Graphs

Graphs

What i1s a Graph?

® A graph is a collection of
dots and
lines

What is a Graph?

® The dots are called
vertices or nodes

O they are generally given
unique labels

A vertex labeled A

What is a Graph?

® The lines are called edges

o each edge connects a D E
pairs of vertices
> Its endpoints \ /
O there Is at most one edge

between any two vertices

An edge with
endpoints A and B

What is a Graph?

® The graphs we will consider

o are undirected D E /

» the edge (A,B) Is the same
the edge (B,A) \ /
O have no self-edges
> there is no edge (V,V) & C
for any vertex V

This is for
simplicity
F A
J\\ O but there are many other
H .
\ kinds of graphs out there

What is a Graph?

® To describe a graph, we need
to give its vertices and its
edges
O Mathematically, a graph G
Is a pair (V, E)
» V Is its set of vertices
» E Is its set of edges

G=(V, E)

A

This graph:

« vertices {A,B,C,D,E,F,G,H,1,J}

» edges {(A,B), (A,C), (A, (A,H),
(B.C), (B,E), (C.D), (C,E),
(C,H). (C.D), (D,E), (D.1), (FH),
(R, (RJ), (G,H), (H,J)}

What is a Graph?

® The neighbors of a vertex
are all the vertices D
connected to it with an
edge

A

&The neighbors of Aare B, C, H, |

What are Graphs Good for?

® Graphs are a convenient abstraction that brings out
commonalities between different domains

® Once we understand a problem in term of graphs, we can
use general graph algorithms to solve it

O no need to reinvent the wheel every time

® Graphs are everywhere

Our graph could represent a road network
* vertices are cities
« edges are major highways

Boston

Detroit Erie

Indianapolis

Fort Worth Atlanta

Juarez
Houston

Galveston

10

It could represent a social network
* vertices are people

 edges are social connections

K\\\\\\\\ > LS

This is what a social network looked like ... in 2005

* vertices are people posting photos
 edges are people following the photo stream of others

L.

]
Q
@ -
!‘ ‘s 14 % |
.Ahm H' =
é o v » Ay oy
m ’.- al'i. ¥ 1 k ‘1 L & £ ..“ «
& ? » mn i ™ Y
. (N
T hETT - e
o & ' N =
3] a ')
Y B o g e 0. %
. @ _ - !
5] b A g 3
a&" yEL =, 1 -1 E
B "b ¥ = 2 4
H ’b - y'. ‘oq
e e R R 1 -
3 R R " 8." ¥ 3 W L
: @ &l = - [|
I 5 k3 %) :— o |

12

Lightsout

® Lightsout is a game played on
boards consisting of n x n lights

O each light can be either on or off

® \We make a move by pressing a
light, which toggles it and its
cardinal neighbors

® From a given configuration, the
goal of the game Is to turn off
all light

A 6x6 lightsout
configuration

s

The move toggles
these 5 lights

13

Lightsout as a Graph

® A vertex Is a board configuration

® An edge Is a move

O pressing a light twice brings us back
to where we were

» the graph is undirected

O pressing a light takes us
to a new configuration

» no self-edges

AN

2x2 lightsout
configurations

Lightsout as a Graph

® To solve a given board, we must find a sequence
of moves that takes us to the board
with all the lights out

O find a series of vertices
connected by edges

Given
configurations

_

Solved
configurations

15

Lightsout as a Graph

® A series of vertices connected by edges
Is called a path
O solving lightsout is the same as finding

a path from the given configuration
to the solved configuration

Target

Start|

A

Here’s a path between them:

“Slugl

Getting Directions

® Figuring out how to go from
one place to another also
amounts to finding a path
between them
O Graphs bring out

commonalities between
different domains

Detroit Erie

Indianapolis

Fort Worth Atlanta

16 Galveston

Getting Introduced

-
\

® Figuring out how to get

introduced to someone 4
also amounts to finding a n
path between them W ‘ ‘ 20
o Graphs bring out s

commonalities between
‘)

@
L&
> 4
T

different domains

Lightsout as a Graph

® A path is a series of vertices connected by edges
O we can reduce the problem of solving lightsout

to the problem of finding a path
between two vertices

Target

‘|Here’s another path between them:

w1) (S

18

— /X

Here, we are backtracking

Lightsout as a Graph

® A path is a series of vertices connected by edges

O There can be many paths between
two vertices

And another one:

mn S

Target

19

20

Lightsout as a Graph

® On n x n lightsout,

O there are 2™ board configurations
» each of the n*n lights can be either on or off

o from any board, we can make n*n moves
» by pressing any one of the n*n lights

® The graph representing n x n lightsout has
O 2" vertices
O n*n * 2" [2 edges
> there are 2" vertices

» each has n x n neighbors

» but this would count each edge (A,B) twice
a from A to B and
aQ fromBto A

so we divide by 2

The 2x2 Lightsout
Graph

‘ Target

21

™

All the vertices and edges of 2x2 lightsout
(color-coded by which light is
pressed to make a move)

22

Models vs. Data Structures

® A graph can be
O a conceptual model to understand a problem
O a concrete data structure to solve it

® For 2x2 lightsout, it is both

O Conceptually, it brings out the structure of the problem and
highlights what it has in common with other problems

O Concretely, we can traverse a data structure that represents it in
search of a path to the solved board

® Turning 6x6 lightsout into a data structure Is not practical
O each board requires 36 bits
O we need over 64GB to represent its 23° vertices
O we need over 2TB to represent its 36 * 236 / 2 edges

That's more memory than most computers have

23

Implicit Graphs

® \We don’'t need a graph data structure to solve n x n lightsout

O from each board we can algorithmically generate all boards that
can be reached in one move

O pick one of them and repeat until
» we reach the solved board

» or we reach a previously seen board
a from it try a different move

® In the process, we are building an implicit graph

O a small portion of the graph exists in memory at any time
» the boards we have previously seen
Q vertices

» the moves we still need to try from them
O edges

24

Explicit Graphs

® For many graphs, there is no algorithmic way to generate

their edges

» roads between cities
» soclal networks
> ...

® \We must represent them explicitly as a data structure in
memory

® \We will now develop a small library for solving problems
with these explicit graphs

25

A Graph Interface

26

A Minimal Graph Data Structure

® \What we need to represent

O graphs themselves
» type graph t

O the vertices of a graph

> type vertex
Q we label vertices with the numbers 0, 1, 2, ...
* consecutive integers starting at O
Q vertex is defined as unsigned int

O the edges of the graph

» We represent an edge as its endpoints
O no need for an edge type

27

A Minimal Graph Data Structure

® Basic operations on graphs

O graph_new(n) create a new graph with n vertices

> we fix the number of vertices at creation time
O we cannot add vertices after the fact

O graph_size(G) returns the number of vertices in G

O graph_hasedge(G, v, w) checks if the graph G contains the edge
(V,w)

O graph addedge(G, v, w) adds the edge (v,w) to the graph G
O graph _free(G) disposes of G

® A realistic graph library would provide a much richer set of
operations

O we can define most of them on the basis of these five

28

A Minimal Graph

File graph.h 6

B A

Interface — |

'vertex Is a concrete type

unsigned int vertex;
struct graph_header *graph_t;

graph_t graph_new(unsigned int);
l/@ensures \result '= NULL;

void graph_free(graph t G);
l/@requires G = NULL;

unsigned int graph_size(graph _t G);
l/@requires G = NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w);
l/@requires G = NULL;
[/I@requires v < graph_size(G) && w < graph_size(G)!]

void graph_addedge(graph_t G, vertex v, vertex w);
l/@requires G = NULL;

[/@requires v < graph_size(G) && w < graph_size(G);
[/@requires v = w && !graph_hasedge(G, v, w);

'In a C header file,
we must define abstract types
... but we don’t need to give the details

AThis says that vand w
__—— must be valid vertices

—7 \
No self-edges

\\I
@ For simplicity,
only add new edges

Example

® \We create this graph as

graph t ¢ =graph_new(5);
graph_addedge(G, 0, 1);
graph_addedge(G, 0, 4);
graph_addedge(G, 1, 2);
graph_addedge(G, 1, 4);
graph_addedge(G, 2, 3);
graph_addedge(G, 2, 4);

® Then

—

| Inany

order

» graph_hasedge(G, 3, 2) returns true, but

» graph_hasedge(G, 3, 1) return false
Q there is a path from 3 to 1, but no direct edge

29

We sometimes write
the labels inside the
vertices

30

Neighbors

® [t is convenient to handle neighbors explicitly

» this is not strictly necessary
» but graph algorithms get better complexity if we do so inside the library

® Abstract type of neighbors
O neighbors t

® Operations on neighbors
O graph_get neighbors(G, v)
» returns the neighbors of vertex v in G

© graph_hasmore_neighbors(nbors) ‘These allow us to iterate through
» checks if there are additional neighbors the neighbors of a vertex

O graph_next_neighbor(nbors)

» returns the next neighbor \This is called an iterator
O graph_free neighbors(nbors)
» dispose of unexamined neighbors

31

A Minimal Graph Interface — Il

File graph.h o)

\

struct neighbor_header *neighbors _t;

neighbors_t graph_get neighbors(graph_t G, vertex v);
l/@requires G !'= NULL && v < graph_size(G);
l/@ensures \result '= NULL;

bool graph_hasmore_neighbors(neighbors t);
//@requires nbors !'= NULL;

vertex graph_next_neighbor(neighbors_t);
//@requires nbors !'= NULL;

— |

These declarations are
part of the same header file

//@requires graph_hasmore_neighbors(nbors);

void graph_free neighbors(neighbors t);

//@requires nbors !'= NULL;
\

There must be additional neighbors
to retrieve the next neighbor

32

Example

® We grab the neighbors of vertex 4 as 0
neighbors t n/ = graph_get_neighbors(G, 4);
» n4 contains vertices 0, 1, 2 in some order

vertex = = graph_next_neighbor(n4);

> say a is vertex 1 (1/

Q it could alsobe O or 2
vertex b = graph_next_neighbor(n4),
» say b is vertex O

Q it cannot be 1 because we already got that neighbor
Q but it could be 2

vertex ¢ = graph_next_neighbor(n4);
» C has to be vertex 2
Q it cannot be 0 or 1 because we already got those neighbors
graph_hasmore_neighbor(n4)
» returns false because we have exhausted all the neighbors of 4

33

Implementing Graphs

34

Implementing Graphs

® How to implement graphs based on what we studied?

O The main operations are
» adding an edge to the graph

» checking if an edge is contained in the graph
O These are the operations we had for sets

» Iterating through the neighbors of a vertex

® Implement graphs as
O a linked list of edges
O a hash set

' We could also use AVL trees
|if we are able to sort the edges

® How much would the operations cost?

35

Measuring the Cost of Graph Operations

®
® |f a graph has v vertices, the number e

of edges ranges between L

O 0, and The graph has no edges

O V(V- 1)/2 This is a complete graph

» there Is an edge between each of the v vm

and the other v-1 vertices, but we divide by 2 so
that we don’t double-count edges

® So, e e0O(v?d)
O we could do with just v as a cost parameter,

O but many graphs have far fewer than v(v-1)/2 edges
» using only v would be overly pessimistic

® Use both v and e as cost parameters

36

Naive Graph Implementations

® For implementations based on known data structures,
the cost of the basic graph operations are

Linked list of edges

Hash set of edges

graph _hasedge

O(e)

O(1) avg

graph_addedge

O(1)

O(1) avg+amt

® \What about iterating through the neighbors of a vertex?

37

Naive Graph Implementations

® Finding the neighbors of a vertex requires going over all
the edges

O graph_get _neighbors has cost O(e) and O(v) avg

® How many neighbors are there?

O at most v-1 @
> If this vertex has an edge to all other vertices

O at most e .

> there cannot be more neighbors than edges =~ °
In the graph ° ot

® A vertex has O(min(v,e)) neighbors

O Iterating through the neighbors costs O(min(v,e))
» times the cost of the operation being performed

38

Naive Graph Implementations

® |In summary

Linked list of edges

Hash set of edges

neighbors

graph_hasedge O(e) O(1) avg

graph_addedge O(1) O(1) avg + amt
graph_get_neighbors O(e) O(v) avg

Iterating through O(min(v,e)) O(min(v.e))

Classic Graph Implementations

® Can we do better?

® Two representations of graphs are commonly used
O the adjacency matrix representation

O the adjacency list representation

® Both give us better cost
... In different situations ...

39

T~

“adjacency’ is just a fancy
word for neighbors

40

The Adjacency Matrix Representation

® Represent the graph as a v*v matrix of booleans

O MI1,J] == true If there Is an edge between | and |

O M[i,j] == false otherwise
M is called the adjacency matrix

® Cost of the operations
O graph_hasedge(G, v, w): O(1)
> just return M[v,w]
O graph_addedge(G, v, w): O(1)
» Just set M[v,w] to true
O graph_get neighbors(G, v): O(v)
» go through the row for vin M

® Space needed: O(v?)

M[2,4] == true
because G
contains

edge (2,4)

v v
v v «/
Rz
v
v

;\\/

A

For undirected graphs,
M IS symmetric:
MIi,j] == M[},]]

No self-edges,
so M[i,i] == false

41

The Adjacency List Representation

® For each vertex v, keep track of its neighbors 0 ©
in a list
O the adjacency list of v

® Store the adjacency lists in a vertex-indexed array (1) (2)

® Cost of the operations

_ 0| o+ 1 | &>{ 4 | e+H
O graph_hasedge(G, v, w): O(min(v,e))
» each vertex has O(min(v,e)) neighbors ‘TLAleLe e o
» each adjacency list has length O(min(v,e)) ?|®T>L 1l | ®>1 4 [®> 3| ®
O graph_addedge(G, v, w): O(1) 3| o> 2 | etk
»add vinw's listand win v's list i e 0 [els] 1 [el 2 [e

The neighbors

» Just grab v’s adjacency list of4are0, 1,2

O graph_get neighbors(G, v): O(1) §

42

The Adjacency List Representation

® For each vertex v, keep track of its neighbors
In a list
O the adjacency list of v

® Store the adjacency lists in a vertex-indexed array (1) (2)
® Space needed: O(v + e)
0| &> 1 | &1—> B
O a v-element array
: i 1| e 0 | &> —> 4 | &+H
O 2e list items
» each edge corresponds to exactly 2| LY | & —> 3 | ®
2 list items 3| @4— 2 ‘__|.|.|
4| @+ 0 | &> —> 2 | o}

® O(v + e) Is conventionally

written O(max(v,e))
=~

Why? Note that
max(v,e) < v+e < 2max(v,e)

43

Adjacency Matrix vs. List

Adjacency matrix

Adjacency list

Space O(v?) O(v + e)
graph_hasedge O(1) O(min(v,e))
graph_addedge O(1) O(1)

graph_get _neighbors O(v) O(1)
Iterating through O(min(v.e)) O(min(v.e))

neighbors

45

When to Use What Representation?

® Recall that 0 < e < v(v-1)/2

® A graph is dense If it has lots of edges
O e is on the order of v?

® A graph is sparse If it has relatively few edges

o elisin O(v)
Q at most O(v log V)
> but definitely not O(v?)

O lots of graphs are sparse
» social networks

» roads between cities
> ...

46

Cost In Dense Graphs

® \We replace e with v2 and simplify

Adjacency matrix

Adjacency list

Space O(v?) O(v+e) O(v?)
graph_hasedge O(min(v,e)) — O(v)
graph_addedge O(1) O(1)

graph_get _neighbors O(v)

lterating through
neighbors

O(min(v,e)) — O(v)

O(min(v,e)) — O(v)

Same

AM

Same

AL

Same

IR R

a7

Cost In Dense Graphs

® graph hasedge Is faster with AM

® graph_get neighbors Is faster with AL

O but we typically iterate through the neighbors after grabbing
them

® All other operations are the same
® The space requirements are the same

® For dense graphs
O the two representations have about the same cost
O but graph_hasedge Is faster with AM

the adjacency matrix representation is preferable

48

Cost In Sparse Graphs

® \We replace e with v and simplify —

Assume e € O(v)

Adjacency matrix

Adjacency list

O(v+e) O(v)

Space O(v?)
graph_hasedge O(min(v,e)) — O(v)
graph_addedge O(1) O(1)
graph_get _neighbors O(v)

lterating through
neighbors

O(min(v,e)) — O(v)

O(min(v,e)) — O(v)

AL

AM

Same

AL

Same

IRR R

49

Cost In Sparse Graphs

® AL requires a lot less space
® graph hasedge Is faster with AM

® graph get neighbors Is faster with AL

O but we typically iterate through the neighbors after grabbing
them

® All other operations are the same

® For sparse graphs
O AL uses substantially less space
O the two representations have about the same cost
O but graph _hasedqge Is faster with AM

the adjacency list representation Is preferable because it
doesn’t require as much space

50

Adjacency List Implementation

Graph Types

® An adjacency listis just a
NULL-terminated linked list of
vertices

® The graph data structure
consists of

O the number v of vertices In
the graph
> fleld size

O a v-element array of
adjacency lists

» field adjlist

*ioieiely
vov v v
JANRAREANEANE.
I I

J

struct adjlist_node adjlist;
adjlist_node {
vertex vert;
adjlist *next;

struct graph_header graph;
graph_header {
unsigned int size;

|

adjlist **adj;

I

adjlist*[] adj in CO

52

Representation Invariants

® The interface defines

® A vertex is valid If its value I1s between 0 and the size of

the graph

unsigned Int vertex;

bool is_vertex(graph *G, vertex v) {

}

REQUIRES(G !'= NULL);
v < G->size;

T~

O<=v
IS automatic since v has
type unsigned int

53

Ol o> 1 | 4> 4 | e+H
Representation Invariants | s—{olef{z e}« eh
2] 1> 1 | e+ 4 | e+— 3 | e
® A graph is valid if 3| &> 2 | et
O It Is non-NULL 4o 0 | 1 | &> 2 | &}

O the length of the array of adjacency lists is equal to it size
» but we can’t check this in C

O each adjacency list is valid

bool is_graph(graph *G) {
(G == NULL) false;
[/@assert(G->size == \length(G->ad)));
(unsigned int 1 = 0; 1 < G->size; i++) {
(lis_adjlist(G, 1, G->ad|[i])) false;
}

true;

}

54

Representation

® An adjacency list is valid if
O It Is NULL-terminated
O each vertex is valid
O there are not self-edges

O every outgoing edge has a
corresponding edge coming
back in

O there are no duplicate edges

Invariants

Ol 1 | e 4 | e}
1|+ 0 |@&—> 2 | &—> 4 | &+
2| o> 1 | e+ 4 | 4—{ 3 | oH
3| o> 2 | o1}H

41> 0 |4 1 | e 2 | e+}h

bool is_adjlist(graph *G, vertex v, adjlist *L) {
REQUIRES(G !'= NULL);
l/@requires(G->size == \length(G->ad)));

(is_acyclic(L)) false;
(L '=NULL) {
vertex w = L->vert; /[wis a neighbor of v

// Neighbors are legal vertices
(lis_vertex(G, wt)) false;

// No self-edges
(Vv==w) false;

// Every outgoing edge has a corresponding
/| edge coming back to it
(lis_in_adjlist(G->adj[w], v)) false;

// Edges aren't duplicated
(is_in_adjlist(L->next, w)) false;

L = L->next;

}

true;

55

Basic operations

® graph_size returns the stored size
O Cost O(1)

® graph new creates an array of
empty adjacency lists
O calloc makes it convenient

O Cost O(v)
» calloc needs to zero out all v positions

unsigned int graph_size(graph *G) {
REQUIRES(is_graph(G));
G->size;

}

graph *graph_new(unsigned int) {

}

graph *©- = xmalloc(sizeof(graph));
G->size = size;
G->ad) = xcalloc(size, sizeof(adjlist*));
ENSURES(is_graph(G));

G;

56

Freeing a Graph

® graph free must free
O all adjacency lists
O the array
O the graph header

® Cost: O(v + e)

O there are 2e nodes to free in the

adjacency lists

O Vv array positions need to be

accessed for that

0| @t> 1 | e+ 4 | e}k
1|+ 0 |et—> 2 | e 41| @
2 @1—> 1 |1 4 | &+— 3 | @
3| o> 2 | e—H

s> 0 |4+ 1| e— 2 | e+}h

Free the adjacency list nodes

Free the arrayé

void graph_free(graph *G) {
REQUIRES(is_graph(G));
(unsigned int 1 = 0; I < G->size; i++) {
adjlist *I. = G->adj][i];
(L '= NULL) {
adjlist *tmp = L->next;
free(L);
L = tmp;
}
}
- free(G->ad));
- free(G);
}

Free the header

57

Checking Edges

® graph_hasedge(G, v, w) does a linear search for w in the

adjacency list of v

O we could implement it the
other way around as well

® |ts cost is O(min(v,e))

O the maximum length of
an adjacency list

O the maximum number of
neighbors of a vertex

bool graph_hasedge(graph *G, vertex v, vertex w) {
REQUIRES(is_graph(G));
REQUIRES(is_vertex(G, v) && is_vertex(G, w));

(adjlist *I = G->adj[v]; L '= NULL,; L = L->next) {

(L->vert == w) true;
}
false;
}
Ol 1 | &> 4 | e}

O+ | oo [eh(z) ot Lo
2| 1> 1 |et—> 4 | &+—{ 3 | &
3| o> 2 | eH
il 0 | 1 | &> 2 | &}

Adding an Edge

® The preconditions exclude void graph_addedge(graph *G, vertex v, vertex w) {
REQUIRES(is_graph(G));

O self-edges REQUIRES(is_vertex(G, v) && is_vertex(G, w));
O edges a|ready contained in REQUIRES(v != w && !graph_hasedge(G, v, w));
the graph adijlist *.

L = xmalloc(sizeof(adjlist));

® graph_addedge(G, v, w) Lovert=w, —— add w as a neighbor of v
o adds w as a neighbor of v st = Gl

G->adj[v] = L;
O and v as a neighbor of w

L = xmalloc(sizeof(adjlist));

L->vert = v; R
L->next = G->adj[w];

add v as a neighbor of w

Ol 1 | &= 4 | e} Gadwl =L
1| o4 0 | e 2 | e 4 | o1H ENSURES(is_graph(G));
ENSURES(graph_hasedge(G, v, w));
2] o4 1 |e4>{ 4 | &1 3 | e+}H }
3| e4— 2 | et
® Constant cost
4ot 0 |et> 1 | &= 2 | e}

59

Neighbors

® \We can use the adjacency list of a vertex as a
representation of its neighbors

O We must be careful however not to modify the graph as we

terate through the neighbors

O Define a struct with a single field

» a pointer to the next neighbor to examine

Ge

I;

struct neighbor_header neighbors;
neighbor_header {
adjlist *next_neighbor;

——> 1 |e— o
——> 0 | o> *—>
——> 1 | &> *—>
o 2 | et}

——> 0 | &> *—>

nbore

A\

next_neighbor

Neighbors

' neighbors *graph_get_neighbors(graph *G, vertex v) {
¢ graph_get_nelghborS(G, V) REQUIRES(is_graph(G) && is_vertex(G, v));
O creates a neighbors struct

_ _ neighbors * = xmalloc(sizeof(neighbors));
O points the next_neighbor nbors->next_neighbor = G->adj[v];
fields to the adjacency list ENEUIRESIE mEgn oers e
of v } nbors;
O returns this struct
Ge >
0l o> 1 | e 4 | ot}
1| &> 0 |&— 2 | e—> 4 | e
2| > 1 |e— 4 | e 3 | o
3| 4> 2 | et
s> 0 | 1| e— 2 | e+}h
® Constant cost T
nbore > 4

next_neighbor

61

Neighbors

® graph next neighbor vertex graph_next_neighbor(neighbors *) {
o o _ REQUIRES(is_neighbors(nbors));
O returns the next neighbor REQUIRES(graph_hasmore_neighbors(nbors)):

O a_ldvances the ne)ft—nelghb_or vertex v = nbors->next_neighbor->vert;
field along the adjacency list | nbors->next_neighbor = nbors->next_neighbor->next;

N -

It must not free that adjacency list
node since it is owned by the graph

Ge —>
0|1 1 | &> 4 | e+
1| &= 0 | &— 2 | &—> 4 | &+
2| o> 1 | e 4 | &+—{ 3 | oH
3| o> 2 | eH
4| @ o——>1 o—> 2 | oH

® Constant cost 7
nbore > &

next_neighbor

62

Neighbors

® graph _hasmore neighbors
checks whether the end of

the adjacency list
reached

® graph free neigh
the neighbor heac

has been

nors frees
er

O and only the heac

N

er

It must not free the rest of the adjacency
list since it is owned by the graph

® Constant time

bool graph_hasmore_neighbors(neighbors *) {
REQUIRES(is_neighbors(nbors));
nbors->next _neighbor !'= NULL,;
}
void graph_free_neighbors(neighbors *)1

REQUIRES(is_neighbors(nbors));
free(nbors);

}

63

Cost Summary

Adjacency list

Space O(v +e)
graph_new O(V)
graph_free O(v + e)
graph_size O(1)

graph_hasedge O(min(v,e))
graph_addedge O(1)
graph_get_neighbors O(1)
graph_hasmore_neighbors O(1)
graph_next_neighbor O(1)
graph_free neighbors O(1)

64

Using the Graph Interface

65

Printing a Graph

® Using the graph interface, write a

client function that prints a graph
O for every vertex

> print it

» print every neighbor of this node

void graph_print(graph_t G) {
(vertex v = 0; v < graph_size(G); v++) {
printf(, V);
neighbors t = graph_get_neighbors(G, v);
(graph_hasmore_neighbors(nbors)) {

graph.h 5)

vertex v = graph_next_neighbor(nbors);
printf(, W); N
} w is a neighbor of v
graph_free_neighbors(nbors);
printf("\n");
}
}

unsigned int vertex;
struct graph_header *graph_t;

graph_t graph_new(unsigned int);
/l@ensures \result '= NULL;

void graph_free(graph_t ©);
l/@requires G != NULL;

unsigned int graph_size(graph_t G);
l/@requires G != NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w);
//@requires G != NULL;
//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w);
//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);
//@requires v I= w && !graph_hasedge(G, v, w);

struct neighbor_header *neighbors_t;

neighbors_t graph_get _neighbors(graph _t G, vertex v);
ll@requires G = NULL && v < graph_size(G);
l/@ensures \result = NULL;

bool graph_hasmore_neighbors(neighbors _t);
//@requires nbors !'= NULL,;

vertex graph_next_neighbor(neighbors_t);
//@requires nbors !'= NULL,;

l/@requires graph_hasmore_neighbors(nbors);
l/@ensures is_vertex(\result);

void graph_free neighbors(neighbors _t);
//@requires nbors !'= NULL,;

-

® \We will see other algorithms that follow this pattern

66

What Is the Cost of graph print?

® [or a graph with v vertices and e edges
® using a library based on the adjacency list representation

graph_get _neighbors

O(1)

graph_hasmore_neighbors

O(1)

graph_next_neighbor

O(1)

graph_free neighbors

O(1)

Cost Tally
AV A
void graph_print(graph_t G) { \/ \/
(vertex v = 0; v < graph_size(G); v++) { v times
printf(,V); O(1) O(v)
neighbors t = graph_get_neighbors(G, v); O(1) O(v)
(graph_hasmore_neighbors(nbors)) { O(min(v,e)) times O(v min(v,e))
vertex w = graph_next_neighbor(nbors); O(1) O(v min(v,e))
printf(,W):; O(1) O(v min(v,e))
}
graph_free neighbors(nbors); O(1) O(v min(v,e))
printf("\n"); O(1) O(v min(v,e))
}
}

® So the cost of graph _printis O(v min(v, e))

What Is the Cost of graph print?

® The cost of graph printis O(v min(v, €))
O for a graph with v vertices and e edges using adjacency lists

® [s that right?
O We assumed every vertex has O(min(v,e)) neighbors

O But overall graph_print visits every edge exactly twice
» once from each endpoint

» the body of the inner loop runs 2e times over all iterations of the outer
loop

» the entire inner loop costs O(e)

?
v
’

’
v
?

?
I A

?
v
?

What Is the Cost of graph print?

® The entire inner loop costs O(e)

@ Tally
— —
| |

void graph_print(graph_t ©) {

(vertex v = 0; v < graph_size(G); v++) { v times
printf(,V); O(1) O(v)
neighbors t = graph_get_neighbors(G, v); O(1) O(v)

—

(graph_hasmore_neighbors(nbors)) {
vertex w = graph_next_neighbor(nbors);

printf(LW); - O(€) O(v + e)
} _
graph_free_neighbors(nbors); O(1) O(v +e)
printf("\n"); O(1) O(v + e)
}

}

® The actual cost of graph_printis O(v + e)
O for a graph with v vertices and e edges using adjacency lists

68

69

What Is the Cost of graph print?

® Using the adjacency matrix representation

® By the same argument, the entire inner loop costs O(e)

O and graph free neighbors too @ Ty
[[
void graph_print(graph_t ©) { \/ \/
(vertex v = 0; v < graph_size(G); v++) { v times
printf(,V); O(1) O(v)
neighbors_t = graph_get_neighbors(G, v); O(v) O(v?)
(graph_hasmore_neighbors(nbors)) {]
vertex v = graph_next_neighbor(nbors); ,
printf(, W); = O(e) O(ve+e)
}
graph_free_neighbors(nbors); B
printf("\n"): k O(1) O(v2 + e)
J This is O(min(v,e)) by itself, but
) there are only 2e neighbors to free

® The actual cost of graph_print is O(v? + €)
O This is O(v?) since e € O(v?) always

70

What Is the Cost of print_graph?

® Adjacency list representation: O(v + e)
® Adjacency matrix representation: O(v?)

® For a dense graph
> e e O(v?)

they are the same

® [or a sparse graph, AL Is
better

Same as
‘space bounds

void graph_print(graph_t G) {
(vertex v = 0; v < graph_size(G); v++) {
printf(, V),
neighbors t = graph_get_neighbors(G, v);
(graph_hasmore_neighbors(nbors)) {
vertex v = graph_next_neighbor(nbors);

printf(, W);
}
graph_free _neighbors(nbors);
printf("\n");
}

}

