Numbers in C

Balance Sheet ... so far

Lost

Gained

e Contracts
» Safety

« Garbage collection

* Memory Initialization

* Well-behaved arrays
 Fully-defined language

* Strings

Preprocessor

Undefined behavior

Explicit memory management
Separate compilation

Pointer arithmetic

Stack-allocated arrays and structs
Generalized address-of

Undefined Behavior

Memory

« Reading/writing to non-allocated memory

« Reading uninitialized memory
 even If correctly allocated

« Use after free

* Double free

* Freeing memory not returned by malloc/calloc
* Writing to read-only memory

Numbers

Today

The type Int

Nt Sizes

® In CO/C1, the size of values of type int is 32 bits
O and pointers are 64 bits

® In C, the size of an int has evolved over time
O and pointers too

Pointer size 8 16 32 64

7

"70s ‘80s ‘90s Today

Nt Sizes

® In C, the size of an int has evolved over time
O and pointers too

Pointer size 8 16 32 64
Nt size 8 16 32 32
‘“70s ‘80s ‘90s Today

addresses

® Early computers had 8-bit

O 256 bytes of memory

< » RAM was very expensive

The computer that ® nts ranged from -128 to 127

Nt Sizes

® In C, the size of an int has evolved over time
O and pointers too

Pointer size 8 16 32 64
Nt size 8 16 32 32
“70s ‘80s ‘90s Today

Commodore 64

® 16-bit addresses

O (up to) 64 kilobytes of memory
» the Commodore 64

® ints ranged from -32768 to 32767

Nt Sizes

® In C, the size of an int has evolved over time
O and pointers too

Pointer size 8 16 32 64
Nt size 8 16 32 32
“70s ‘80s ‘90s Today

IMac
® 32-bit addresses

O (up to) 4 gigabytes of memory
® ints ranged in the billions

Nt Sizes

® In C, the size of an int has evolved over time
O and pointers too

Pointer size 8 16 32 64
Nt size 8 16 32 32
"70s '80s ‘90s Today

® 64-bit addresses
O nobody has 2% bytes memory

® Dbillions are still Ok for ints

Implementation-defined Behavior

® The C standard says that it is for the compiler to define the
size of an int
» With some constraints

® |t is Implementation-defined

The compliler decides, but
O It remains fixed

O the programmer can find out how big an int is

> the file defines the values of and
O and therefore the size of an int

Undefined behavior # implementation-defined behavior
O undefined behavior does not have to be consistent
O the programmer has no way to find out from inside the program

Implementation-defined Behavior

® Most programmers don’t need to know how big an int is
O Just write code normally, possibly using and
O the compiler will use whatever internal size it has chosen

EEDZN

This is not true of code that uses
the bits of an int to encode data:
bit patterns (e.g., pixels)

® Same thing for pointers

® Code written in the 1970s still works on today’s computers
O as long as the code doesn’t depend on the size of an int
O and the programmer used sizeof inside malloc

10

int’'s Undefined Behaviors

® Safety violations in CO are undefined behavior in C
O division/modulus by 0, or divided/mod’ed by -1
O shifting by more than the size of an int

® Overflow!
O C programs do not necessarily use two's complement
> this makes it essentially ~—
Impossible to reason In 1972, a lot of computers
about ints in a C program didn’t use 2's complement

» N+ n-nandn may produce different results

O gcc provides the flag -fwrapv to force the use of two's
complement for ints

® And a few more
O e.g., left-shifting a negative value

11

12

Other Integer Types

13

Signhed Integer Types

® CO has a single type of integers: int

® C has many more

O long: integers that are larger than int

» 64 bits nowadays

O short: integers that are smaller than int

» 16 bits nowadays

O char: integers that are smaller than short

> 8 bits nowadays \
char is a number!
» but always 1 byte - ‘2 is convenience syntax

C99 defines a byte as at least 8 bit

* the placeholder %c in printf
displays it as a character

O ... and there are more

14

Unsigned Integer Types

® [ots of code doesn’t use negative numbers

® C provides unsigned variants of each integer type

» same number of bits but sign bit can be used to represent more numbers
Q twice as many numbers

O unsignec
O unsighec
O unsighec

O unsighec

long
Int

short
char

1

or just unsigned

The most significant bit
IS not special for them

® Overflow on unsigned numbers is defined to wrap around
O unsigned numbers do follow the laws of modular arithmetic

15

Unsigned Integer Types

® size tis used to hold pointer and offsets
O the argument of malloc and calloc
O array indices

O return type of sizeof
O ...

® The size of size tis the size of a memory address

16

Implementation-defined Integers

Whether char is signhed or unsigned
IS Implementation-defined

sighed unsigned C99 constraints Today'’s size
signhed char unsigned char exactly 1 byte 8 bits
short unsigned short range at least (-21°, 21°) 16 bits
int unsigned int range at least (-21°, 21°) 32 bits
long unsigned long range at least (-231, 231) 64 bits
Size t 64 bits

7

and there are several more ...

17

Casting Integers

Integer Casts

® \We go back and forth between different number types with

casts
int x = 3: x is 000000003

B

long v = (long)x; =7y is 0x0000000000000003

® Literal numbers have always type int

3 this is an int

1

O The compiler introduces implicit casts as needed
long x = 3;
» 1S implicitly turned into
long x = (long)3;

18

19

Integer Casts

O Literal numbers have always type int
O The compiler introduces implicit casts as needed

long

=1 << 40;

Is undefined behavior
O This is implicitly turned into

> FIx:

long

long

= (long)(1 << 40);

1is an inti

This shift 1 by 40 positions

= ((long)l) << 40;

his can lead to unexpected outcomes

ﬁ but 1 has only 32 bits!

20

Casting Rules

If the new type can represent the value, the value Is preserved

O signed char x = 3; Il X1 = 0x03)
unsigned char y = (unsigned char)x; //y i = 0x03)

O signed char x = 3; Il X1 = 0x03)
unsigned int v = (unsigned int)x; Iy = 0x00000003)

O signed char x = -3; [/ X1 = OxFD)
int v = (inb)x; /l'y 15\-3 /= OXFFFFFFFD)

O unsigned char x = 253; /I X ig = OxFD)
unsigned int v = (unsigned int)Xx; IAYAE (= 0xO000000FD)

O int x =-3; /[l X1 = OXFFFFFFFD)
signed char y = (signed char)x; Iy = OxFD)

Casting Rules

If the new type can’t represent the value but is unsigned:

® if the new type Is smaller or the same,
the least significant bits are retained

O intx = ; /| X is 2147483647 (= OX7FFFFH
J unsigned char y = (unsigned char)x; //yis 255 (=0

doesn’t fit into a char
O signed char x = -3; lIxis-3 (=0
unsigned char vy = (unsigned char)x; //yis 253 (=0

An unsigned type
can’t represent

® f the new type Is bigger, negative numbers
the bits are sign-extended /

D

O signed char x = -3; [/ X1s -3 (=0
unsigned int y = (unsigned int)x; // y is 4294967293 (= OXFFFFFRFLC

21

Casting Rules

If the new type can’t represent the value but Is signed,
the result is implementation-defined

Many compilers discard
the most significant bits

O int x = ' /| X is 2147483647 (= OX7FFFFPFF)

signed char —(S|gned char)x; /'y is ?? & P (OXFF)
. oren -

O int x = -241; /| X is -241(= OxFFFFFIjOF)
signed char v = (signhed char)x; // y is ?? = |

/

... often 15= (O&(OF)

exp of type old_type

2 Casting Summary

(new _type)exp

new_type can

Yes The value of exp
represent the value >

IS preserved

of exp?
No
new_type Yes .| Implementation-defined
IS SI gn ed? (often discard the most significant bits)
No
new .
. SO Yes The bits are
5 [/l e "sign-extended
old type? J
No ,| The least-significant bits

are retained

24

Fixed-size Numbers

Fixed-size Integers

® For bit patterns, the program needs the number of bits to
remain the same as C evolves

® Header file

O In signed and unsigned variants

provides fixed-size integer types

Fixed-size Today’s signed Today’s unsigned Fixed-size
sighed equivalent equivalent unsigned
INt8 _t signed char unsigned char uint8 t
INt16 t short unsigned short uintle t
INt32_t Int unsigned int uint32_t
INt64 _t long unsigned long uint64 t

]

That’s the number of bits

25

26

Floating Point Numbers

27

float

® The type float represents floating
» nowadays 32 bits

float » = 0.1;

noint numbers

AN

Numbers with a decimal point

float v = 2.0235E-27; —!That's 2.0235 * 10-*

® float and int use the same number of bits,

but float has a much larger range

O some numbers with a decimal point are not representable

O the larger range comes at the cost of precision
» operations on floats may cause rounding errors

28

float

® Operations on floats may cause rounding errors

O Example 1

———

Defines sin, cos, log, ...

|Any more decimals
. would be ignored

3.14159265

float » = sin(Pl);

In math, sin(xz) is O
|but sin(Pl) is not 0.0

O Example 2

float v = (10E20 / 10E10) * 10E10;

» we expect y to be equal to 10E20

» but it isn’t always
O it depends on the compiler

I That's (102/1010) * 1010

float

® Operations on floats may cause rounding errors

O Example 3
(float =0.0; res '=5.0; res +=0.1)
printf(, res);

» we expect the loop to terminate after 50 iterations
» Instead it runs for ever
» That's because 0.1 decimal is a periodic number in binary: 0.00011

This i1s how we

/‘ convert 0.1 to binary

01 * 2 = 02
(T>02 * 2 = 04
04 * 2 = 08
08 * 2 = 16
06 * 2 = 1.2
1 0.2

ﬁAt this point, it repeats

30

float

® Operations on floats may cause rounding errors

® This makes it impossible to reason about programs
O This is why there are no floats in CO

® Adding more bits does not solve the problem

O The type double of double-precision floating point numbers has
typically 64 bits nowadays

> similar issues

31

Union and Enum Types

32

Sample Problem

® Print a message based on the season

® How to encode seasons?

O use strings ...
» testing which season we are in is costly

O use integers

® Drawbacks

O The encoding is hot mnemonic
» we will make mistakes

O A whole int for 4 values seems wasteful

/[0 = Winter
/' 1 = Spring
/[2 = Summer
/l 3 = Fall

Int today = 3;
(today == 0)
printf(

);

(today == 3)

printf(

printf(

);

);

33

Enum Types

O The encoding Is hot mnemonic
O A whole int for 4 values seems wasteful

® An enum type lets

O the programmer choose mnemonic values
d no need to remember the encoding — just use the names

By convention, enum
values are written in

O the compiler decide how to implement them all caps
» what actual type to map them to

» what values to use

N\

The compiler maps enum
names to some numerical values

» the compiler optimizes
space usage

<

—

—

_enum season { WINTER, SPRING, SUMMER, FALL }. »

enum season

(today =
printf(

(today =

printf(

printf(

T

);

Switch Statements

o A statement Is an alternative to cascaded Ii- S

for numerical values
» Including union types

O They make the code
more readable Switch (today) {

enum season { WINTER, SPRING, SUMMER, FALL };

enum season today = FALL,;

WINTER:
. . printf(); -
® Each value considered iIs ;)
o The execution of a case printf() "
continues till the next | R
or the end of the switch : IN
printf();

Statement)

» It exits the switch statement
O The case handles any remaining value

35

Switch Statements

® Ifa IS mIssing,
the execution continues
with the next

/A

This the source of many bugs!

enum season { WINTER, SPRING, SUMMER

enum season today = FALL,;

(today) {
WINTER:

printf(); -

FALL:
printf(); -

printf.(); B
}

CFALL };

Recent versions of gcc
ISsue a warning
when this happens

36

Another Sample Problem

® Define a type for binary trees with int data only In their

leaves

» and where the empty tree is not represented as NULL

O A leafy tree could be

» an inner node with pointers to two children

> a leaf with int data
» an empty tree

O Then:

The empty tree

struct ltree {
enum nodekind kind;

enum nodekind = { INNER, LEAF, EMPTY };

(2

An inner node
‘ /I

empty

Int data;
leafytree *left;
leafytree *right;
I3

struct Itree leafytree;

—

We now know about
enum types!

37

Sample Problem

This representation wastes memory

O the compiler will pick a small

numerical type for kind v <

» probably a char

enum nodekind = { INNER, LEAF, EMPTY };

struct Itree {
enum nodekind Kkind;

— Int data;
leafytree *left;
leafytree *right;

I

struct ltree leafytree,;

but

O the remaining 3 fields are never fully utilized for any node type
» Inner nodes do not make use of the data field

» leaves do not use left and right
» the empty tree does not need any

X

Union Types
® A union type allows using the same space in different ways

® Consider the space needed for a node, aside from Iits type

data 1
left 0
©
QD
@
right
An inner node A leaf uses The empty tree

uses the space part of the space|| does not use
to store two pointers|| to store an int any space

39

Union Types

® A union type allows using the same space In different ways

left

data

right

¢

enum nodekind { INNER, LEAF, EMPTY };

struct innernode {
leafytree *left;

An inner node

leafytree *right;
I§

hion nodecontent {

Int data:

struct innernode node; _—

struct Itree {
enum_nodekind kind:
~_union nodecontent content,__—

3

struct ltree leafytree,;

— consists of two pointers

JThe content of a generic node is
e either an int (the data of a leaf)

——— *oran inner node

/N

There is no need to
have an option for
the empty tree since

it uses no space

T

C11 supports a much more compact syntax

2oeds

enum nodekind { INNER, LEAF, EMPTY };

struct innernode {

B u i Id i n g a_ Tree leafytree *left;

leafytree *right;

h
union nodecontent {
struct innernode node;
/An iInner node i
‘ enum nodekind kind;
union nodecontent content;
@ ﬁ!A leaf }:

The empty tree

® |et's write code that creates this tree nt data;
struct Itree {
struct ltree leafytree;

empty

INNER

leafytree *T = malloc(sizeof(leafytree));
T->kind = INNER; [J
T->content.node.left = malloc(sizeof(leafytree)); —o\
T->content.node.left->kind = EMPTY;

T->content.node.right = malloc(sizeof(leafytree));

T->content.node.right->kind = LEAF,; —
T->content.node.right->content.data = 42; EMPTY -

VAN

Whenever not following a pointer,
we must use the dot notation

Adding up a Leafy Tree

® \\Ve use a statement to write clear code

o we discriminate on T->kind

O It has three possible values
> INNER, LEAF and EMPTY

41

int add_tree(leafytree *T) {
intn =0;

(T->kind) {

INNER:
n += add_tree(T->content.node.left);
n += add_tree(T->content.node.right);

LEAF:
n = T->content.data;

42

Summary

43

Undefined Behavior

Memory

Reading/writing to non-allocated memory
Reading uninitialized memory

» even If correctly allocated

Use after free

Double free

* Freeing memory not returned by malloc/calloc
* Writing to read-only memory

Numbers

* Division/mod by zero

. divided/mod’ed by -1
 Shift by more than the number of bits
 Signed overflow

