
Graphs

Graphs

1

What is a Graph?

 A graph is a collection of

dots and

lines

2

J

F

C

E

B

I

D

A

H

G

What is a Graph?

 The dots are called

vertices or nodes

o they are generally given

unique labels

A vertex labeled A

3

J

F

C

E

B

I

D

A

H

G

What is a Graph?

 The lines are called edges

o each edge connects a

pairs of vertices

 its endpoints

o there is at most one edge

between any two vertices

An edge with

endpoints A and B

4

 The graphs we will consider

o are undirected

 the edge (A,B) is the same

the edge (B,A)

o have no self-edges

 there is no edge (V,V)

for any vertex V

o but there are many other

kinds of graphs out there

J

F

C

E

B

I

D

A

H

G

What is a Graph?

This is for

simplicity

5

J

F

C

E

B

I

D

A

H

G

What is a Graph?

 To describe a graph, we need

to give its vertices and its

edges

oMathematically, a graph G

is a pair (V, E)

V is its set of vertices

E is its set of edges

G = (V, E)

This graph:
• vertices {A,B,C,D,E,F,G,H,I,J}

• edges {(A,B), (A,C), (A,I), (A,H),

(B,C), (B,E), (C,D), (C,E),

(C,H), (C,I), (D,E), (D,I), (F,H),

(F,I), (F,J), (G,H), (H,J)}
6

J

F

C

E

B

I

D

A

H

G

What is a Graph?

 The neighbors of a vertex

are all the vertices

connected to it with an

edge

The neighbors of A are B, C, H, I

7

What are Graphs Good for?

 Graphs are a convenient abstraction that brings out

commonalities between different domains

 Once we understand a problem in term of graphs, we can

use general graph algorithms to solve it

o no need to reinvent the wheel every time

 Graphs are everywhere

8

9

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

Our graph could represent a road network

• vertices are cities

• edges are major highways

10

E

It could represent a social network

• vertices are people

• edges are social connections

This is what a social network looked like … in 2005

• vertices are people posting photos

• edges are people following the photo stream of others

11

Lightsout

 Lightsout is a game played on

boards consisting of n x n lights

o each light can be either on or off

 We make a move by pressing a

light, which toggles it and its

cardinal neighbors

 From a given configuration, the

goal of the game is to turn off

all light

A 6x6 lightsout

configuration

Light

is on

Light

is off

The move toggles

these 5 lights

12

Lightsout as a Graph

 A vertex is a board configuration

 An edge is a move

o pressing a light twice brings us back

to where we were

 the graph is undirected

o pressing a light takes us

to a new configuration

no self-edges

2x2 lightsout

configurations

13

 To solve a given board, we must find a sequence

of moves that takes us to the board

with all the lights out

o find a series of vertices

connected by edges

Lightsout as a Graph

Given

configurations

Solved

configurations

14

 A series of vertices connected by edges

is called a path

o solving lightsout is the same as finding

a path from the given configuration

to the solved configuration

Lightsout as a Graph

Start

Target

Here’s a path between them:

15

Juarez

Fort Worth

Columbus

Erie

Boston

Detroit

Atlanta

Houston

Galveston

Getting Directions
 Figuring out how to go from

one place to another also

amounts to finding a path

between them

o Graphs bring out

commonalities between

different domains

Indianapolis

16

E

Getting Introduced

 Figuring out how to get

introduced to someone

also amounts to finding a

path between them

oGraphs bring out

commonalities between

different domains

17

 A path is a series of vertices connected by edges

owe can reduce the problem of solving lightsout

to the problem of finding a path

between two vertices

Lightsout as a Graph

Start

Target

Here’s another path between them:

Here, we are backtracking

18

 A path is a series of vertices connected by edges

o There can be many paths between

two vertices

Lightsout as a Graph

Start

Target

And another one:

19

Lightsout as a Graph

 On n x n lightsout,

o there are 2n*n board configurations

each of the n*n lights can be either on or off

o from any board, we can make n*n moves

by pressing any one of the n*n lights

 The graph representing n x n lightsout has

o 2n*n vertices

o n*n * 2n*n / 2 edges

 there are 2n*n vertices

each has n x n neighbors

but this would count each edge (A,B) twice

 from A to B and

 from B to A

so we divide by 2

20

Target

All the vertices and edges of 2x2 lightsout

(color-coded by which light is

pressed to make a move)

The 2x2 Lightsout

Graph

21

Models vs. Data Structures

 A graph can be

o a conceptual model to understand a problem

o a concrete data structure to solve it

 For 2x2 lightsout, it is both

oConceptually, it brings out the structure of the problem and

highlights what it has in common with other problems

oConcretely, we can traverse a data structure that represents it in

search of a path to the solved board

 Turning 6x6 lightsout into a data structure is not practical

o each board requires 36 bits

owe need over 64GB to represent its 236 vertices

owe need over 2TB to represent its 36 * 236 / 2 edges

That’s more memory than most computers have
22

Implicit Graphs

 We don’t need a graph data structure to solve n x n lightsout

o from each board we can algorithmically generate all boards that

can be reached in one move

o pick one of them and repeat until

we reach the solved board

or we reach a previously seen board

 from it try a different move

 In the process, we are building an implicit graph

o a small portion of the graph exists in memory at any time

 the boards we have previously seen

 vertices

 the moves we still need to try from them

 edges

23

Explicit Graphs

 For many graphs, there is no algorithmic way to generate

their edges
 roads between cities

 social networks

…

 We must represent them explicitly as a data structure in

memory

 We will now develop a small library for solving problems

with these explicit graphs

24

A Graph Interface

25

A Minimal Graph Data Structure

 What we need to represent

o graphs themselves

 type graph_t

o the vertices of a graph

 type vertex

 we label vertices with the numbers 0, 1, 2, …

 consecutive integers starting at 0

 vertex is defined as unsigned int

o the edges of the graph

we represent an edge as its endpoints

 no need for an edge type

26

A Minimal Graph Data Structure

 Basic operations on graphs

o graph_new(n) create a new graph with n vertices

we fix the number of vertices at creation time

 we cannot add vertices after the fact

o graph_size(G) returns the number of vertices in G

o graph_hasedge(G, v, w) checks if the graph G contains the edge

(v,w)

o graph_addedge(G, v, w) adds the edge (v,w) to the graph G

o graph_free(G) disposes of G

 A realistic graph library would provide a much richer set of

operations

owe can define most of them on the basis of these five

27

A Minimal Graph Interface – I

typedef unsigned int vertex;

typedef struct graph_header *graph_t;

graph_t graph_new(unsigned int numvert);

//@ensures \result != NULL;

void graph_free(graph_t G);

//@requires G != NULL;

unsigned int graph_size(graph_t G);

//@requires G != NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

//@requires v != w && !graph_hasedge(G, v, w);

…

File graph.h

In a C header file,

we must define abstract types

… but we don’t need to give the details

vertex is a concrete type

This says that v and w

must be valid vertices

No self-edges

For simplicity,

only add new edges
28

Example

 We create this graph as

graph_t G = graph_new(5);

graph_addedge(G, 0, 1);

graph_addedge(G, 0, 4);

graph_addedge(G, 1, 2);

graph_addedge(G, 1, 4);

graph_addedge(G, 2, 3);

graph_addedge(G, 2, 4);

 Then
graph_hasedge(G, 3, 2) returns true, but

graph_hasedge(G, 3, 1) return false

 there is a path from 3 to 1, but no direct edge

0

1

3

4

2

in any

order

We sometimes write

the labels inside the

vertices

29

Neighbors

 It is convenient to handle neighbors explicitly
 this is not strictly necessary

but graph algorithms get better complexity if we do so inside the library

 Abstract type of neighbors

o neighbors_t

 Operations on neighbors

o graph_get_neighbors(G, v)

 returns the neighbors of vertex v in G

o graph_hasmore_neighbors(nbors)

 checks if there are additional neighbors

o graph_next_neighbor(nbors)

 returns the next neighbor

o graph_free_neighbors(nbors)

dispose of unexamined neighbors

These allow us to iterate through

the neighbors of a vetex

These allow us to iterate through

the neighbors of a vertex

This is called an iterator

30

A Minimal Graph Interface – II

…

typedef struct neighbor_header *neighbors_t;

neighbors_t graph_get_neighbors(graph_t G, vertex v);

//@requires G != NULL && v < graph_size(G);

//@ensures \result != NULL;

bool graph_hasmore_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

vertex graph_next_neighbor(neighbors_t nbors);

//@requires nbors != NULL;

//@requires graph_hasmore_neighbors(nbors);

void graph_free_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

File graph.h

There must be additional neighbors

to retrieve the next neighbor

These declarations are

part of the same header file

31

Example

 We grab the neighbors of vertex 4 as
neighbors_t n4 = graph_get_neighbors(G, 4);

 n4 contains vertices 0, 1, 2 in some order

vertex a = graph_next_neighbor(n4);

 say a is vertex 1

 it could also be 0 or 2

vertex b = graph_next_neighbor(n4);

 say b is vertex 0

 it cannot be 1 because we already got that neighbor

 but it could be 2

vertex c = graph_next_neighbor(n4);

 c has to be vertex 2

 it cannot be 0 or 1 because we already got those neighbors

graph_hasmore_neighbor(n4)

 returns false because we have exhausted all the neighbors of 4

0

1

3

4

2

32

G

Implementing Graphs

33

Implementing Graphs

 How to implement graphs based on what we studied?

o The main operations are

adding an edge to the graph

 checking if an edge is contained in the graph

 These are the operations we had for sets

 iterating through the neighbors of a vertex

 Implement graphs as

o a linked list of edges

o a hash set

 How much would the operations cost?

We could also use AVL trees

if we are able to sort the edges

34

Measuring the Cost of Graph Operations

 If a graph has v vertices, the number e

of edges ranges between

o 0, and

o v(v-1)/2

 there is an edge between each of the v vertices

and the other v-1 vertices, but we divide by 2 so

that we don’t double-count edges

 So, e O(v2)

owe could do with just v as a cost parameter,

o but many graphs have far fewer than v(v-1)/2 edges

using only v would be overly pessimistic

 Use both v and e as cost parameters

The graph has no edgesThe graph has no edges

This is a complete graphThis is a complete graph

35

Naïve Graph Implementations

 For implementations based on known data structures,

the cost of the basic graph operations are

 What about iterating through the neighbors of a vertex?

Linked list of edges Hash set of edges

graph_hasedge O(e) O(1) avg

graph_addedge O(1) O(1) avg+amt

36

Naïve Graph Implementations

 Finding the neighbors of a vertex requires going over all

the edges

o graph_get_neighbors has cost O(e) and O(v) avg

 How many neighbors are there?

o at most v-1

 if this vertex has an edge to all other vertices

o at most e

 there cannot be more neighbors than edges

in the graph

 A vertex has O(min(v,e)) neighbors

o iterating through the neighbors costs O(min(v,e))

 times the cost of the operation being performed

37

Naïve Graph Implementations

 In summary

Linked list of edges Hash set of edges

graph_hasedge O(e) O(1) avg

graph_addedge O(1) O(1) avg + amt

graph_get_neighbors O(e) O(v) avg

Iterating through

neighbors
O(min(v,e)) O(min(v,e))

38

Classic Graph Implementations

 Can we do better?

 Two representations of graphs are commonly used

o the adjacency matrix representation

o the adjacency list representation

 Both give us better cost

… in different situations …

“adjacency” is just a fancy

word for neighbors

39

The Adjacency Matrix Representation

 Represent the graph as a v*v matrix of booleans

oM[i,j] == true if there is an edge between i and j

oM[i,j] == false otherwise

M is called the adjacency matrix

 Cost of the operations

o graph_hasedge(G, v, w): O(1)

 just return M[v,w]

o graph_addedge(G, v, w): O(1)

 just set M[v,w] to true

o graph_get_neighbors(G, v): O(v)

go through the row for v in M

 Space needed: O(v2)

0

1

3

4

2

0 1 2 3 4

0
 

1
  

2
  

3


4
  

For undirected graphs,

M is symmetric:

M[i,j] == M[j,i]

No self-edges,

so M[i,i] == false

M[2,4] == true

because G

contains

edge (2,4)

40

The Adjacency List Representation

 For each vertex v, keep track of its neighbors

in a list

o the adjacency list of v

 Store the adjacency lists in a vertex-indexed array

 Cost of the operations

o graph_hasedge(G, v, w): O(min(v,e))

each vertex has O(min(v,e)) neighbors

each adjacency list has length O(min(v,e))

o graph_addedge(G, v, w): O(1)

add v in w’s list and w in v’s list

o graph_get_neighbors(G, v): O(1)

 just grab v’s adjacency list

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

0

1

3

4

2

The neighbors

of 4 are 0, 1, 2

41

The Adjacency List Representation

 For each vertex v, keep track of its neighbors

in a list

o the adjacency list of v

 Store the adjacency lists in a vertex-indexed array

 Space needed: O(v + e)

o a v-element array

o 2e list items

each edge corresponds to exactly

2 list items

 O(v + e) is conventionally

written O(max(v,e))

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

0

1

3

4

2

Why? Note that

max(v,e) ≤ v+e ≤ 2max(v,e)

42

Adjacency Matrix vs. List

Adjacency matrix Adjacency list

Space O(v2) O(v + e)

graph_hasedge O(1) O(min(v,e))

graph_addedge O(1) O(1)

graph_get_neighbors O(v) O(1)

Iterating through

neighbors
O(min(v,e)) O(min(v,e))

43

When to Use What Representation?

 Recall that 0 ≤ e ≤ v(v-1)/2

 A graph is dense if it has lots of edges

o e is on the order of v2

 A graph is sparse if it has relatively few edges

o e is in O(v)
 at most O(v log v)

but definitely not O(v2)

o lots of graphs are sparse

 social networks

 roads between cities

…

45

Cost in Dense Graphs

 We replace e with v2 and simplify

Adjacency matrix Adjacency list

Space O(v2) O(v + e)  O(v2)

graph_hasedge O(1) O(min(v,e))  O(v)

graph_addedge O(1) O(1)

graph_get_neighbors O(v) O(1)

Iterating through

neighbors
O(min(v,e))  O(v) O(min(v,e))  O(v)

Same

Same

Same

AM

AL

46

Cost in Dense Graphs

 graph_hasedge is faster with AM

 graph_get_neighbors is faster with AL

o but we typically iterate through the neighbors after grabbing

them

 All other operations are the same

 The space requirements are the same

 For dense graphs

o the two representations have about the same cost

o but graph_hasedge is faster with AM

the adjacency matrix representation is preferable

47

Cost in Sparse Graphs

 We replace e with v and simplify

Adjacency matrix Adjacency list

Space O(v2) O(v + e)  O(v)

graph_hasedge O(1) O(min(v,e))  O(v)

graph_addedge O(1) O(1)

graph_get_neighbors O(v) O(1)

Iterating through

neighbors
O(min(v,e))  O(v) O(min(v,e))  O(v)

AL

Same

Same

AM

AL

Assume e  O(v)

48

Cost in Sparse Graphs

 AL requires a lot less space

 graph_hasedge is faster with AM

 graph_get_neighbors is faster with AL

o but we typically iterate through the neighbors after grabbing

them

 All other operations are the same

 For sparse graphs

o AL uses substantially less space

o the two representations have about the same cost

o but graph_hasedge is faster with AM

the adjacency list representation is preferable because it

doesn’t require as much space

49

Adjacency List Implementation

50

Graph Types

 An adjacency list is just a

NULL-terminated linked list of

vertices

 The graph data structure

consists of

o the number v of vertices in

the graph

 field size

o a v-element array of

adjacency lists

 field adjlist

typedef struct adjlist_node adjlist;

struct adjlist_node {

vertex vert;

adjlist *next;

};

typedef struct graph_header graph;

struct graph_header {

unsigned int size;

adjlist **adj;

};
adjlist*[] adj in C0

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

51

Representation Invariants

 The interface defines

typedef unsigned int vertex;

 A vertex is valid if its value is between 0 and the size of

the graph

bool is_vertex(graph *G, vertex v) {

REQUIRES(G != NULL);

return v < G->size;

}

0 <= v

is automatic since v has

type unsigned int

52

Representation Invariants

 A graph is valid if

o it is non-NULL

o the length of the array of adjacency lists is equal to it size

but we can’t check this in C

o each adjacency list is valid

bool is_graph(graph *G) {

if (G == NULL) return false;

//@assert(G->size == \length(G->adj));

for (unsigned int i = 0; i < G->size; i++) {

if (!is_adjlist(G, i, G->adj[i])) return false;

}

return true;

}

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

53

Representation Invariants

 An adjacency list is valid if

o it is NULL-terminated

o each vertex is valid

o there are not self-edges

o every outgoing edge has a

corresponding edge coming

back in

o there are no duplicate edges

bool is_adjlist(graph *G, vertex v, adjlist *L) {

REQUIRES(G != NULL);

//@requires(G->size == \length(G->adj));

if (!is_acyclic(L)) return false;

while (L != NULL) {

vertex w = L->vert; // w is a neighbor of v

// Neighbors are legal vertices

if (!is_vertex(G, wt)) return false;

// No self-edges

if (v == w) return false;

// Every outgoing edge has a corresponding

// edge coming back to it

if (!is_in_adjlist(G->adj[w], v)) return false;

// Edges aren't duplicated

if (is_in_adjlist(L->next, w)) return false;

L = L->next;

}

return true;

}

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

54

Basic operations

 graph_size returns the stored size

oCost O(1)

 graph_new creates an array of

empty adjacency lists

o calloc makes it convenient

oCost O(v)

 calloc needs to zero out all v positions

graph *graph_new(unsigned int size) {

graph *G = xmalloc(sizeof(graph));

G->size = size;

G->adj = xcalloc(size, sizeof(adjlist*));

ENSURES(is_graph(G));

return G;

}

unsigned int graph_size(graph *G) {

REQUIRES(is_graph(G));

return G->size;

}

0

1

2

3

4
55

Freeing a Graph

 graph_free must free

o all adjacency lists

o the array

o the graph header

 Cost: O(v + e)

o there are 2e nodes to free in the

adjacency lists

o v array positions need to be

accessed for that

void graph_free(graph *G) {

REQUIRES(is_graph(G));

for (unsigned int i = 0; i < G->size; i++) {

adjlist *L = G->adj[i];

while (L != NULL) {

adjlist *tmp = L->next;

free(L);

L = tmp;

}

}

free(G->adj);

free(G);

}

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

Free the header

Free the array

Free the adjacency list nodes

56

Checking Edges

 graph_hasedge(G, v, w) does a linear search for w in the

adjacency list of v

owe could implement it the

other way around as well

 Its cost is O(min(v,e))

o the maximum length of

an adjacency list

o the maximum number of

neighbors of a vertex

bool graph_hasedge(graph *G, vertex v, vertex w) {

REQUIRES(is_graph(G));

REQUIRES(is_vertex(G, v) && is_vertex(G, w));

for (adjlist *L = G->adj[v]; L != NULL; L = L->next) {

if (L->vert == w) return true;

}

return false;

}

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

57

Adding an Edge

 The preconditions exclude

o self-edges

o edges already contained in

the graph

 graph_addedge(G, v, w)

o adds w as a neighbor of v

o and v as a neighbor of w

 Constant cost

void graph_addedge(graph *G, vertex v, vertex w) {

REQUIRES(is_graph(G));

REQUIRES(is_vertex(G, v) && is_vertex(G, w));

REQUIRES(v != w && !graph_hasedge(G, v, w));

adjlist *L;

L = xmalloc(sizeof(adjlist));

L->vert = w;

L->next = G->adj[v];

G->adj[v] = L;

L = xmalloc(sizeof(adjlist));

L->vert = v;

L->next = G->adj[w];

G->adj[w] = L;

ENSURES(is_graph(G));

ENSURES(graph_hasedge(G, v, w));

}

add w as a neighbor of v

add v as a neighbor of w

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

58

Neighbors

 We can use the adjacency list of a vertex as a

representation of its neighbors

oWe must be careful however not to modify the graph as we

iterate through the neighbors

oDefine a struct with a single field

a pointer to the next neighbor to examine

typedef struct neighbor_header neighbors;

struct neighbor_header {

adjlist *next_neighbor;

};

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

next_neighbor

nbor

G

59

Neighbors

 graph_get_neighbors(G, v)

o creates a neighbors struct

o points the next_neighbor

fields to the adjacency list

of v

o returns this struct

 Constant cost

neighbors *graph_get_neighbors(graph *G, vertex v) {

REQUIRES(is_graph(G) && is_vertex(G, v));

neighbors *nbors = xmalloc(sizeof(neighbors));

nbors->next_neighbor = G->adj[v];

ENSURES(is_neighbors(nbors));

return nbors;

}

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

next_neighbor

nbor

G

60

Neighbors

 graph_next_neighbor

o returns the next neighbor

o advances the next_neighbor

field along the adjacency list

 Constant cost

vertex graph_next_neighbor(neighbors *nbors) {

REQUIRES(is_neighbors(nbors));

REQUIRES(graph_hasmore_neighbors(nbors));

vertex v = nbors->next_neighbor->vert;

nbors->next_neighbor = nbors->next_neighbor->next;

return v;

}

It must not free that adjacency list

node since it is owned by the graph

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

next_neighbor

nbor

G

61

Neighbors

 graph_hasmore_neighbors

checks whether the end of

the adjacency list has been

reached

 graph_free_neighbors frees

the neighbor header

o and only the header

 Constant time

bool graph_hasmore_neighbors(neighbors *nbors) {

REQUIRES(is_neighbors(nbors));

return nbors->next_neighbor != NULL;

}

void graph_free_neighbors(neighbors *nbors) {

REQUIRES(is_neighbors(nbors));

free(nbors);

}

It must not free the rest of the adjacency

list since it is owned by the graph

62

Cost Summary

Adjacency list

Space O(v + e)

graph_new O(v)

graph_free O(v + e)

graph_size O(1)

graph_hasedge O(min(v,e))

graph_addedge O(1)

graph_get_neighbors O(1)

graph_hasmore_neighbors O(1)

graph_next_neighbor O(1)

graph_free_neighbors O(1)

63

Using the Graph Interface

64

Printing a Graph

 Using the graph interface, write a

client function that prints a graph

o for every vertex

print it

print every neighbor of this node

 We will see other algorithms that follow this pattern

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

w is a neighbor of v

typedef unsigned int vertex;

typedef struct graph_header *graph_t;

graph_t graph_new(unsigned int numvert);

//@ensures \result != NULL;

void graph_free(graph_t G);

//@requires G != NULL;

unsigned int graph_size(graph_t G);

//@requires G != NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

//@requires v != w && !graph_hasedge(G, v, w);

typedef struct neighbor_header *neighbors_t;

neighbors_t graph_get_neighbors(graph_t G, vertex v);

//@requires G != NULL && v < graph_size(G);

//@ensures \result != NULL;

bool graph_hasmore_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

vertex graph_next_neighbor(neighbors_t nbors);

//@requires nbors != NULL;

//@requires graph_hasmore_neighbors(nbors);

//@ensures is_vertex(\result);

void graph_free_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

graph.h

65

What is the Cost of graph_print?

 For a graph with v vertices and e edges

 using a library based on the adjacency list representation

 So the cost of graph_print is O(v min(v, e))

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

v times
O(1)

O(1)

O(min(v,e)) times

O(1)

O(1)

O(1)

O(1)

Cost Tally

O(v)

O(v)

O(v min(v,e))

O(v min(v,e))

O(v min(v,e))

O(v min(v,e))

O(v min(v,e))

66

graph_get_neighbors O(1)

graph_hasmore_neighbors O(1)

graph_next_neighbor O(1)

graph_free_neighbors O(1)

What is the Cost of graph_print?

 The cost of graph_print is O(v min(v, e))

o for a graph with v vertices and e edges using adjacency lists

 Is that right?

oWe assumed every vertex has O(min(v,e)) neighbors

o But overall graph_print visits every edge exactly twice

once from each endpoint

 the body of the inner loop runs 2e times over all iterations of the outer

loop

 the entire inner loop costs O(e)
0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

67

What is the Cost of graph_print?

 The entire inner loop costs O(e)

 The actual cost of graph_print is O(v + e)

o for a graph with v vertices and e edges using adjacency lists

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

v times
O(1)

O(1)

O(e)

O(1)

O(1)

Cost Tally

O(v)

O(v)

O(v + e)

O(v + e)

O(v + e)

68

What is the Cost of graph_print?

 Using the adjacency matrix representation

 By the same argument, the entire inner loop costs O(e)

o and graph_free_neighbors too

 The actual cost of graph_print is O(v2 + e)

o This is O(v2) since e  O(v2) always

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

v times
O(1)

O(v)

O(e)

O(1)

Cost Tally

O(v)

O(v2)

O(v2 + e)

O(v2 + e)

This is O(min(v,e)) by itself, but

there are only 2e neighbors to free

69

What is the Cost of print_graph?

 Adjacency list representation: O(v + e)

 Adjacency matrix representation: O(v2)

 For a dense graph
e  O(v2)

they are the same

 For a sparse graph, AL is

better

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

70

Same as

space bounds

Same as

space bounds

