
Graph Search



Review

 Graphs

o Vertices, edges,

neighbors, …

oDense, sparse

 Adjacency

matrix

implementation

 Adjacency

list

implementation

typedef unsigned int vertex;

typedef struct graph_header *graph_t;

graph_t graph_new(unsigned int numvert);

//@ensures \result != NULL;

void graph_free(graph_t G);

//@requires G != NULL;

unsigned int graph_size(graph_t G);

//@requires G != NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

//@requires v != w && !graph_hasedge(G, v, w);

typedef struct neighbor_header *neighbors_t;

neighbors_t graph_get_neighbors(graph_t G, vertex v);

//@requires G != NULL && v < graph_size(G);

//@ensures \result != NULL;

bool graph_hasmore_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

vertex graph_next_neighbor(neighbors_t nbors);

//@requires nbors != NULL;

//@requires graph_hasmore_neighbors(nbors);

//@ensures is_vertex(\result);

void graph_free_neighbors(neighbors_t nbors);

//@requires nbors != NULL;
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Review

 Costs are similar for 

dense graphs

 AL is more space-

efficient for sparse 

graphs

o very common graphs

e  O(v) is typical

Adjacency

list

Adjacency 

matrix

Space O(v + e) O(v2)

graph_new O(v) O(v2)

graph_free O(v + e) O(1)

graph_size O(1) O(1)

graph_hasedge O(min(v,e)) O(1)

graph_addedge O(1) O(1)

graph_get_neighbors O(1) O(v)

graph_hasmore_neighbors O(1) O(1)

graph_next_neighbor O(1) O(1)

graph_free_neighbors O(1) O(min(v,e))

Assuming the neighbors are

represented as a linked list

Assuming the neighbors are

represented as a linked list
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Review

 Typical function that traverses a graph

o go over most vertices and edges

o Adjacency list: O(v + e)

o Adjacency matrix: O(v2)
AL is much better for

sparse graphs

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

v times
O(1)

O(1)

O(e) altogether

O(1)

Cost Tally

O(v)

O(v)

O(v + e)

O(v + e)

O(1) O(v + e)

3
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space bounds



Graph Connectivity
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 Find a sequence of moves from the given

configuration to the solved configuration

o a path in the lightsout graph

Solving Lightsout

Start

Target

Here’s a path between them:
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Juarez

Fort Worth

Columbus

Erie

Boston

Detroit

Atlanta

Houston

Galveston

Getting Directions

 Find a sequence of roads 

from one city to another

o a path in the road graph

Indianapolis
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E

Getting Introduced

 Find a series of people to 

get introduced to someone

o a path in the contacts graph
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Connected Vertices

 A path is a sequence of vertices

linked by edges

o 0-4-5-1 is a path between 0 and 1

 Two vertices are connected if there is a path between them

o 0 and 1 are connected

o 0 and 7 are not connected

 If v1 and v2 are connected, then v2 is reachable from v1

 A connected component is a maximal

set of vertices that are connected

o this graph has two connected

components
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Checking Reachability

 How do we check if two vertices are connected?

o graph_hasedge only tells us if they are directly connected

by an edge

oWe want to develop a general algorithm to check reachability

 then we can use it to check reachability in any domain

 to check if lightsout is solvable from a given board

 to figure out if there are roads between two cities

 to know if there is any social connection between two people

The rest of this lecture
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Finding Paths

 How do we find a path between two vertices?
 what is a solution to lightsout from a given board?

 what roads are there between two cities?

 what series of people can get me introduced to person X?

o an algorithm that checks reachability can be instrumented to 

report a path between the two vertices

 A path is a witness that two vertices are connected

o Finding a witness is called a search problem

oChecking a witness is called a verification problem

 checking that a witness is valid is often a lot easier

than finding a witness This is the basic

principle underlying

cryptography

We will limit ourselves to reachability
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Checking Reachability

 Let’s define reachability mathematically

There is a path from start to target if

o start == target, or

o there is an edge from start to some vertex v

and there is a path from v to target

This is an

inductive definition

base case

inductive

case
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start target start target

v

There is a path from 0 to 0 There is a path from 0 to 3
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Recursive Depth-first Search – I
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Implementing the Definition

 We can immediately transcribe

this inductive definition into a

recursive client-side function

There is a path from start to target if

o start == target, or

o there is an edge from start to some vertex v

and there is a path from v to target

bool naive_dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

// there is a path from start to target if

// target == start, or

// there is an edge from start to ...

// ... some vertex v …

// ... and there is  a path from v to target

}

Contracts
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Implementing the Definition

bool naive_dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

printf("    Visiting %u\n", start);

// there is a path from start to target if

// target == start, or

if (target == start) return true;

// there is an edge from start to ...

neighbors_t nbors = graph_get_neighbors(G, start);

while (graph_hasmore_neighbors(nbors)) {

// ... some vertex v …

vertex v = graph_next_neighbor(nbors);

// ... and there is  a path from v to target

if (naive_dfs(G, v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}

typedef unsigned int vertex;

typedef struct graph_header *graph_t;

graph_t graph_new(unsigned int numvert);

//@ensures \result != NULL;

void graph_free(graph_t G);

//@requires G != NULL;

unsigned int graph_size(graph_t G);

//@requires G != NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

//@requires v != w && !graph_hasedge(G, v, w);

typedef struct neighbor_header *neighbors_t;

neighbors_t graph_get_neighbors(graph_t G, vertex v);

//@requires G != NULL && v < graph_size(G);

//@ensures \result != NULL;

bool graph_hasmore_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

vertex graph_next_neighbor(neighbors_t nbors);

//@requires nbors != NULL;

//@requires graph_hasmore_neighbors(nbors);

//@ensures is_vertex(\result);

void graph_free_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

graph.h
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Implementing the Definition

 It has the same 

structure as 

graph_print

o the outer loop is 

replaced with recursion

bool naive_dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

printf("    Visiting %u\n", start);

// there is a path from start to target if

// target == start, or

if (target == start) return true;

// there is an edge from start to ...

neighbors_t nbors = graph_get_neighbors(G, start);

while (graph_hasmore_neighbors(nbors)) {

// ... some vertex v …

vertex v = graph_next_neighbor(nbors);

// ... and there is  a path from v to target

if (naive_dfs(G, v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}
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Does it Work?

 Let’s check there is a path from 3 to 0

 Let’s run it

bool naive_dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

printf("    Visiting %u\n", start);

// there is a path from start to target if

// target == start, or

if (target == start) return true;

// there is an edge from start to ...

neighbors_t nbors = graph_get_neighbors(G, start);

while (graph_hasmore_neighbors(nbors)) {

// ... some vertex v …

vertex v = graph_next_neighbor(nbors);

// ... and there is  a path from v to target

if (naive_dfs(G, v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}
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start target nbors

3 0 2

2 0 1, 3,  4

1 0 0,  2,  4

0 0

starttarget

# gcc … lib/*.c connected.c main.c

# ./a.out 3 0

Visiting 3

Visiting 2

Visiting 1

Visiting 0

Reachable

Linux Terminal

… from to

Looks good

Assume the neighbors

are returned from

smallest to biggest


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Does it Always Work?

 Let’s check there is a path from 0 to 3

 Let’s run it

bool naive_dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

printf("    Visiting %u\n", start);

// there is a path from start to target if

// target == start, or

if (target == start) return true;

// there is an edge from start to ...

neighbors_t nbors = graph_get_neighbors(G, start);

while (graph_hasmore_neighbors(nbors)) {

// ... some vertex v …

vertex v = graph_next_neighbor(nbors);

// ... and there is  a path from v to target

if (naive_dfs(G, v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}

0

1

3

4

2
start target nbors

0 3 1,  4

1 3 0,  2,  4

0 3 1,  4

1 3 0,  2,  4

… (this is not promising) …

# gcc … lib/*.c connected.c main.c

# ./a.out 0 3

Visiting 0

Visiting 1

Visiting 0

Linux Terminal

runs forever!

start target
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It does not Work

 Either the definition is wrong

or the code is wrong

 Definition

o it magically picks the right 

neighbor v if there is one

 the magic of “there is …”

 Code

o it must examine the neighbors in 

some order

 the first v may not be the right one

There is a path from start to target if

o start == target, or

o there is an edge from start to some vertex v

and there is a path from v to target

bool naive_dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_si…

printf("    Visiting %u\n", start);

// there is a path from start to target if

// target == start, or

if (target == start) return true;

// there is an edge from start to ...

neighbors_t nbors = graph_get_neighbors(G, start);

while (graph_hasmore_neighbors(nbors)) {

// ... some vertex v …

vertex v = graph_next_neighbor(nbors);

// ... and there is  a path from v to target

if (naive_dfs(G, v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}

The definition is fine

18



Why doesn’t it Work?

 The code examines the neighbors in some order

o it always starts with the same v

 the first neighbor

o… even if it has been examined before

 The code will never visit the

second neighbor (if there is one)
 it charges ahead with the first

neighbor, always

o if there is a path by only examining

first neighbors, it will find it

o if the path involves some other neighbor, it won’t
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start target

start target nbors

0 3 1,  4

1 3 0,  2,  4

0 3 1,  4

1 3 0,  2,  4

…
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Recursive Depth-first Search – II
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Fixing the Code

 Problems: the code examines the same neighbors over 

and over

 Solution: mark vertices that are being examined

o only examine a vertex if it is unmarked

omark it right away

 How to mark vertices?

o carry around an array of booleans

 true = marked

 false = unmarked

21

We could use any implementation of sets,

e.g., hash sets



Fixing the code

 Carry around an 

array of booleans

 Only run if start is 

unmarked 

 Mark it right away

 Only examine a 

neighbor if it’s 

unmarked

owe need to guard the 

recursive call

bool dfs_helper(graph_t G, bool *mark, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

REQUIRES(!mark[start]);

mark[start] = true;

printf("    Visiting %u\n", start);

// there is a path from start to target if

// target == start, or

if (target == start) return true;

// there is an edge from start to ...

neighbors_t nbors = graph_get_neighbors(G, start);

while (graph_hasmore_neighbors(nbors)) {

// ... some vertex v …

vertex v = graph_next_neighbor(nbors);

// ... and there is  a path from v to target

if (!mark[v] && dfs_helper(G, mark, v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}22



Fixing the Code

 We have modified the prototype of the function

o but the client should not have to deal with the added details

o export a wrapper instead of dsf_helper

bool dfs (graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

bool *mark = xcalloc(graph_size(G), sizeof(bool));

bool connected = dfs_helper(G, mark, start, target);

free(mark);

return connected;

}

Create the mark array: 

calloc initializes all

positions to false

We must free mark

since we calloc’ated it
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An Alternative Wrapper

 We can also use a stack-allocated array for mark

 Is this version preferable?

o stack space is limited

o for a large graph, the stack may not be big enough

stack overflow

bool dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

bool mark[graph_size(G)];

for (unsigned int v = 0; v < graph_size(G); v++)

mark[v] = false;

return dfs_helper(G, mark, start, target);

}

Create the a stack allocated array

of size graph_size(G)

We need to initialize it explicitly

But we don’t need to free it
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Does it Work?

 Let’s check there is a path from 0 to 3

 Let’s run it

0

1

3

4

2

start target nbors marked

0 3 1,  4 0

1 3 0,  2,  4 0,  1

2 3 1, 3,  4 0, 1, 2

3 3

# gcc … lib/*.c connected.c main.c

# ./a.out 0 3

Visiting 0

Visiting 1

Visiting 2

Visiting 3

Reachable

Linux Terminal

start

0
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4

2

target

target
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target
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4

2

target


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Backtracking

 Let’s check there is a path

from 2 to 3
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start target nbors marked

2 3 1,  3, 4 2

1 3 0,  2,  4 1, 2

0 3 1, 4 0, 1, 2

4 3 0,  1,  2 0, 1, 2, 4

3 3
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target

0

1
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target target target target

3 ≠ 4 and all the neighbors of 4 are marked 

We backtrack to a vertex that has a still

unmarked neighbor continue from it




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Backtracking

 We backtrack to a vertex

that has a still unmarked

neighbor and continue from it

 This is achieved by returning false from the recursive call

o the caller will then try the next unmarked neighbor

 Let’s run it

# gcc … lib/*.c connected.c main.c

# ./a.out 2 3

Visiting 2

Visiting 1

Visiting 0

Visiting 4

Visiting 3

Reachable

Linux Terminal

start target nbors marked

2 3 1,  3, 4 2

1 3 0,  2,  4 1, 2

0 3 1, 4 0, 1, 2

4 3 0,  1,  2 0, 1, 2, 4

3 3

…

while (graph_hasmore_neighbors(nbors)) {

// ... some vertex v …

vertex v = graph_next_neighbor(nbors);

// ... and there is  a path from v to target

if (!mark[v] && dfs_helper(G, mark v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}




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Complexity of dfs

 Let’s call dfs on a graph with

o v vertices,

o e edges, and

o implemented using adjacency lists

 The cost of dfs is O(v) plus the cost of dfs_helper

bool dfs (graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

bool *mark = xcalloc(graph_size(G), sizeof(bool));

bool connected = dfs_helper(G, mark, start, target);

free(mark);

return connected;

}

O(v)

free has constant cost

28

graph_size O(1)



Complexity of dfs_helper

 The body of the loop runs at most 2e times altogether
 at most 2e calls to graph_next_neighbors

e edges from either endpoint

each endpoint is examined at most once

 There are at most v recursive calls

o up to v vertices

can be marked

 Every operation

costs O(1)

 dfs_helper has

cost O(e + v)

bool dfs_helper(graph_t G, bool *mark, vertex start, vertex target) {

mark[start] = true;

if (target == start) return true;

neighbors_t nbors = graph_get_neighbors(G, start);

while (graph_hasmore_neighbors(nbors)) {

vertex v = graph_next_neighbor(nbors);

if (!mark[v] && dfs_helper(G, mark, v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}

O(1)

O(e)

altogether

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)
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graph_get_neighbors O(1)

graph_hasmore_neighbors O(1)

graph_next_neighbor O(1)

graph_free_neighbors O(1)

Tally

O(v)

O(v)

O(v)

O(v + e)

O(v + e)

In reality, it’s more

like min(v,e)

Just like for

graph_print



Complexity of dfs

 Let’s call dfs on a graph with
 v vertices,

e edges, and

 implemented using adjacency lists

 The cost of dfs is O(v + e)

bool dfs (graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

bool *mark = xcalloc(graph_size(G), sizeof(bool));

bool connected = dfs_helper(G, mark, start, target);

free(mark);

return connected;

}

O(v)

O(v + e)

30

graph_size O(1)

graph_get_neighbors O(1)

graph_hasmore_neighbors O(1)

graph_next_neighbor O(1)

graph_free_neighbors O(1)



Complexity of dfs

For a graph with v vertices and e edges

 O(v + e) using the adjacency list implementation

 O(v2) using the adjacency matrix implementation

 AL is more efficient for sparse graphs

o the most common kind of graphs

Holds for both

sparse and dense

graphs

Holds for both

sparse and dense

graphs

Exercise

Moving forward, we will always

assume an adjacency list

implementation
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Breadth-first Search
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How does dfs Work?

 When calling dfs on 0 and 4,

it finds the path 0–1–2–4

o it also visits 3 and backtracks

 But there is a much shorter

path: 0–4

o dfs does more work than strictly necessary
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target
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4
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start target nbors marked

0 4 1, 4 0

1 4 0,  2,  4 0, 1

2 4 1, 3,  4 0, 1, 2

3 4 2 0, 1, 2, 3

4 4

start target target target target




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How does dfs Work?

 dfs charges ahead until

o it finds the target vertex

o or it hits a dead end

 then it backtracks to the last

choice point

 This strategy is called depth-first search
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start target nbors marked

0 4 1, 4 0

1 4 0,  2,  4 0, 1

2 4 1, 3,  4 0, 1, 2

3 4 2 0, 1, 2, 3

4 4

start target target target target

DFS




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Breadth-first Search

 To find the shortest path, we need to explore the graph 

level by level from the start vertex

o first look at the vertices 0 hops away from start,

 if start == end

o then look at the vertices 1 hop away from start

o then 2 hops away

o then 3 hops away

o…

 This strategy is called breadth-first search
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start
target target

0 1 2 3 1

target

1

BFS


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Breadth-first Search

 We need to traverse the graph level by level

oWhen we examine 0, we need to remember that we

will have to examine 1 and 4 later

oWhen we examine 1, we need to remember we may have to 

examine 2 later

but first we need to look at 4

 We need a todo list
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
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Breadth-first Search

 We need a work list

 We need to traverse the graph level by level

o finish examining the current level before starting the next level

owe need to retrieve the vertices inserted the longest time ago

 This work list must be a queue

o older nodes need to be visited before newer nodes
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

That’s what we called

todo lists
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Breadth-first Search

 This

work list

must be

a queue

o start with 0 in the queue

o at each step, retrieve the next vertex to examine

oWe mark the vertices 

so we don’t put them in 

the queue twice

either because we 

examined them already

or because they are 

already in the queue and 

will be examined later
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next target queue marked

4 0 0

0 4 1, 4 0, 1, 4

1 4 4,  2 0, 1, 4, 2

4 4 
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Implementing BFS

 We need

o a queue where to store the vertices to examine next

o a mark array where to track the vertices we know about

either already examined or queued up to be examined
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Implementing BFS

 For as long as there are vertices still to be processed

o retrieve the vertex v inserted in the queue the longest time ago

 if v is target, we are done — there is a path

o examine each neighbor w of v

 if w is unmarked add it to the queue and mark it

otherwise ignore w – it was already queued up for processing

 if the queue is empty

o there are no vertices left to process

o and we have not found a path

owe are done — there is no path
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Implementing BFS – I

Initial setup

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q initially is a queue containing only start

queue_t Q = queue_new();

enq(Q, start);

…

If start is target, there is a path 

calloc initializes every vertex

as unmarked

but we want start to be marked

Initially only start

is in the queue
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Implementing BFS – II

Traversing the graph

…

while (!queue_empty(Q)) {

vertex v = deq(Q);

printf("    Visiting %u\n", v);

if (v == target) { 

queue_free(Q);

free(mark);

return true;

}

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {

mark[w] = true;

enq(Q, w);

}

}

graph_free_neighbors(nbors);

}

…

If v is target, there is a path 

v is the next vertex to process

for as long as there

are vertices to process

examine each neighbor w of v

clean up before returning

if w is unmarked

mark it and

add it to the queue

we are done with the neighbors of v
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Implementing BFS – III

Giving up

…

while (!queue_empty(Q)) {

…

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

If there are no more vertices to process

clean up before returning

there is no path 
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bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

// v is the next vertex to process

vertex v = deq(Q);

printf("    Visiting %u\n", v);

if (v == target) {   // if v is target return true

queue_free(Q);

free(mark);

return true;

}

//   for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {        // if w is not already marked

mark[w] = true;       // mark it

enq(Q, w);              // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

Implementing BFS

 Here’s the overall code
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Implementing BFS

 This code is iterative

oDFS earlier was recursive

 The code structure is the same 

as graph_print

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

// v is the next vertex to process

vertex v = deq(Q);

printf("    Visiting %u\n", v);

if (v == target) {   // if v is target return true

queue_free(Q);

free(mark);

return true;

}

//   for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {        // if w is not already marked

mark[w] = true;       // mark it

enq(Q, w);              // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}
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bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

// v is the next vertex to process

vertex v = deq(Q);

printf("    Visiting %u\n", v);

if (v == target) {   // if v is target return true

queue_free(Q);

free(mark);

return true;

}

//   for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {        // if w is not already marked

mark[w] = true;      // mark it

enq(Q, w);             // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

Implementing BFS

 The code structure is the same 

as graph_print

o except that we return early if we 

find a path

 The complexity of bfs is

oO(v + e) with adjacency lists

oO(v2) with adjacency matrices

 same as dfs

v times

O(1)

O(1)

O(e)

altogether

O(1)

O(1)

O(v)

O(1)

O(1)
O(1)
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Correctness

 bfs is correct if it returns

o true when there is a path from 

start to target

o false when there is no path from 

start to target

 It returns in three places

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

// v is the next vertex to process

vertex v = deq(Q);

printf("    Visiting %u\n", v);

if (v == target) {   // if v is target return true

queue_free(Q);

free(mark);

return true;

}

//   for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {        // if w is not already marked

mark[w] = true;       // mark it

enq(Q, w);              // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}
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Correctness – I

 bfs is correct if it returns

o true when there is a path from 

start to target

 We need to show that there is 

a path in this case

o recall the definition

owe are in the first case

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

// v is the next vertex to process

vertex v = deq(Q);

printf("    Visiting %u\n", v);

if (v == target) {   // if v is target return true

queue_free(Q);

free(mark);

return true;

}

//   for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {        // if w is not already marked

mark[w] = true;       // mark it

enq(Q, w);              // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

There is a path from start to target if

o start == target, or

o there is an edge from start to some vertex v

and there is a path from v to target
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Correctness – II

 bfs is correct if it returns

o true when there is a path from 

start to target

 We need to show that there is 

a path

o but we have nowhere to point to

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

// v is the next vertex to process

vertex v = deq(Q);

printf("    Visiting %u\n", v);

if (v == target) {   // if v is target return true

queue_free(Q);

free(mark);

return true;

}

//   for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {        // if w is not already marked

mark[w] = true;       // mark it

enq(Q, w);              // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

There is a path from start to target if

o start == target, or

o there is an edge from start to some vertex v

and there is a path from v to target
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Correctness – II

We need to show there is a path

o but we have nowhere to point to

 We need loop invariants

oWhat do we know about marked 

vertices?

 there is a path from start to every 

marked vertex

oWhat do we know about vertices 

in the queue?

every vertex in the queue is marked

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

// v is the next vertex to process

vertex v = deq(Q);

printf("    Visiting %u\n", v);

if (v == target) {   // if v is target return true

queue_free(Q);

free(mark);

return true;

}

//   for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {        // if w is not already marked

mark[w] = true;       // mark it

enq(Q, w);              // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

There is a path from start to target if

o start == target, or

o there is an edge from start to some vertex v

and there is a path from v to target
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Correctness – II

 Candidate loop invariants

o LI 1: there is a path from start to

every marked vertex

o LI 2: every vertex in the queue is 

marked

 INIT

o LI 1:

 initially only start is marked by l.7

 there is a path from start to start by def

o LI 2:

 initially only start is in the queue by l.10

start is marked by l.7


51

1. bool bfs(graph_t G, vertex start, vertex target) {

2. REQUIRES(G != NULL);

3. REQUIRES(start < graph_size(G) && target < …);

4. if (start == target) return true;

5. // mark is an array containing only start

6. bool *mark = xcalloc(graph_size(G), sizeof(bool));

7. mark[start] = true;

8. // Q is a queue containing only start initially

9. queue_t Q = queue_new();

10. enq(Q, start);

11. while (!queue_empty(Q)) {

12. // v is the next vertex to process

13. vertex v = deq(Q);

14. printf("    Visiting %u\n", v);

15. if (v == target) {   // if v is target return true

16. queue_free(Q);

17. free(mark);

18. return true;

19. }

20. //   for every neighbor w of v

21. neighbors_t nbors = graph_get_neighbors(G, v);

22. while (graph_hasmore_neighbors(nbors)) {

23. vertex w = graph_next_neighbor(nbors);

24. if (!mark[w]) {        // if w is not already marked

25. mark[w] = true;       // mark it

26. enq(Q, w);              // enqueue it onto the queue

27. }

28. }

29. graph_free_neighbors(nbors);

30. }

31. ASSERT(queue_empty(Q));

32. queue_free(Q);

33. free(mark);

34. return false;

35. }



Correctness – II

 Candidate loop invariants

o LI 1: there is a path from start to

every marked vertex

o LI 2: every vertex in the queue is 

marked

 PRES

o LI 1: 

 v is in the queue by l.13

 it is marked by LI 2

 there is a path from start to v by LI 1

w is a neighbor of v by l.23

 there is a path from start to w by def

w gets marked by l.25

o LI 2:
w gets added to the queue by l.26



1. bool bfs(graph_t G, vertex start, vertex target) {

2. REQUIRES(G != NULL);

3. REQUIRES(start < graph_size(G) && target < …);

4. if (start == target) return true;

5. // mark is an array containing only start

6. bool *mark = xcalloc(graph_size(G), sizeof(bool));

7. mark[start] = true;

8. // Q is a queue containing only start initially

9. queue_t Q = queue_new();

10. enq(Q, start);

11. while (!queue_empty(Q)) {

12. // v is the next vertex to process

13. vertex v = deq(Q);

14. printf("    Visiting %u\n", v);

15. if (v == target) {   // if v is target return true

16. queue_free(Q);

17. free(mark);

18. return true;

19. }

20. //   for every neighbor w of v

21. neighbors_t nbors = graph_get_neighbors(G, v);

22. while (graph_hasmore_neighbors(nbors)) {

23. vertex w = graph_next_neighbor(nbors);

24. if (!mark[w]) {        // if w is not already marked

25. mark[w] = true;       // mark it

26. enq(Q, w);              // enqueue it onto the queue

27. }

28. }

29. graph_free_neighbors(nbors);

30. }

31. ASSERT(queue_empty(Q));

32. queue_free(Q);

33. free(mark);

34. return false;

35. }
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Correctness – II

 We can now prove the 

correctness of this case

 v was in the queue by l.15

 so, v is marked by LI 2

 there is a path from start to v by LI 1

 v == target by l.17

 there is a path from start to target

by def

1. bool bfs(graph_t G, vertex start, vertex target) {

2. REQUIRES(G != NULL);

3. REQUIRES(start < graph_size(G) && target <  …);

4. if (start == target) return true;

5. // mark is an array containing only start

6. bool *mark = xcalloc(graph_size(G), sizeof(bool));

7. mark[start] = true;

8. // Q is a queue containing only start initially

9. queue_t Q = queue_new();

10. enq(Q, start);

11. while (!queue_empty(Q)) {

12. //@ LI 1: there is a path from start to every marked vertex

13. //@ LI 2: every vertex in the queue is marked

14. // v is the next vertex to process

15. vertex v = deq(Q);

16. printf("    Visiting %u\n", v);

17. if (v == target) {   // if v is target return true

18. queue_free(Q);

19. free(mark);

20. return true;

21. }

22. //   for every neighbor w of v

23. neighbors_t nbors = graph_get_neighbors(G, v);

24. while (graph_hasmore_neighbors(nbors)) {

25. vertex w = graph_next_neighbor(nbors);

26. if (!mark[w]) {        // if w is not already marked

27. mark[w] = true;       // mark it

28. enq(Q, w);              // enqueue it onto the queue

29. }

30. }

31. graph_free_neighbors(nbors);

32. }

33. ASSERT(queue_empty(Q));

34. queue_free(Q);

35. free(mark);

36. return false;

37. }

There is a path from start to target if

o start == target, or

o there is an edge from start to some vertex v

and there is a path from v to target


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Correctness – III

 bfs is correct if it returns

o false when there is no path from 

start to target

 LI 1 and LI 2 are insufficient

 We need more insight into the 

way bfs works

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

//@ LI 1: there is a path from start to every marked vertex

//@ LI 2: every vertex in the queue is marked

// v is the next vertex to process

vertex v = deq(Q);

printf("    Visiting %u\n", v);

if (v == target) {   // if v is target return true

queue_free(Q);

free(mark);

return true;

}

//   for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {        // if w is not already marked

mark[w] = true;       // mark it

enq(Q, w);              // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}
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Correctness – III

 What do the elements of the 

queue represent?

o The frontier of the search

0

1

3

4

2

next target queue marked

4 0 0

0 4 1, 4 0, 1, 4

1 4 4,  2 0, 1, 4, 2

4 4 Success!

Unexplored
Explored

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

//@ LI 1: there is a path from start to every marked vertex

//@ LI 2: every vertex in the queue is marked

// v is the next vertex to process

vertex v = deq(Q);

printf("    Visiting %u\n", v);

if (v == target) {   // if v is target return true

queue_free(Q);

free(mark);

return true;

}

//   for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {        // if w is not already marked

mark[w] = true;       // mark it

enq(Q, w);              // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}
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Correctness – III

0

1

3

4

2

Unexplored
Explored

This is a new loop invariant

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

//@ LI 1: there is a path from start to every marked vertex

//@ LI 2: every vertex in the queue is marked

// v is the next vertex to process

vertex v = deq(Q);

printf("    Visiting %u\n", v);

if (v == target) {   // if v is target return true

queue_free(Q);

free(mark);

return true;

}

//   for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {        // if w is not already marked

mark[w] = true;       // mark it

enq(Q, w);              // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

 All vertices behind the frontier are marked

o they have been explored

 All vertices beyond the frontier are unmarked

o they are still unexplored

 Every path from start to target goes through 

the frontier
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Correctness – III

 Every path from start to target

goes through the frontier

 When we finally return,

1.every path from start to target goes 

through the frontier

LI 3 hold

2. the frontier is empty

negation of the loop guard

o therefore there can’t be a path

from start to target

 this is the only way (1) can hold

 bfs is correct

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

//@ LI 1: there is a path from start to every marked vertex

//@ LI 2: every vertex in the queue is marked

//@ LI 3: every path from start to target goes through Q

// v is the next vertex to process

vertex v = deq(Q);

printf("    Visiting %u\n", v);

if (v == target) {   // if v is target return true

queue_free(Q);

free(mark);

return true;

}

//   for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {        // if w is not already marked

mark[w] = true;       // mark it

enq(Q, w);              // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}


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Other Searches
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Work List Choice

 bfs uses a queue as a work list

o But the correctness proof does not 

depend on this

 We get a correct implementation 

of reachability whatever work list 

we use

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

//@ LI 1: there is a path from start to every marked vertex

//@ LI 2: every vertex in the queue is marked

//@ LI 3: every path from start to target goes through Q

// v is the next vertex to process

vertex v = deq(Q);

printf("    Visiting %u\n", v);

if (w == target) {   // if w is target return true

queue_free(Q);

free(mark);

return true;

}

//   for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {        // if w is not already marked

mark[w] = true;       // mark it

enq(Q, w);              // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}
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Work List Choice

 We get a correct implementation 

of reachability whatever work list 

we use

 Stack?

o The next vertex we process is the 

last we inserted

oWe get an iterative implementation 

of depth-first search

oComplexity

O(v + e) with adjacency lists

O(v2) with adjacency matrices

because stack and queue operations 

have the same complexity

bool dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// S is a stack containing only start initially

stack_t S = stack_new();

push(S, start);

while (!stack_empty(S)) {

//@ LI 1: there is a path from start to every marked vertex

//@ LI 2: every vertex in the stack is marked

//@ LI 3: every path from start to target goes through S

// v is the next vertex to process

vertex v = pop(S);

printf("    Visiting %u\n", v);

if (w == target) {   // if w is target return true

stack_free(S);

free(mark);

return true;

}

//   for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {        // if w is not already marked

mark[w] = true;       // mark it

push(S, w);              // push it onto the stack

}

}

graph_free_neighbors(nbors);

}

ASSERT(stack_empty(S));

stack_free(S);

free(mark);

return false;

}
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Work List Choice

 We get a correct implementation of reachability whatever 

work list we use

 Priority queues?

o The next vertex we process is the most promising

oWe get artificial intelligence search algorithms like A*

used in planning problems, game search, …

 the priority function becomes a heuristic function that tells how good a 

vertex is

oComplexity is higher because insertion and removal from a 

priority queue is not O(1)

pronounced “A star”

61



Reachability

 All these graph reachability

algorithms share the same

basic idea

Explore the graph by expanding the frontier

 The difference is the kind of work list they use to 

remember the vertices to examine next

oDFS: a stack

o BFS: a queue

o A*: a priority queue

0

1

3

4

2

Unexplored
Explored
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