Line where it was allocated
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Debugging Out-of-bound Accesses

 Valgrind will often point out out-of-bound accesses

printf("A[-1] is %d\n", A[-1]);

# valgrind ./a.out

==15091== Invalid read of size 4

==15091==    at 0x1089C2: main (test.c:42)

==15091==  Address 0x522d03c is 4 bytes before a block of size 20 alloc'd

==15091==    at 0x4C31B25: calloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-

linux.so)

==15091==    by 0x108878: xcalloc (xalloc.c:16)

==15091==    by 0x108965: main (test.c:29)

…

Linux Terminal

Line where the bad access occurred

Line where it was allocated

In this code, ints are 4 bytes

A contains 5 ints,

so it’s 20 bytes long
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Debugging Out-of-bound Accesses

 Valgrind will often point out out-of-bound accesses

printf("A[1000] is %d\n", A[1000]);

o It doesn’t give as much information further away from the array

# valgrind ./a.out

==15063== Invalid read of size 4

==15063==    at 0x1089C4: main (test.c:41)

==15063==  Address 0x522dfe0 is 3,904 bytes inside an unallocated block of size 4,194,112 

in arena "client"

…

Linux Terminal

Line where the bad access occurred
In this code, ints are 4 bytes
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Debugging Out-of-bound Accesses

 Valgrind will often point out out-of-bound accesses

printf("A[10000000] is %d\n", A[10000000]);

oWhat does this mean?

# valgrind ./a.out

==15113== Invalid read of size 4

==15113==    at 0x1089C4: main (test.c:44)

==15113==  Address 0x7852a40 is not stack'd, malloc'd or (recently) free'd

==15113== 

==15113== 

==15113== Process terminating with default action of signal 11 (SIGSEGV)

==15113==  Access not within mapped region at address 0x7852A40

==15113==    at 0x1089C4: main (test.c:44)

…

Segmentation fault (core dumped)

Linux Terminal

Line where the bad access occurred
In this code, ints are 4 bytes
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Out-of-bound Accesses

printf("A[5] is %d\n", A[5]);

printf("A[-1] is %d\n", A[-1]);

printf("A[1000] is %d\n", A[1000]);

all access memory in the heap, near A

printf("A[10000000] is %d\n", A[10000000]);

accesses memory outside in the heap

o in a different segment of memory

o That’s why the program crashes with

a segmentation fault

OS

OS

main …

hdict_new …

…

"apple" …

"lime" …
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0xBB0
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Debugging Out-of-bound Accesses

 Valgrind cannot catch all out-of-bound accesses

A[-1000] = 42;

o Valgrind keeps track of likely locations where programmers 

make mistakes

e.g., off-by-one errors

o it does not monitor the whole memory

# valgrind ./a.out

==16357== 

==16357==

…

Linux Terminal

No error reported!
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Undefined Behavior

Out-of-bound accesses may do different things on different runs

 Why?

 Because the C99 standard does not specify what should 

happen

 Out-of-bound accesses are undefined behavior

o different compilers do different things

o often just carry on

 read or write other program data

unless accessing a restricted segment

That’s what will make

the code run fastest

But debugging

is a nightmare
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Undefined Behavior

 Every safety violation in C0 is undefined behavior in C

o accessing an array out-of-bound

o dereferencing NULL

o (plus other violations we will examine later)

 But there is more in C than in C0

 Almost anything else slightly weird is undefined behavior 

in C

o reading uninitialized memory

even if correctly allocated

o using memory that has been freed

o double free

o…
More later

C0 was engineered this way 

on purpose:

• everything that could happen

during execution is defined

• bad thing that could happen

abort the program
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Undefined Behavior

 What’s so bad about them?

o Security vulnerabilities

Heartbleed, Stuxnet

o Software bugs

buffer overflow

 Why does C have undefined behaviors?

o These were the early days of programming language research

 Why haven’t they been fixed?

o Some legacy code relies on the behavior of a specific compiler 

on a specific OS to do its job

Fixing it would break this code

Danger
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Aliasing
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Aliasing into an Array

int *B = A+2;

 B contains the address of

the third element of A

 But B has type int*

o an array of ints

B[0] is A[2]

B[1] is A[3], …

B B+1 B+2

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 1

A[0] A[1] A[2] A[3] A[4]

B[0] B[1] B[2]

OS

OS

main …

hdict_new …

…

"apple" …

"lime" …

A 0xBB0

0x0AC

0
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3

4

0x080 20

0x090 10

0x088 50

5 3
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0xDDC
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0xBB0

B 0xBB8

Pointer arithmetic lets us grab

the address of an element

in the middle of an array

30



Aliasing into an Array

int *B = A+2;

assert(B[0] == A[2]);

assert (B[1] == A[3]);

assert(*(B+2) == A[4]);

 We have a new form of aliasing

B[1] = 35;

assert(A[3] == 35);

B B+1 B+2

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 1

A[0] A[1] A[2] A[3] A[4]

B[0] B[1] B[2]

B[0] is A[2],

B[1] is A[3], …

B B+1 B+2

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 35 1

A[0] A[1] A[2] A[3] A[4]

B[0] B[1] B[2]
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Aliasing into an Array

int *B = A+2;

B[1] = 35;

 We are not allowed to free B

o It was not returned by (x)malloc or (x)calloc

oDoing so is undefined behavior

B B+1 B+2

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 35 1

A[0] A[1] A[2] A[3] A[4]

B[0] B[1] B[2]

32



Casting Pointers in C
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Casting Pointers

 In C1, we can

o cast any pointer to void*

o cast void* only to the original pointer type

 In C, we can cast any pointer to any pointer type

o this never triggers an error

char *C = (char*)A;

As C, it views the space occupied by A as a char array

C

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 35 1

A[0] A[1] A[2] A[3] A[4]

C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9] C[10] C[11] C[12] C[13] C[14] C[15] C[16] C[17] C[18] C[19]

A char is 1 byte,

so each int is 4 chars
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Casting Pointers

 C[16] is the 17th character in C

o i.e., the first byte of A[4]

 Since A[4] is 1 == 0x00000001

owe expect C[16] to be 0

C

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 35 1

A[0] A[1] A[2] A[3] A[4]

C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9] C[10] C[11] C[12] C[13] C[14] C[15] C[16] C[17] C[18] C[19]
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Casting Pointers

printf("The 16th char in C is %d\n", C[16]);

 We expect C[16] to be 0

o Integers can be represented in various way over 4 bytes

gcc uses little-endian format

C

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 35 1

A[0] A[1] A[2] A[3] A[4]

C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9] C[10] C[11] C[12] C[13] C[14] C[15] C[16] C[17] C[18] C[19]

# gcc -Wall …

# ./a.out

The 16th char in C is 1

Linux Terminal

Why?

The most significant byte

has the highest address
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Casting Pointers

 As an array, each element of D is two ints

o accessing D[1].y is the same as accessing A[5]

out of bounds

undefined behavior

 When casting pointers, we must be mindful of alignment

struct point {

int x;

int y;

};

…

struct point *D = (struct point *)(A + 2);

printf("(x0,y0) = (%d, %d)\n", D[0].x, D[0].y);

printf("(x1,y1) = (%d, %d)\n", D[1].x, D[1].y);

D D+1

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 35 1

A[0] A[1] A[2] A[3] A[4]

D[0] D[1]

D[0].x D[0].y D[1].x D[1].y

37

D[0] and D[1] are not pointers,

so we need to use . instead of ->



Casting Pointers

 Careless casting can be outright dangerous

In practice,

 cast a pointer of arbitrary type to void* or char* only

o accessing pointers cast to other types is undefined behavior

struct thermonuclear_device_controller {

…

};

…

struct thermonuclear_device_controller *danger = (struct thermonuclear_device_controller*)(A + 2);

activate(danger[17].warhead);
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Casting to void*

 In C1, void* stands for a pointer of any type

o this is the basis for building generic data structures

as long as the elements are pointers

 In C, void* is also the type of an array of … void
but void is not a type in C

o void* can be viewed as the address of the first element of any 

array

 there is no way to infer the size of the elements

nor the number of elements

 With this, we can write generic operations on arrays with 

arbitrary elements

o not just pointers

39



Generic Array Operations

 We can write generic operations on arbitrary arrays by

o casting their address to void*

o specifying the element size

o specifying the number of elements

 Example: a generic sort function

void sort(void *A, int elem_size, int num_elem, compare_fn *cmp);

The array to be sorted,

as a void*

The number of bytes

of the elements of A

The number of

elements of A

A function to

compare elements

40



Stack Allocation
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Stack-allocated Arrays

 In C0, arrays can only live on the heap

 C allows creating arrays on the stack

o these are stack-allocated arrays

 The instruction

int E[8];

allocates an 8-element int array on the stack

o It is accessed using the normal array notation

E[0] = 3;

E[1] = 2 * E[0];

OS

OS

main …

hdict_new …

…

"apple" …

"lime" …

A 0xBB0

0x0AC

0x0

0xFF…FF

S
T
A

C
K

H
E

A
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T
E

X
T

D
A

T
A

main

0 1 2 3 4

0xBB0

0 1 2 3 4 5 6 7

3 6E
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Stack-allocated Arrays

 Stack-allocated arrays can be initialized to 

array literals

int F[] = {2, 4, 6, 8, 3};

allocates a 5-element int array on the stack

and initializes with the given values

 Array literals are really useful to write test 

cases

o but they cannot be very big

OS

OS

main …

hdict_new …

…

"apple" …

"lime" …

A 0xBB0

0x0AC

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4

0xBB0

0 1 2 3 4 5 6 7

3 6E

0 1 2 3 4

2 4 6 8 3F

The compiler will figure out

the size of the array

The initial elements of F
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Stack-allocated Structs

 Similarly, C allows allocating structs on the 

stack

struct point p;

o and we can conveniently initialize them

struct point q = { .x = 15, .y=122 };

 Stack-allocated structs are not pointers

o their fields must be accessed using the dot 

notation

p.x = 9;

p.y = 7;

printf("p is (%d, %d)\n", p.x, p.y);
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Disposing of Stack-allocated Data

 The space for stack-allocated arrays and 

structs is reclaimed when exiting the 

function that declared them

oNo need to free them

o In fact, this is undefined behavior!

 Because of this they cannot be used for 

traditional data structures

o if queue_new were to allocate a queue on the 

stack, other queue functions wouldn’t be able 

to use it when it returns

Traditional queues must be heap-allocated
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Address-of

46



Capturing Memory Addresses

 In C1, & can only be used on function 

names

 In C, & can get the address of anything 

that has a memory address

o functions

o local variables

o fields of structs

o array elements

 In general, for any exp for which 

exp = …

is syntactically valid, we can write

&exp
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Capturing Memory Addresses

 local variables

int i = 11;

increment(&i);

 fields of structs

increment(&p.y);

struct point *q = calloc(1, sizeof(struct point));

increment(&(q->y));

 array elements

o increment(&A[3]);

o increment(&F[2]);
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void increment(int *p) {

REQUIRES(p != NULL);

*p = *p + 1;

}

Increments an int* by 1

i 11

x y

0 0

qi is now 12

p.y is now 8

q->y is now 1

A[3] is now 36

F[2] is now 7

Initializes

q to (0,0)










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Pointer Arithmetic

 All code using pointer arithmetic can be rewritten without

oCode is more readable

o and has fewer bugs

 Change

o *(A + i) to A[i]

o A + i to &A[i]
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Bad Uses of Address-of

 In general, for any exp for which 

exp = …

is syntactically valid, we can write

&exp

o &(i+2)

 i+2 = 7; is not legal

o &(A+3)

A+3 = xcalloc(4, sizeof(int)); is not legal

o &&i

&i = xmalloc(sizeof(int)); is not legal






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Really Bad Uses of Address-of

 Returns the address of a stack value that will be 

deallocated upon return!

o The next function call will overwrite it

 This is a huge security vulnerability



int* bad() {

int a = 1;

return &a;

}

Recent versions of gcc

stopped allowing it
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Strings in C
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Strings

 There is no type string in C

 Strings are just arrays of characters

o of type char*

o The string syntax

"hello"

is just convenience syntax for an array containing 'h', 'e', …

 Given

char *s1 = "hello";

the statements

printf("%c%c%c%c%c\n", s1[0], s1[1], s1[2], s1[3], s1[4]);

printf("%s\n", s1);

produce the exact same output
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NUL

char *s1 = "hello"; 

printf("%s\n", s1);

 How does printf know when to stop printing characters?

o the length of an array is recorded nowhere

 The end of a string is indicated by the NUL character

owritten '\0'

owhose value is 0

 Thus, s1 is an array of six characters and s1[5] == '\0'
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The <string> Library

 The <string> library contains lots of useful functions to 

work with strings

o strlen returns the number of characters in a string

up to the first NUL character, excluded

char *s1 = "hello"; 

assert(strlen(s1) == 5);

 s1 is an array of 6 characters but it has length 5

o strcpy(dst, src) copies all the characters of string src to dst

up to the NUL character, included

dst must be big enough to store all the characters in src plus NUL

o and many more utility functions

This is an endless

source of bugs

This is an endless

source of bugs
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Strings

 Strings can live in three places

o in the DATA segment

char *s1 = "hello"; 

 these strings are read-only

s1[0] = 'm';

is undefined behavior

no need to free them

in fact, that’s undefined behavior

o in the heap

o on the stack
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Strings

 Strings can live in three places

o in the DATA segment

o in the heap

char *s2 = xmalloc(strlen(s1) + 1);

strcpy(s2, s1) 

s2[0] = 'Y';

free(s2);

we need to allocate one extra character for

the NUL terminator

we need to free them

o on the stack
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This is an endless

source of bugs

Danger
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Strings

 Strings can live in three places

o in the DATA segment

o in the heap

o on the stack

char s3[] = "world"; 

char s4[] = {'s', 'k', 'y', '\0'};

 if using array literals, we often need to

include the NUL terminator

no need to free them
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Strings in Summary

 Strings can live in three places

o in the DATA segment

char *s1 = "hello";

o in the heap

char *s2 = xmalloc(strlen(s1) + 1);

strcpy(s2, s1) 

s2[0] = 'Y';

free(s2);

o on the stack

char s3[] = "world"; 

char s4[] = {'s', 'k', 'y', '\0'};
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Strings in Summary

Writable? Allocation Deallocation

DATA No
Automatic

(when execution starts)
N/A

Stack Yes
Automatic

(when function is called)

Automatic

(when function returns)

Heap Yes
Manual

(with malloc)

Manual

(with free)

OS

OS

main …

increment…

…

"hello"

s1 0xCB0

0xCN-

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'0xBB0

0 1 2 3 4 5

'w' 'o' 'r' 'l' 'd' '\0's3

R
e
a
d
 o

n
ly

s2 0xBB0

0 1 2 3

's' 'k' 'y' '\0's4

60

 Strings can live in three places



Summary
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Undefined Behavior

 Reading/writing to non-allocated memory

 Reading uninitialized memory

o even if correctly allocated

 Use after free

 Double free

 Freeing memory not returned by malloc/calloc

 Writing to read-only memory
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Lost Gained

• Contracts

• Safety

• Garbage collection

• Memory initialization

• Well-behaved arrays

• Fully-defined language

• Strings

• Preprocessor

• Undefined behavior (?)

• Explicit memory management

• Separate compilation

• Pointer arithmetic (?)

• Stack-allocated arrays and structs

• Generalized address-of

Balance Sheet
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