
Numbers in C

Balance Sheet … so far

Lost Gained

• Contracts

• Safety

• Garbage collection

• Memory initialization

• Well-behaved arrays

• Fully-defined language

• Strings

• Preprocessor

• Undefined behavior

• Explicit memory management

• Separate compilation

• Pointer arithmetic

• Stack-allocated arrays and structs

• Generalized address-of

1

Undefined Behavior

M
e
m

o
ry

• Reading/writing to non-allocated memory

• Reading uninitialized memory
• even if correctly allocated

• Use after free

• Double free

• Freeing memory not returned by malloc/calloc

• Writing to read-only memory

N
u

m
b

e
rs

Today

2

The type int

3

int Sizes

 In C0/C1, the size of values of type int is 32 bits

o and pointers are 64 bits

 In C, the size of an int has evolved over time

o and pointers too

Pointer size 8 16 32 64

int size 8 16 32 32

‘70s ‘80s ‘90s Today

TypicalTypical

4

int Sizes

 In C, the size of an int has evolved over time

o and pointers too

 Early computers had 8-bit

addresses

o 256 bytes of memory

RAM was very expensive

 ints ranged from -128 to 127

Pointer size 8 16 32 64

int size 8 16 32 32

‘70s ‘80s ‘90s Today

The computer that

sent Apollo 11 to the moon

‘60s

HP 9830A

5

int Sizes

 In C, the size of an int has evolved over time

o and pointers too

 16-bit addresses

o (up to) 64 kilobytes of memory

 the Commodore 64

 ints ranged from -32768 to 32767

Pointer size 8 16 32 64

int size 8 16 32 32

‘70s ‘80s ‘90s Today

Apple II

Commodore 64

6

int Sizes

 In C, the size of an int has evolved over time

o and pointers too

 32-bit addresses

o (up to) 4 gigabytes of memory

 ints ranged in the billions

Pointer size 8 16 32 64

int size 8 16 32 32

‘70s ‘80s ‘90s Today

PC

iMac

7

int Sizes

 In C, the size of an int has evolved over time

o and pointers too

 64-bit addresses

o nobody has 264 bytes memory

 billions are still Ok for ints

Pointer size 8 16 32 64

int size 8 16 32 32

‘70s ‘80s ‘90s Today

8

Implementation-defined Behavior

 The C standard says that it is for the compiler to define the

size of an int
with some constraints

 It is implementation-defined

The compiler decides, but

o it remains fixed

o the programmer can find out how big an int is

 the file <limits.h> defines the values of INT_MIN and INT_MAX

 and therefore the size of an int

Undefined behavior ≠ implementation-defined behavior

o undefined behavior does not have to be consistent

o the programmer has no way to find out from inside the program

9

Implementation-defined Behavior

 Most programmers don’t need to know how big an int is

o just write code normally, possibly using INT_MIN and INT_MAX

o the compiler will use whatever internal size it has chosen

 Same thing for pointers

 Code written in the 1970s still works on today’s computers

o as long as the code doesn’t depend on the size of an int

o and the programmer used sizeof inside malloc

This is not true of code that uses

the bits of an int to encode data:

bit patterns (e.g., pixels)

10

int’s Undefined Behaviors

 Safety violations in C0 are undefined behavior in C

o division/modulus by 0, or INT_MIN divided/mod’ed by -1

o shifting by more than the size of an int

 Overflow!

oC programs do not necessarily use two’s complement

 this makes it essentially

impossible to reason

about ints in a C program

n + n - n and n may produce different results

o gcc provides the flag -fwrapv to force the use of two’s

complement for ints

 And a few more

o e.g., left-shifting a negative value

11

In 1972, a lot of computers

didn’t use 2’s complement

Other Integer Types

12

Signed Integer Types

 C0 has a single type of integers: int

 C has many more

o long: integers that are larger than int

64 bits nowadays

o short: integers that are smaller than int

16 bits nowadays

o char: integers that are smaller than short

8 bits nowadays

but always 1 byte

o… and there are more

char is a number!

• 'a' is convenience syntax

• the placeholder %c in printf

displays it as a character

C99 defines a byte as at least 8 bit

13

Unsigned Integer Types

 Lots of code doesn’t use negative numbers

 C provides unsigned variants of each integer type
 same number of bits but sign bit can be used to represent more numbers

 twice as many numbers

o unsigned long

o unsigned int

o unsigned short

o unsigned char

 Overflow on unsigned numbers is defined to wrap around

o unsigned numbers do follow the laws of modular arithmetic

or just unsigned

14

The most significant bit

is not special for them

Unsigned Integer Types

 size_t is used to hold pointer and offsets

o the argument of malloc and calloc

o array indices

o return type of sizeof

o…

 The size of size_t is the size of a memory address

15

Implementation-defined Integers

signed unsigned C99 constraints Today’s size

signed char unsigned char exactly 1 byte 8 bits

short unsigned short range at least (-215, 215) 16 bits

int unsigned int range at least (-215, 215) 32 bits

long unsigned long range at least (-231, 231) 64 bits

size_t 64 bits

and there are several more …

Whether char is signed or unsigned

is implementation-defined

16

Casting Integers

17

Integer Casts

 We go back and forth between different number types with

casts

int x = 3;

long y = (long)x;

 Literal numbers have always type int

3

o The compiler introduces implicit casts as needed

long x = 3;

 is implicitly turned into

long x = (long)3;

x is 0x00000003

y is 0x0000000000000003

this is an int

18

Integer Casts

o Literal numbers have always type int

o The compiler introduces implicit casts as needed

 This can lead to unexpected outcomes

long x = 1 << 40;

is undefined behavior

o This is implicitly turned into

long x = (long)(1 << 40);

Fix: long x = ((long)1) << 40;

1 is an int

This shift 1 by 40 positions but 1 has only 32 bits!

19

Casting Rules

If the new type can represent the value, the value is preserved

o signed char x = 3; // x is 3 (= 0x03)

unsigned char y = (unsigned char)x; // y is 3 (= 0x03)

o signed char x = 3; // x is 3 (= 0x03)

unsigned int y = (unsigned int)x; // y is 3 (= 0x00000003)

o signed char x = -3; // x is -3 (= 0xFD)

int y = (int)x; // y is -3 (= 0xFFFFFFFD)

o unsigned char x = 253; // x is 253 (= 0xFD)

unsigned int y = (unsigned int)x; // y is 253 (= 0x0000000FD)

o int x = -3; // x is -3 (= 0xFFFFFFFD)

signed char y = (signed char)x; // y is -3 (= 0xFD)

20

Casting Rules

If the new type can’t represent the value but is unsigned:

 if the new type is smaller or the same,

the least significant bits are retained

o int x = INT_MAX; // x is 2147483647 (= 0x7FFFFFFF)

unsigned char y = (unsigned char)x; // y is 255 (= 0xFF)

o signed char x = -3; // x is -3 (= 0xFD)

unsigned char y = (unsigned char)x; // y is 253 (= 0xFD)

 if the new type is bigger,

the bits are sign-extended

o signed char x = -3; // x is -3 (= 0xFD)

unsigned int y = (unsigned int)x; // y is 4294967293 (= 0xFFFFFFFD)

21

An unsigned type

can’t represent

negative numbers

An unsigned type

can’t represent

negative numbers

INT_MAX doesn’t fit into a char

Casting Rules

If the new type can’t represent the value but is signed,

the result is implementation-defined

o int x = INT_MAX; // x is 2147483647 (= 0x7FFFFFFF)

signed char y = (signed char)x; // y is ??

o int x = -241; // x is -241(= 0xFFFFFF0F)

signed char y = (signed char)x; // y is ??

22

Many compilers discard

the most significant bits

… often -1= (0xFF)

… often 15= (0x0F)

Casting Summary

23

new_type can

represent the value

of exp?

new_type

is signed?

The value of exp

is preserved

Yes

No

new_type

is larger than

old_type?

No

Implementation-defined
(often discard the most significant bits)

Yes

The bits are

sign-extended

Yes

The least-significant bits

are retained

No

(new_type)exp

exp of type old_type

Fixed-size Numbers

24

Fixed-size Integers

 For bit patterns, the program needs the number of bits to

remain the same as C evolves

 Header file <stdint.h> provides fixed-size integer types

o in signed and unsigned variants

Fixed-size

signed

Today’s signed

equivalent

Today’s unsigned

equivalent

Fixed-size

unsigned

int8_t signed char unsigned char uint8_t

int16_t short unsigned short uint16_t

int32_t int unsigned int uint32_t

int64_t long unsigned long uint64_t

That’s the number of bits

25

Floating Point Numbers

26

float

 The type float represents floating point numbers
nowadays 32 bits

float x = 0.1;

float y = 2.0235E-27;

 float and int use the same number of bits,

but float has a much larger range

o some numbers with a decimal point are not representable

o the larger range comes at the cost of precision

operations on floats may cause rounding errors

Numbers with a decimal point

That’s 2.0235 * 10-27

27

float

 Operations on floats may cause rounding errors

o Example 1

#include <math.h>

#define PI 3.14159265

float x = sin(PI);

o Example 2

float y = (10E20 / 10E10) * 10E10;

we expect y to be equal to 10E20

but it isn’t always

 it depends on the compiler

Defines sin, cos, log, …

Any more decimals

would be ignored

In math, sin() is 0

but sin(PI) is not 0.0

That’s (1020/1010) * 1010

Danger

28

float

 Operations on floats may cause rounding errors

o Example 3

for (float res = 0.0; res != 5.0; res += 0.1)

printf("res = %f\n", res);

we expect the loop to terminate after 50 iterations

 instead it runs for ever

That’s because 0.1 decimal is a periodic number in binary: 0.00011

0.1 * 2 = 0.2

0.2 * 2 = 0.4

0.4 * 2 = 0.8

0.8 * 2 = 1.6

0.6 * 2 = 1.2

0.2

This is how we

convert 0.1 to binary

At this point, it repeats

Danger

29

float

 Operations on floats may cause rounding errors

 This makes it impossible to reason about programs

o This is why there are no floats in C0

 Adding more bits does not solve the problem

o The type double of double-precision floating point numbers has

typically 64 bits nowadays

 similar issues

30

Union and Enum Types

31

Sample Problem

 Print a message based on the season

 How to encode seasons?

o use strings …

 testing which season we are in is costly

o use integers

 Drawbacks

o The encoding is not mnemonic

we will make mistakes

o A whole int for 4 values seems wasteful

// 0 = Winter

// 1 = Spring

// 2 = Summer

// 3 = Fall

int today = 3;

if (today == 0)

printf("snow!\n");

else if (today == 3)

printf("leaves!\n");

else

printf("sun!\n");

32

Enum Types

o The encoding is not mnemonic

o A whole int for 4 values seems wasteful

 An enum type lets

o the programmer choose mnemonic values
 no need to remember the encoding – just use the names

o the compiler decide how to implement them

what actual type to map them to

what values to use

 the compiler optimizes

space usage

enum season { WINTER, SPRING, SUMMER, FALL };

enum season today = FALL;

if (today == WINTER)

printf("snow!\n");

else if (today == FALL)

printf("leaves!\n");

else

printf("sun!\n");

By convention, enum

values are written in

all caps

The compiler maps enum

names to some numerical values

33

Switch Statements

 A switch statement is an alternative to cascaded if-elses

for numerical values
 including union types

o They make the code

more readable

 Each value considered is

handled by a case

o The execution of a case

continues till the next break

or the end of the switch

statement

 it exits the switch statement

o The default case handles any remaining value

enum season { WINTER, SPRING, SUMMER, FALL };

enum season today = FALL;

switch (today) {

case WINTER:

printf("snow!\n");

break;

case FALL:

printf("leaves!\n");

break;

default:

printf("sun!\n");

}

a case

another case

the default case

34

Switch Statements

 If a break is missing,

the execution continues

with the next case

This the source of many bugs!

Recent versions of gcc

issue a warning

when this happens

Danger
enum season { WINTER, SPRING, SUMMER, FALL };

enum season today = FALL;

switch (today) {

case WINTER:

printf("snow!\n");

break;

case FALL:

printf("leaves!\n");

break;

default:

printf("sun!\n");

}

a case

another case

the default case

35

Another Sample Problem

 Define a type for binary trees with int data only in their

leaves
and where the empty tree is not represented as NULL

o A leafy tree could be

an inner node with pointers to two children

a leaf with int data

an empty tree

o Then:
enum nodekind = { INNER, LEAF, EMPTY };

struct ltree {

enum nodekind kind;

int data;

leafytree *left;

leafytree *right;

};

typedef struct ltree leafytree;

We now know about

enum types!

We now know about

enum types!

42empty

A leaf

An inner node

The empty tree

36

Sample Problem

This representation wastes memory

o the compiler will pick a small

numerical type for kind

probably a char

but

o the remaining 3 fields are never fully utilized for any node type

 inner nodes do not make use of the data field

 leaves do not use left and right

 the empty tree does not need any

enum nodekind = { INNER, LEAF, EMPTY };

struct ltree {

enum nodekind kind;

int data;

leafytree *left;

leafytree *right;

};

typedef struct ltree leafytree;





37

Union Types

 A union type allows using the same space in different ways

 Consider the space needed for a node, aside from its type

left
data

right

s
p

a
c
e

An inner node

uses the space

to store two pointers

A leaf uses

part of the space

to store an int

The empty tree

does not use

any space

38

Union Types

 A union type allows using the same space in different ways

left
data

right

s
p

a
c
e

enum nodekind { INNER, LEAF, EMPTY };

struct innernode {

leafytree *left;

leafytree *right;

};

union nodecontent {

int data;

struct innernode node;

};

struct ltree {

enum nodekind kind;

union nodecontent content;

};

typedef struct ltree leafytree;

An inner node

consists of two pointers

The content of a generic node is

• either an int (the data of a leaf)

• or an inner node

There is no need to

have an option for

the empty tree since

it uses no space

C11 supports a much more compact syntax

39

Building a Tree

 Let’s write code that creates this tree

enum nodekind { INNER, LEAF, EMPTY };

struct innernode {

leafytree *left;

leafytree *right;

};

union nodecontent {

int data;

struct innernode node;

};

struct ltree {

enum nodekind kind;

union nodecontent content;

};

typedef struct ltree leafytree;

leafytree *T = malloc(sizeof(leafytree));

T->kind = INNER;

T->content.node.left = malloc(sizeof(leafytree));

T->content.node.left->kind = EMPTY;

T->content.node.right = malloc(sizeof(leafytree));

T->content.node.right->kind = LEAF;

T->content.node.right->content.data = 42;

42empty

A leaf

An inner node

The empty tree

Whenever not following a pointer,

we must use the dot notation

INNER

LEAF

42
EMPTY

40

Adding up a Leafy Tree

 We use a switch statement to write clear code

owe discriminate on T->kind

o it has three possible values

 INNER, LEAF and EMPTY

int add_tree(leafytree *T) {

int n = 0;

switch (T->kind) {

case INNER:

n += add_tree(T->content.node.left);

n += add_tree(T->content.node.right);

break;

case LEAF:

n = T->content.data;

break;

default:

n = 0;

}

return n;

}

41

Summary

42

Undefined Behavior

M
e
m

o
ry

• Reading/writing to non-allocated memory

• Reading uninitialized memory

• even if correctly allocated

• Use after free

• Double free

• Freeing memory not returned by malloc/calloc

• Writing to read-only memory

N
u

m
b

e
rs • Division/mod by zero

• INT_MIN divided/mod’ed by -1

• Shift by more than the number of bits

• Signed overflow

43

