C’'s Memory Model

Balance Sheet ... so far

Lost

Gained

e Contracts
« Safety

« Garbage collection
* Memory initialization

* Preprocessor

* Whimsical execution

« Explicit memory management
« Separate compilation

Arrays in C

Creating an Array

® Here's how we create a 5-element int array

int *~ = malloc(sizeof(int) * 5);

/ s

The type is int*, We use malloc like for pointers,
not int|] not a special array-only instruction

® |n C arrays and pointers are the same thing”
O No special array type
O No special allocation Instruction

» malloc returns NULL when we have run out of memory
O we use xmalloc instead

‘on the heap

Creating an Array

OxFF...FF

int *~ = xmalloc(sizeof(int) * 5);

® But what does it do?

OS

0OxBBO

OxBBO OxBB4 OxBB8 OxBBC OxBCO

0oxB

)

0 1 2 3 4

main

\{i‘l'ACK

0xD04

al
<C
LL
L
O It allocates contiguous space that can contain
5 ints on the heap Oxb:z?
O and returns Iits address a
.
LL
|-

0x0

20

10

S o oo &

.)\

A W N — O

5 0x088

50

"apple" ...
"lime" ...

main ...
hdict_new ...

OS

int main() {
int *~ = xmalloc(sizeof(int) * 5);

Using an Array 3

® Arrays are accessed like in CO

All]l=7;
i~ _ A[0] refers to the 1st int pointed to by
Al2] = A[1] + 5; <A:1: to the 2nd int pointed to by ',
- ’ A[4] to the 5" int pointed to by
A OXBBO+ 0xBBO OxBB4 OxBBS OXxBBC OXxBCO
V4 12 1
contairis A[O] Al1] A[2] A[3] Al4]

O Like in CO, C arrays are 0-indexed

Pointer Arithmetic

intmain() {

I
maIIoc(sizeof(int) * 5);
A = 7’

A[2] = A[1] + 5;
Al4] = 1,

}...

A OXBBO+ 0xBBO OxBB4 OxBBS OxBBC OXxBCO
V4 12 1
contairs A[O] A[1] Al2] A[3] Al4]

® If A is a pointer, then *A Is a valid expression

O What Is I1t?

® Ais an int*, so *AIs an int
O It refers to the first element of the array
O *A Is the same as AJ[O]

*A = 42;

sets A[0O] to 42

Pointer Arithmetic

® A is the address of the first element of the

array

® \What is the address of the next element?

O It's A + one Int over: A+1

O In general the address of the I-th element of A is A+i

Int main() {

int *~ = xmalloc(sizeof(int) * 5);
All] =7;

Al2] =A[1] + 5;

}

A A+l A+2 A+3 A+4

A @ 0xBBO OxBB4 OxBB8 0xBBC 0xBCO
Ca2)| 7 12 1

contains A[O] Al1] Al2] Al3] Al4]

® This is called pointer arithmetic

A plus i elements over

Z—

~—
Not A plus i bytes over

Int main() {

All] =7;

Pointer Arithmetic ALz = At +5

*A = 42;

int *~ = xmalloc(sizeof(int) * 5);

® A+iis the address of AJi]

O S0 *(A-H) iS A[I] A A+1 A+2 A+3 A+4

» the value of the element AJi] OXxBBO OxBB4 OxBB8 OxBBC OXBCO
O SO 42 7 12 1
_ A[0] A[1] AlZ] A[3] Al4]
printf(, *(At+1)); A KAL) HAR2) K(AYB) H(A+4)
prints 7

® In fact, All] Is Just convenience syntax for *(A+i)

A\

In the same way that p->next
IS Just convenience syntax

for (*p).next

A A+1 A+2 A+3 A+4
OxBBO OxBB4 OxBB8 OxBBC OxBCO

- - . 42 7 12 1
Pointer Arithmetic TR o BT o
*A *(A+1) *(A+2) *(A+3) *(A+4)

® Pointer arithmetic is one of the most error-prone
features of C

® But no C program needs to use it

O Every piece of C code can be rewritten without
» change *(A+i) to AJi]
» change A+i to ... (later)

® Code that doesn’t use pointer arithmetic
O Is more readable
O has fewer bugs

11

Int main() {
int *A = xmalloc(sizeof(int) * 5);
Initializina M A2t 5
NnitialiZiNg iviemaory AT AR
*A =42,
® (x)malloc does not Initialize
0xBBO OxBB4 OxBB8 OxBBC OxBCO
memory to default value - = 2 1C D 1
A[O] A[1] Al2] A[3] Al4]

O A[3] could contain any value

o allocate memory and Initialize it to all zeros, use the
function calloc
calloc takes two arguments,

int *~ = calloc(5, sizeof(int)); %while malloc takes only one

Size of each element

Number of elements

» calloc returns NULL Iif there iIs OXBBO OxBB4 O0xBBS OxBBC OXBCO
no memory available 42 7 12 |[Co D] 1
A0l Al A2l AJAB Al

Q lib/xalloc.h provides xcalloc
that aborts execution instead

Now A[3] contains 0

12

Freeing Arrays

® A was created in allocated memory
O on the heap

Int main() {
int */ = xcalloc(5, sizeof(int));
All]=7;
Al2] = A[1] + 5;
Al4] = 1;

D

}

® Therefore we must free it before the program exits

O otherwise there is a memory leak

free(A);
® The C motto

If you allocate Iit, you free It

13

The Length of an Array

® In CO, we can know the length of an array

only in contracts T

CO stores it secretly

Int main() {
int */ = xcalloc(5, sizeof(int));
All]l=7;
Al2] = A[1] + 5;
Al4] = 1;
*A=42;
free(A);
}

® In C, there is no way to find out the length of an array

O We need to keep track of it

X

It is written nowhere

meticulously

® But free knows how much memory to give back to the OS

O The memory management part of the run-time keeps track of the
starting address and size of every piece of allocated memory ...

O ... but none of this is accessible to the progra

m

14

Arrays Ssummary

Arrays in C

® Arrays are pointers

® Created with (x)malloc
» does not initialize elements

or with (x)calloc
> does Initialize elements

® Must be freed
® No way to find the length

Arrays in CO

® Arrays have a special type

® Created with alloc_array
> Initializes the elements to O

® Garbage collected
® [ength available in contracts

15

Undefined Behavior

16

Out-of-bound Accesses

® \What if we try to access A[5]?
printf(, A[3]);

® In CO, this Is a safety violation
O array access out of bounds

® In C, that's *(A+5)
O the value of the 6™ int starting from the address in A

0xBBO OxBB4 0xBB8 0xBBC 0xBCO

42 7 12 0 1 [C O]
Al0] AlL] Al2] Al3] AC VAN

Int main() {
int */ = xcalloc(5, sizeof(int));
All]=7;
Al2] = A[1] + 5;
Al4] = 1;
*A=42;
}

This is outside of A

® \What will happen?

17

Out-of-bound Accesses

Int main() {

int */ = xcalloc(5, sizeof(int));
All]=7;

Al2] = A[1] + 5;

Al4] = 1;

*A=42;

® \What will happen?
printf(, A[3]);

0xBBO OxBB4 OxBB8 OxBBC OxBCO

42 7 12 0 1 [C O]
AlO] AlL] Al2] Al3] AC VAN

This is outside of A

® |t could
O print some int and continue execution
O abort the program
O crash the computer

o do weirder things ~ Google joke:

(within the laws of physics) |order pizza for the whole team

Out-of-bound %510 7% T+ 1>

AC C e S S e S | A[0] Al1] Al2] A[3] Al4] k

This is outside of A

printf(, A[B));

could do different things on different runs

O It could work as expected most of the times but not always
» corrupt the data and crash in mysterious ways later

Linux Terminal

® Same thing with # gcc -Wall ...
printf(| A[-l]); # ./a._out
_ A[5] is 1879048222
printf(, A[1000]); A[1000] is -837332876
A[-1]is 1073741854
® But Segmentation fault (core dumped)

printf(, A[10000000]);

will consistently crash the program

» with a segmentation fault
18

Debugging Out-of-bound Accesses

® The code could work as expected most of the times but
not always

O Extremely hard to debug

® Valgrind will often point out out-of-bound accesses

printf(, A[B));

:) Linux Terminal
In this code, ints are 4 bytes

valgrind ./a.out Line where the bad access occurred

==14980== Invalid read of size 4 A contains 5 ints,
==14980== at 0x1089C2. main (test.c:40) so it's 20 bytes long

==1498C==_Address 0x522d054 is 0 bytes after a block of size 20 alloc'd
==14980== at 0x4C31B25: calloc (in /usr/lib/valgrind/vgpreload memcheck-amd64-

linux.s0)
==14980== by 0x108878: xcalloc (xalloc.c:16)

==14980== by 0x108965: main (test.c:29)

Line where it was allocated

Debugging Out-of-bound Accesses

® Valgrind will often point out out-of-bound accesses

A[5] = 15122;

T

Here we are writing to A[5]

:) Linux Terminal
In this code, ints are 4 bytes

valgrind ./a.out Line where the bad access occurred
==15847== Invalid write of size 4

==15847== at 0x108982: main (test.c'46)

==15847==_Address 0x522d054 is 0 bytes after a block of size 20 alloc'd

==15847== at 0x4C31B25: calloc (in /usr/lib/valgrind/vgpreload memcheck-amd64-

linux.s0)
==15847== by 0x108838: xcalloc (xalloc.c:16)
==15847== by 0x108925: main (test.c:29)

Line where It was allocated

20

Debugging Out-of-bound Accesses

® Valgrind will often point out out-of-bound accesses

printf(, A[-1));

: _ Linux Terminal
In this code, ints are 4 bytes

valgrind ./a.out Line where the bad access occurred

==15091== Invalid read of size 4 , A contains 5 ints,
==15091== at 0x1089C2: main (test.c:42)
==15091== Address 0x522d03c is 4 bytes before & block of size 20 alloc'd

==15091== at 0x4C31B25: calloc (in /usr/lib/valgrind/vgpreload memcheck-amd64-

linux.s0)
==15091== by 0x108878: xcalloc (xalloc.c:16)

==15091== by 0x108965: main (test.c:29)

Line where It was allocated

21

Debugging Out-of-bound Accesses

® Valgrind will often point out out-of-bound accesses

printf(, A[1000]);

Linux Terminal

In this code, ints are 4 bytes :
valgrind ./a.out Line where the bad access occurred
==15063== Invalid read of size 4

==15063==at 0x1089C4: main (test.c:41)

==15063==_Address 0x522dfe0 is 3,904 bytes inside an unallocated block of size 4,194,112
In arena "client"

O It doesn’t give as much information further away from the array

22

Debugging Out-of-bound Accesses

® Valgrind will often point out out-of-bound accesses

printf(, A[10000000));

Linux Terminal

In this code, ints are 4 bytes :
valgrind ./a.out Line where the bad access occurred
15113== Invalid read of size 4

15113== at 0x1089C4. main (test c:44)

15113==_Address 0x7852a40 is not stack'd, malloc'd or (recently) free'd
15113==

15113==

15113== Process terminating with default action of signal 11 (SIGSEGV)
15113== Access not within mapped region at address 0x7852A40
15113== at 0x1089C4: main (test.c:44)

Segmentation fault (core dumped)

23

O What does this mean?

24

Out-of-bound Accesses

> printf(, A[5)]);
> printf(, A[-1]);
> printf(, A[1000));

all access memory in the heap, near A

> printf(, A[10000000));

accesses memory outside in the heap
O In a different segment of memory

O That's why the program crashes with
a segmentation fault

OxFF...FF

ACK

0xBBO

0xD04

HEAP

(@]
X

TEXT DAJA

0x0

0xBBO

20

main

10

A W N — O

.)\

5 0x088

50

"apple" ...
"lime" ...

main ...
hdict_new ...

OS

Debugging Out-of-bound Accesses

® Valgrind cannot catch all out-of-bound accesses

A[-1000] = 42;

Linux Terminal

valgrind ./a.out
==16357==

by

O Valgrind keeps track of likely locations where programmers
make mistakes

» e.g., off-by-one errors
O It does not monitor the whole memory

25

Undefined Behavior

Out-of-bound accesses may do different things on different runs
® \Why?

® Because the C99 standard does not specify what should
happen

® Out-of-bound accesses are undefined behavior
O different compilers do different things

O often just carry on — That's what will make
> read or write other program data 1 SOLIS (1IN (EEHES
» unless accessing a restricted segment J\

But debugging
IS a nightmare

27

Undefined Behavior

® Every safety violation in CO is undefined behavior in C

O accessing an array out-of-bound

O dereferencing NULL

O (plus other violations we will examine later)

® But there iIs more in C than in CO

BN

CO was engineered this way

on purpose:

 everything that could happen
during execution is defined

 bad thing that could happen

abort the program

® Almost anything else slightly weird is undefined behavior

In C

O reading uninitialized memory
» even if correctly allocated

O using memory that has been freed

O double free
O ...

|

More later

28

Undefined Behavior

® \What's so bad about them?

O Security vulnerabilities
» Heartbleed, Stuxnet

O Software bugs
» buffer overflow

® \Why does C have undefined behaviors?
O These were the early days of programming language research

® \Why haven't they been fixed?

O Some legacy code relies on the behavior of a specific compiler
on a specific OS to do its job

» Fixing it would break this code

29

Aliasing

Aliasing Iinto an Array

OXFF...FF OS
|nt *B — A+2, OxBBO main
X | prdoren)

B,-@0xBB8

® B contains the address of ? ?
the third element of A
Pointer arithmetic lets us grab

the address of an element
In the middle of an array

® But B has type int*
] (D04 0x080 |20
O an array of ints iy [ETSHE /
. <E) gXOQO 10
> B[0] is A[2] 3| L
> B[1]is A[3], ... e
5 B+1 B+2 4 {0088 50
A A+1 A+2 A+3 A+4 OXEE,EC a;;:rr])(lee
|
OxBBO O0xBB4 0xBB8 OxBBC OxBCO a
— |main ...
42 ! 12 1 ﬁ hdict_new ...
A[O] A[1] A[2] A[3] A[4] — |.

B[O] B[1] B[2] OS

0x0

31

Aliasing Iinto an Array

Int *B = A+2; B B+1 B+2
. A A+l A+2 A+3 A+4

assert(B[O] —= A[Z])’ 0xBBO OxBB4 OxBB8 OxBBC OxBCO
assert (B[1] == A[3]); 42 7 12 1
A[0] Al1] Al2] A[3] Al4]

assert(*(B+2) —= A[4]); \ B[O] B[1] B[2]

B[0] is A[2],
B[1] is A[3], ...
® \We have a new form of aliasing

B[l] = 35, B B+1 B+2
assert(A[g] —— 35)’ A A+1 A+2 A+3 A+4
OxBBO OxBB4 OxBB8 OxBBC OxBCO

42 7 12 @ 1

A[0] Al1] Al2] A[3] Al4]

B[] B[1] B[2]

32

Aliasing Iinto an Array

int *B — A+2’ B B+1 B+2
A A+l A+2 A+3 A+

B[l] = 35; 0XBBO O0xBB4 0xBB8 OxBBC OXxBCO
42 I 12 35 1

A[0] Al1] Al2] A[3] Al4]

B[O] B[1] B[2]

® \We are not allowed to free B
O It was not returned by (x)malloc or (x)calloc
O Doing so is undefined behavior

33

Casting Pointers in C

Casting Pointers

® |In C1, we can
O cast any pointer to void*
O cast void* only to the original pointer type

® In C, we can cast any pointer to any pointer type
O this never triggers an error

char *C = (char®)A,;

» As C, it views the space occupied by A as a char array Acharis 1 byte,
so each intis 4 chars

C
A A+l A+2 A+3 A+4

OxBBO OxBB4 OxBB8 OxBBC OxBCO
42 7 12 35 1
A[0] All] Al2] A[3] Al4]
C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] CJ8] C[9] C[10] C[11] C[12] C[13] C[14] C[15] C[16] C[17] C[18] C[19]

34

Casting Pointers

C

A A+l A+2 A+3 A+4

OxBBO OxBB4 OxBB8 OxBBC 0xBCO
42 7 12 35 1
A[O] A[1] A[2] A[3] Al4]

C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9] C[10] C[11] C[12] C[13] C[14] C[15]C[17] C[18] C[19]

® C[16] is the 17" character in C
O I.e., the first byte of A[4]

® Since Al[4] is 1 == 0x00000001
O we expect C[16] to be O

35

Casting Pointers

C

A A+l A+2 A+3 A+4

OxBBO OxBB4 OxBB8 OxBBC 0xBCO
42 7 12 35 1
A[O] A[1] A[2] A[3] Al4]

C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9] C[10] C[11] C[12] C[13] C[14] c:[15]c:[17] C[18] C[19]

printf(, C[16]);

® \We expect C[16] to be O

Linux Terminal

gcc -Wall ...

2
.Ja.out Why?

The 16thcharinCis 1

O Integers can be represented in various way over 4 bytes
» gcc uses little-endian format |

The most significant byte
| has the highest address

36

Casting Pointers

D[O] and DJ[1] are not pointers,

struct point { so we need to use . instead of -> D D+1
Nt x; A A+1 A+2 A+3 A+4
inty; 0xBBO 0xBB4 0xBB8 O0OxBBC 0xBCO /\
£ 42 7 12 35 1 \
A[0] AlL] Al2] A3] Al4]
struct point *IJ = (struct point *)(A + 2); D[0] 1]
printf(, D[O].% D[0].x D[0].y D[1].x D[1].y
printf(, D[1].4_D[1].y),

® As an array, each element of D is two Ints

O accessing D[1].y Is the same as accessing A[5]
» out of bounds
» undefined behavior

® \When casting pointers, we must be mindful of alignment

37

38

Casting Pointers

struct thermonuclear_device_controller {

struct thermonuclear_device_controller *
activate(danger[17].warhead);

= (struct thermonuclear_device_controller*)(A + 2);

® Careless casting can be outright dangerous

In practice,

® cast a pointer of arbitrary type to void* or char* only
O accessing pointers cast to other types is undefined behavior

39

Casting to void*

® In C1, void* stands for a pointer of any type

O this Is the basis for building generic data structures
» as long as the elements are pointers

® In C, void* is also the type of an array of ... void
» but void is not atype in C

O void* can be viewed as the address of the first element of any
array
» there is no way to infer the size of the elements
» nor the number of elements

® \With this, we can write generic operations on arrays with
arbitrary elements

O not just pointers

40

Generic Array Operations

® \We can write generic operations on arbitrary arrays by
O casting their address to void*
O specifying the element size
O specifying the number of elements

® Example: a generic sort function

void sort(void *A, int , Int

, compare_fn *);

A

/\

The array to be sorted,
as a void*

A

The number of bytes
of the elements of

A

The number of
elements of

A function to
compare elements

41

Stack Allocation

42

Stack-allocated Arrays

® In CO, arrays can only live on the heap

® C allows creating arrays on the stack
O these are stack-allocated arrays

® The instruction
int =[8];
allocates an 8-element int array on the stack
O It Is accessed using the normal array notation
E[O] = 3;
E[1] = 2 * E[O];

OxFF.

(@]
X

(@]
X

TEXT DAJA HEAP

..FF

STACK

o
X
o

OS

A | 0xBBO

main

0 1 2 3 4 5

E |36

=

"apple" ...
"lime" ...

main ...
hdict_new ...

OS

Stack-allocated Arrays

OxFF...FF OS
® Stack-allocated arrays can be Initialized to A [ose0 main

array literals
int =[] ={2, 4, 6, 8, 3}

>
SN S ——

0 1 2 3 4 5 6 7

E |36

STACK

The compiler will figure out The initial elements of
the size of the array

allocates a 5-element int array on the stack
and initializes with the given values

i

® Array literals are really useful to write test af
cases E
. < [vapple” .
O but they cannot be very big ox‘;gc e
— |main ...
ﬁ hdict_new ...
-

OS

0x0

44

Stack-allocated Structs

® Similarly, C allows allocating structs on the
stack
struct point p;
O and we can conveniently initialize them
struct point ¢ = { .x =15, .y=122 },

® Stack-allocated structs are not pointers

O thelir fields must be accessed using the dot
notation

0.X = 9;
0.y = /;
orintf(, P-X, P.Y);

OxFF.

(@]
X

(@]
X

TEXT DAJA HEAP

..FF

STACK

o
X
o

OS

A | 0xBBO

main

0 1 2 3 4 5 6 7

0 1 2 3

4

"apple" ...
"lime" ...

main ...
hdict_new ...

OS

45

Disposing of Stack-allocated Data

OxFF...FF

® The space for stack-allocated arrays and
structs is reclaimed when exiting the
function that declared them
O No need to free them
O In fact, this is undefined behavior!

STACK

® Because of this they cannot be used for
traditional data structures
O If queue new were to allocate a queue on the

stack, other queue functions wouldn’t be able
to use it when It returns

» Traditional queues must be heap-allocated

(@]
X

TEXT DATJA HEAP

o
X
o

OS

A | 0xBBO

0 1 2 3 4 5 6 7

main

0 1 2 3 4

"apple" ...
"lime" ...

main ...
hdict_new ...

OS

46

Address-of

Capturing Memory Addresses

® In C1, & can only be used on function
names

® In C, & can get the address of anything
that has a memory address

O functions

O local variables
O fields of structs
O array elements

® In general, for any exp for which
exp = ...
IS syntactically valid, we can write

&exp
Such exp are
47 called I-values

OxFF.

(@]
X

(@]
X

TEXT DAJA HEAP

..FF

STACK

o
X
o

OS

A | 0xBBO

0 1 2 3 4 5 6 7

main

0 1 2 3 4

"apple" ...
"lime" ...

main ...
hdict_new ...

OS

V4

v
v

AN

48

Capturing Memory Addresses

OxFF...FF

_ void increment(int *p) {
Increments an int* by 1% REQUIRES(p != NULL):

p=rp+ 1
. }
® |ocal variables
int =11;
iIncrement(&i); — i is now 12
® fields of structs ——

increment(&p.y); p.y is now 8 /qm@

struct point *o = calloc(1, sizeof(struct point));
increment(&(q'>y));%q->y IS now 1

® array elements
O increment(&A[3]); —=AlSl1s now 36
o increment(&F[2]); —FI2]is now 7

(@]
X

(@]
X

TEXT DAJA HEAP

STACK

o
X
o

OS

A | 0xBBO

0 1 2 3 4 5 6 7

main

E |3|s

0 1 2 3 4

F |2|4]|6]s

P 9|7 q

o 1 2 3 4
421 7 1121351 1

"apple" ...
"lime" ...

main ...
increment. ..

OS

49

Pointer Arithmetic

® All code using pointer arithmetic can be rewritten without
O Code Is more readable
O and has fewer bugs

® Change
o*A+i) to A
OA+] to &Ai]

50

Bad Uses of Address-of

® |In general, for any exp for which

exp = ...
IS syntactically valid, we can write
&exp
o &(i+2) X
»1+2 =7, 1s not legal
O &(A+3) X
> A+3 = xcalloc(4, sizeof(int)); is not legal
O &&l §'e

> &i = xmalloc(sizeof(int)); is not legal

51

Really Bad Uses of Address-of

int* bad() {
Int a =1;
return &a;

}

X

® Returns the address of a stack value that will be

deallocated upon return!
O The next function call will overwrite it

® This is a huge security vulnerability

Recent versions of gcc
stopped allowing it

52

Strings in C

53

Strings

® There is no type string in C

® Strings are just arrays of characters
O of type char*
O The string syntax

IS Just convenience syntax for an array containing

® Given
char *s1 =
the statements
printf(, S1[0], s1[1], s1]2], s1]3], s1[4]);
printf(, S1);

produce the exact same output

54

NUL

char *s1 = ;
printf(, S1);

® How does printf know when to stop printing characters?
O the length of an array is recorded nowhere

® The end of a string Is indicated by the NUL character
O written
O whose value is 0

® Thus, sl is an array of six characters and s1[5] ==

55

The Library

® The library contains lots of useful functions to
work with strings

O strlen returns the number of characters in a string
» up to the first NUL character, excluded

char *s1 = ;
_ assert(strlen(s1) == 5); _ This is an endless
» sl is an array of 6 characters but it has length 5 source of bugs

O strcpy(dst, src) copies all the characters of string src to dst
» up to the NUL character, included
» dst must be big enough to store all the characters in src plus NUL

- : This is an endless
O and many more utility functions source of bugs

56

Strings

® Strings can live in three places

O In the DATA segment

char *s1 = ;
» these strings are read-only
s1[0] = 'm; X

IS undefined behavior
» No need to free them
in fact, that's undefined behavior

O In the heap

O on the stack

OxFF...FF

OS

main

xgn-1 "hello”

main ...
increment. ..

OS

AJuo peay

Strings

® Strings can live in three places
O In the DATA segment

O In the heap

char *s2 = xmalloc(strlen(sl
strcpy(s2, sl)

s2[0] =,

free(s2);

» we need to allocate one extra character for

the NUL terminator
This is an endless
> we need to free them ﬁ

source of bugs

O on the stack

57

OxFF..

0x

FF

E

0x0

OS

main

-1 "hello”

TEXT DA

main ...
increment. ..

OS

AJuo peay

58

Strings

® Strings can live in three places
O In the DATA segment
O In the heap

O on the stack
char =[] =

char =4[] = {5, ,; @

» If using array literals, we often need to
Include the NUL terminator

> No need to free them

OxFF.

o

..FF

E

0x0

OS

main

xgn-| "hello”

TEXT DA

main ...
increment. ..

OS

AJuo peay

59

Strings In Summary

® Strings can live in three places

O In the DATA segment
char *s1 = ;

O In the heap
char *=2 = xmalloc(strlen(s1) + 1);
strcpy(s2, sl)
s2[0] ="V
free(s2);

O on the stack
char s3[] = ;
char s4[] ={'s', k', 'y, O},

OxFF...FF

4
@)

p)

OS

main

|_|J 0 1 2 3 4 5
hle ||| o|[\0
oxe-1 "hello”
<
O
— |main ...
>< .
N increment...
.
oS

0x0

AJuo peay

60

Strings In Summary

® Strings can live in three places

Writable? Allocation Deallocation
DATA| No Automatic N/A
(when execution starts)
Stack Yes Automqtlc Automatlc
(when function is called) | (when function returns)
Heap YVes Manual M_anual
(with malloc) (with free)

OxFF..

0x

FF

4
@)

p)

E

0x0

OS

main

TEXT DA

-1 "hello”

main ...
increment. ..

OS

AJuo peay

61

Summary

62

Undefined Behavior

® Reading/writing to non-allocated memory

® Reading uninitialized memory
O even if correctly allocated

® Use after free

® Double free

® Freeing memory not returned by malloc/calloc
® \Writing to read-only memory

63

Balance Sheet

Lost

Gained

« Contracts

« Safety

« Garbage collection

* Memory initialization

* Well-behaved arrays

* Fully-defined language
e Strings

* Preprocessor

« Undefined behavior (?)

« Explicit memory management

« Separate compilation

* Pointer arithmetic (?)

« Stack-allocated arrays and structs
* Generalized address-of

