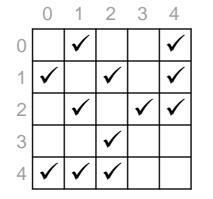
Graph Search

Review

• Graphs

- Vertices, edges,
 neighbors, ...
- \circ Dense, sparse
- Adjacency matrix implementation



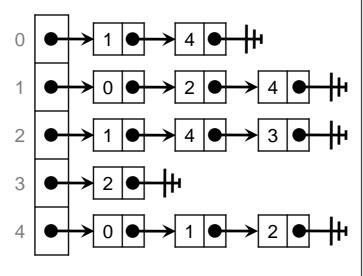
4

3

2

0

 Adjacency list implementation



graph.h

typedef unsigned int vertex;
typedef struct graph_header *graph_t;

graph_t graph_new(unsigned int numvert);
//@ensures \result != NULL;

void graph_free(graph_t G);
//@requires G != NULL;

unsigned int graph_size(graph_t G);
//@requires G != NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w);
//@requires G != NULL;
//@requires v < graph_size(G) && w < graph_size(G);</pre>

void graph_addedge(graph_t G, vertex v, vertex w);
//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G); //@requires v != w && !graph_hasedge(G, v, w);

typedef struct neighbor_header *neighbors_t;

neighbors_t graph_get_neighbors(graph_t G, vertex v);
//@requires G != NULL && v < graph_size(G);
//@ensures \result != NULL;</pre>

bool graph_hasmore_neighbors(neighbors_t nbors);
//@requires nbors != NULL;

vertex graph_next_neighbor(neighbors_t nbors);
//@requires nbors != NULL;

//@requires graph_hasmore_neighbors(nbors);
//@ensures is_vertex(\result);

void graph_free_neighbors(neighbors_t nbors);
//@requires nbors != NULL;

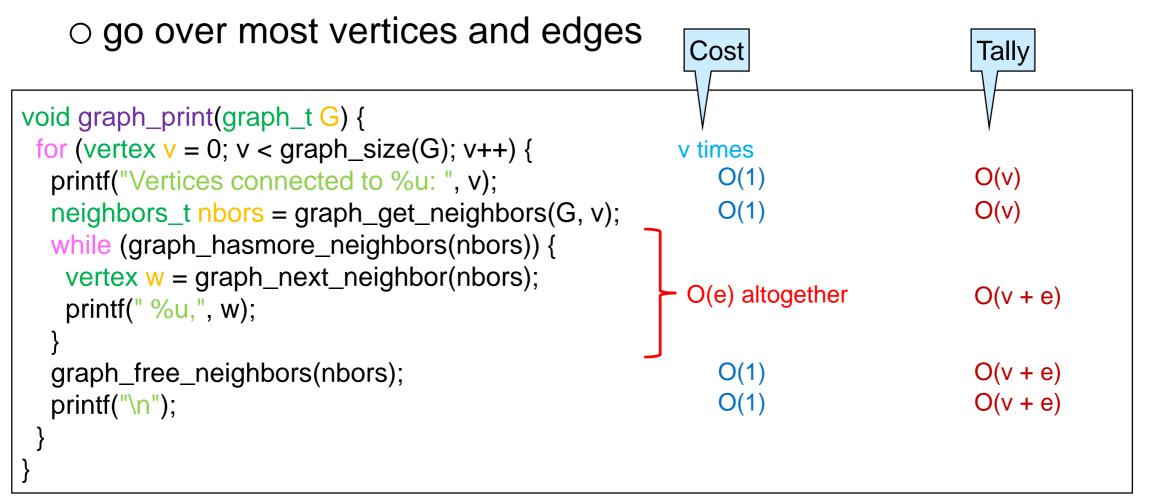
- Costs are similar for dense graphs
- AL is more spaceefficient for sparse graphs
 - very common graphs ightarrow e \in O(v) is typical

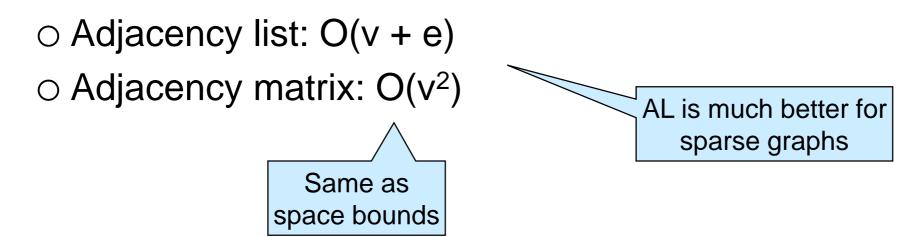
Keview			
	Adjacency list	Adjacency matrix	
Space	O(v + e)	O(v ²)	
graph_new	O(v)	O(v ²)	
graph_free	O(v + e)	O(1)	
graph_size	O(1)	O(1)	
graph_hasedge	O(min(v,e))	O(1)	
graph_addedge	O(1)	O(1)	
graph_get_neighbors	O(1)	O(v)	
graph_hasmore_neighbors	O(1)	O(1)	
graph_next_neighbor	O(1)	O(1)	
graph_free_neighbors	O(1)	O(min(v,e))	

Assuming the neighbors are represented as a linked list

Review

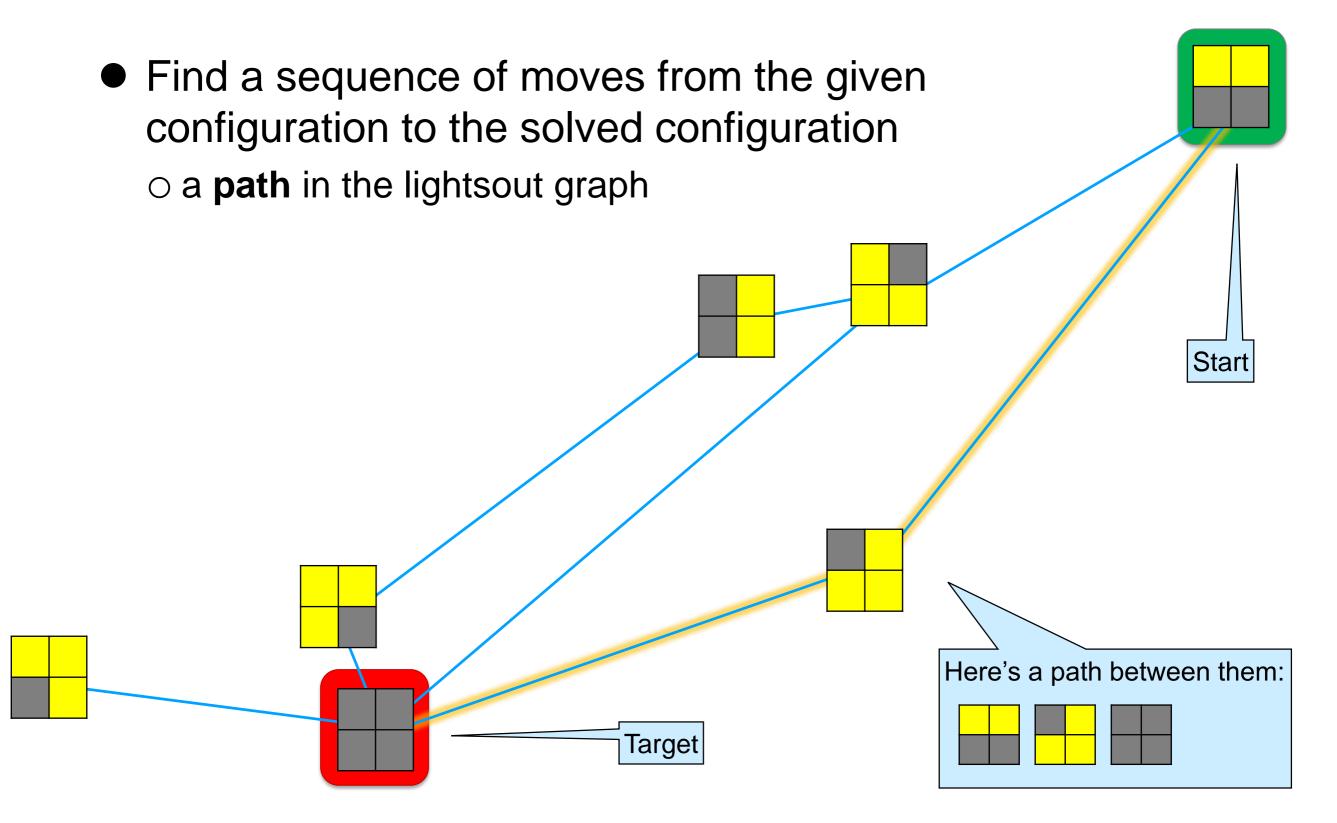
• Typical function that **traverses** a graph



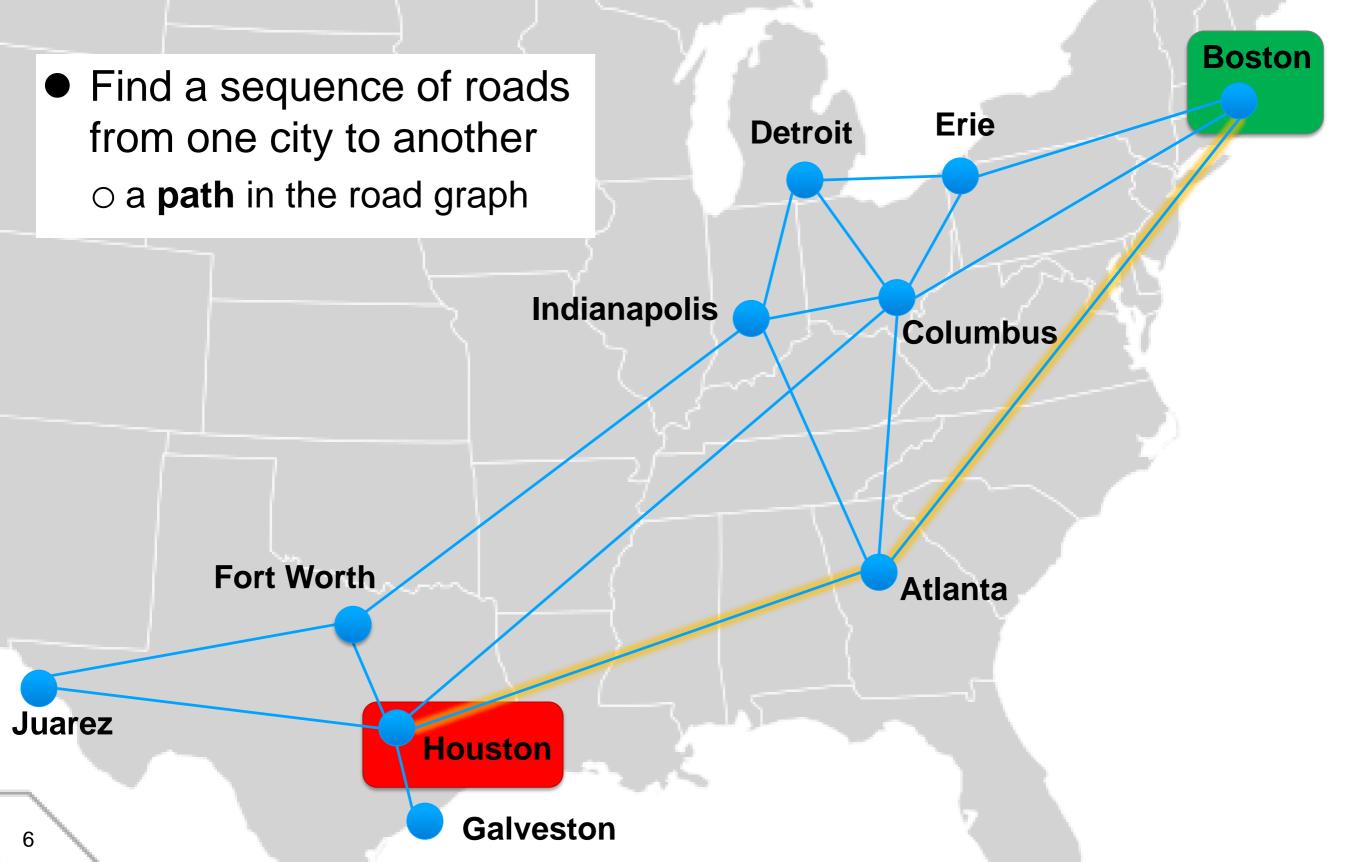


Graph Connectivity

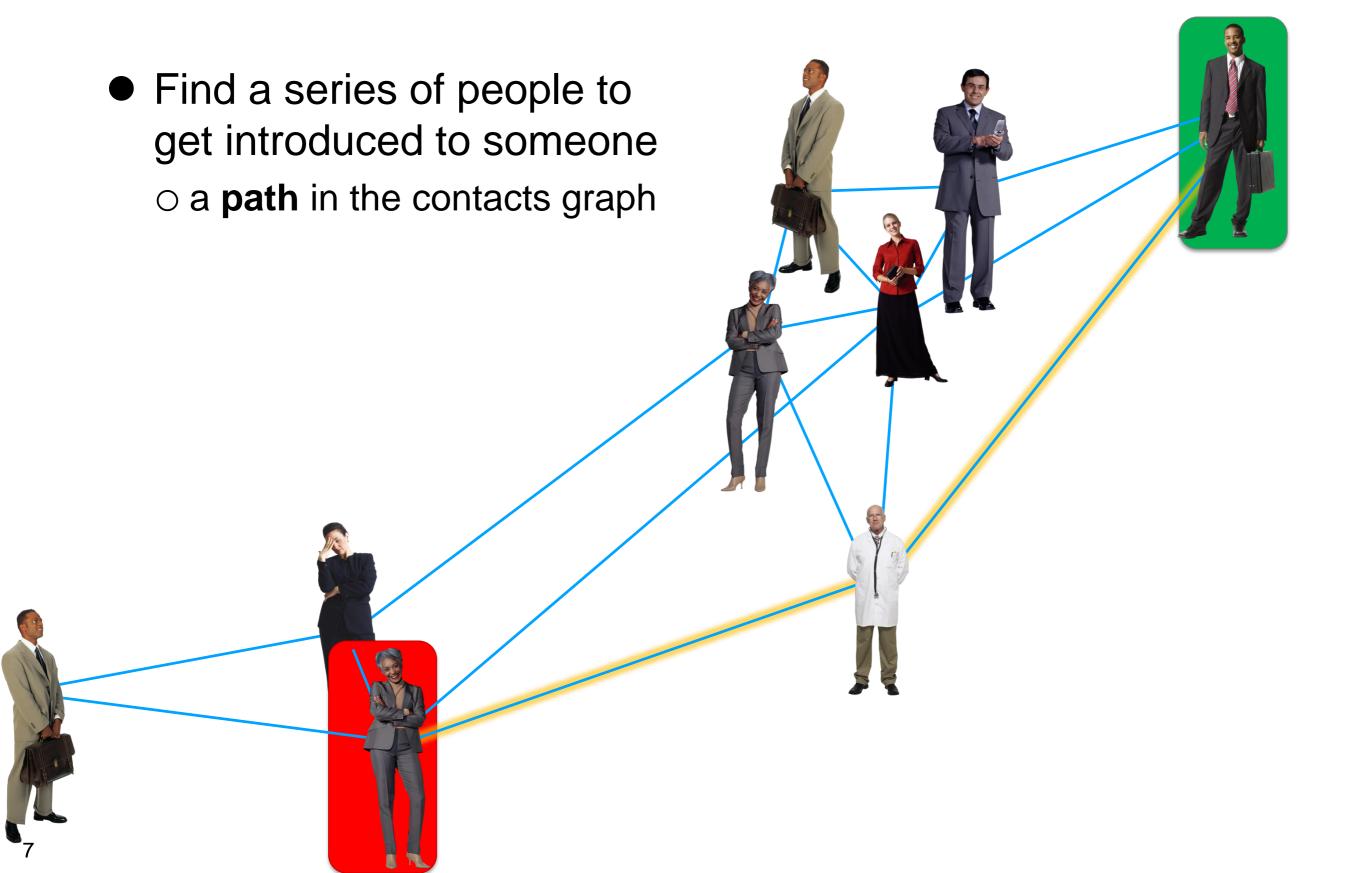
Solving Lightsout



Getting Directions

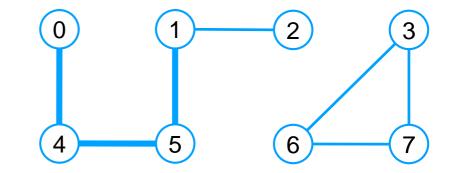


Getting Introduced



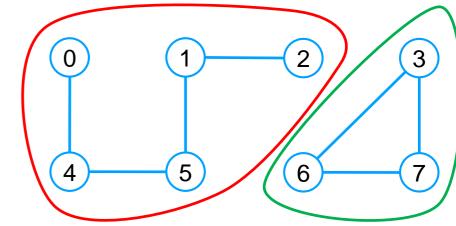
Connected Vertices

 A path is a sequence of vertices linked by edges
 0-4-5-1 is a path between 0 and 1



- Two vertices are connected if there is a path between them
 0 and 1 are connected
 0 and 7 are not connected
- If v_1 and v_2 are connected, then v_2 is **reachable** from v_1
- A connected component is a maximal set of vertices that are connected

 this graph has two connected components

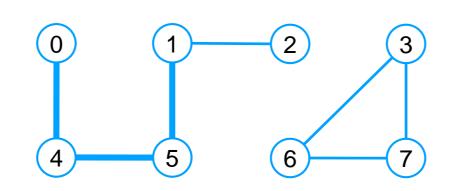


Checking Reachability

• How do we check if two vertices are connected?

- graph_hasedge only tells us if they are *directly* connected
 by an edge
- We want to develop a general algorithm to check reachability
 - > then we can use it to check reachability in any domain
 - □ to check if lightsout is solvable from a given board
 - $\hfill\square$ to figure out if there are roads between two cities
 - □ to know if there is any social connection between two people

The rest of this lecture



Finding Paths

• How do we find a path between two vertices?

- □ what is a solution to lightsout from a given board?
- □ what roads are there between two cities?
- □ what series of people can get me introduced to person X?
- an algorithm that checks reachability can be instrumented to report a path between the two vertices

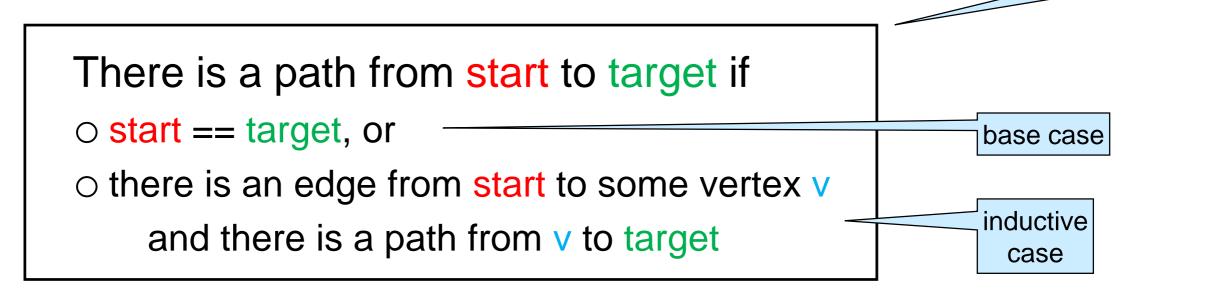
We will limit ourselves to reachability

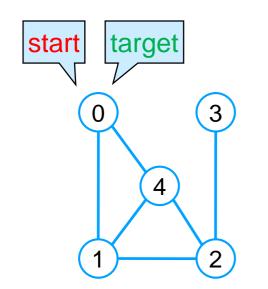
- A path is a witness that two vertices are connected
 - Finding a witness is called a search problem
 - Checking a witness is called a verification problem
 - checking that a witness is valid is often a lot easier than finding a witness

This is the basic principle underlying cryptography

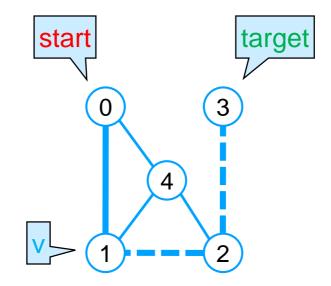
Checking Reachability

• Let's define reachability mathematically





There is a path from 0 to 0



This is an

inductive definition

There is a path from 0 to 3

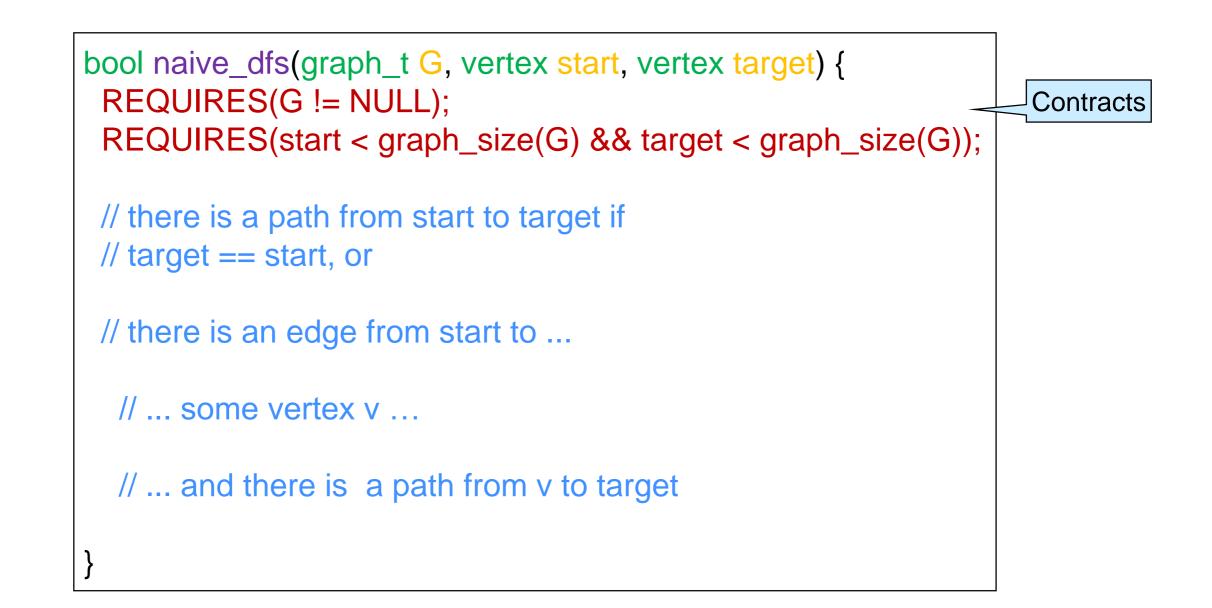
Recursive Depth-first Search – I

Implementing the Definition

• We can immediately transcribe this inductive definition into a recursive client-side function

There is a path from start to target if

- start == target, or
- there is an edge from start to some vertex v
 and there is a path from v to target



Implementing the Definition

```
//@requires G != NULL;
bool naive_dfs(graph_t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
                                                                      //@requires G != NULL;
 REQUIRES(start < graph_size(G) && target < graph_size(G));
                                                                      //@requires G != NULL:
 printf(" Visiting %u\n", start);
// there is a path from start to target if
                                                                      //@requires G != NULL;
// target == start, or
 if (target == start) return true;
// there is an edge from start to ...
 neighbors_t nbors = graph_get_neighbors(G, start);
 while (graph_hasmore_neighbors(nbors)) {
  // ... some vertex v ...
  vertex v = graph_next_neighbor(nbors);
  // ... and there is a path from v to target
  if (naive_dfs(G, v, target)) {
   graph_free_neighbors(nbors);
   return true;
 graph_free_neighbors(nbors);
 return false;
```

graph.h 6 typedef unsigned int vertex; typedef struct graph header *graph_t; graph_t graph_new(unsigned int numvert); //@ensures \result != NULL; void graph_free(graph_t G); unsigned int graph_size(graph_t G); bool graph_hasedge(graph_t G, vertex v, vertex w); //@requires v < graph_size(G) && w < graph_size(G);</pre> void graph_addedge(graph_t G, vertex v, vertex w); //@requires v < graph_size(G) && w < graph_size(G);</pre> //@requires v != w && !graph_hasedge(G, v, w); typedef struct neighbor header *neighbors t; neighbors_t graph_get_neighbors(graph_t G, vertex v); //@requires G != NULL && v < graph_size(G);</pre> //@ensures \result != NULL; bool graph hasmore neighbors (neighbors t nbors); //@requires nbors != NULL; vertex graph_next_neighbor(neighbors_t nbors); //@requires nbors != NULL; //@requires graph_hasmore_neighbors(nbors); //@ensures is_vertex(\result); void graph free neighbors(neighbors t nbors); //@requires nbors != NULL;

Implementing the Definition

```
bool naive_dfs(graph_t G, vertex start, vertex target) {
                                                                  It has the same
 REQUIRES(G != NULL);
                                                                      structure as
 REQUIRES(start < graph_size(G) && target < graph_size(G));
 printf(" Visiting %u\n", start);
                                                                      graph_print
// there is a path from start to target if
// target == start, or
                                                        void graph_print(graph_t G) {
 if (target == start) return true;
                                                         for (vertex v = 0; v < graph_size(G); v++) {
// there is an edge from start to ...
                                                          printf("Vertices connected to %u: ", v);
 neighbors_t nbors = graph_get_neighbors(G, start);
                                                          neighbors_t nbors = graph_get_neighbors(G, v);
                                                          while (graph_hasmore_neighbors(nbors)) {
 while (graph_hasmore_neighbors(nbors)) {
                                                           vertex w = graph_next_neighbor(nbors);
  // ... some vertex v ...
                                                           printf(" %u,", w);
  vertex v = graph_next_neighbor(nbors);
  // ... and there is a path from v to target
                                                          graph_free_neighbors(nbors);
  if (naive_dfs(G, v, target)) {
                                                          printf("\n");
   graph_free_neighbors(nbors);
   return true;
                                                                      \circ the outer loop is
 graph_free_neighbors(nbors);
                                                                        replaced with recursion
 return false;
```

Does it Work?

• Let's check there is a path from 3 to 0

- target start 3 0 4 Assume the neighbors 2
- bool naive_dfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G)); printf(" Visiting %u\n", start); // there is a path from start to target if // target == start, or if (target == start) return true; // there is an edge from start to ... neighbors_t nbors = graph_get_neighbors(G, start); while (graph_hasmore_neighbors(nbors)) { // ... some vertex v ... vertex v = graph_next_neighbor(nbors); // ... and there is a path from v to target if (naive_dfs(G, v, target)) { graph_free_neighbors(nbors); return true; graph_free_neighbors(nbors); return false;

are returned from

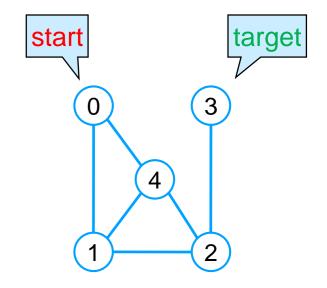
smallest to biggest

start	target	nbors
3	0	2
2	0	1 3, 4
1	0	0 2, 4
0	0	\checkmark

Let's run it

Linux Terminal
<pre># gcc lib/*.c connected.c main.c # ./a.out 3 0 Visiting 3 Visiting 2 Visiting 1 Visiting 0 Reachable</pre>

Does it Always Work?



• Let's check there is a path from 0 to 3

start	target	nbors
0	3	1 4
1	3	0 2, 4
0	3	1 4
1	3	0 2, 4
(this is not promising)		

Let's run it

Linux Terminal		
<pre># gcc lib/*.c connected.c main.c # ./a.out 0 3 Visiting 0 Visiting 1 Visiting 0 runs forever!</pre>		

```
bool naive_dfs(graph_t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_size(G));
 printf(" Visiting %u\n", start);
// there is a path from start to target if
// target == start, or
if (target == start) return true;
// there is an edge from start to ...
 neighbors_t nbors = graph_get_neighbors(G, start);
 while (graph_hasmore_neighbors(nbors)) {
  // ... some vertex v ...
  vertex v = graph_next_neighbor(nbors);
  // ... and there is a path from v to target
  if (naive_dfs(G, v, target)) {
   graph_free_neighbors(nbors);
   return true;
 graph_free_neighbors(nbors);
 return false;
```

It does not Work

- Either the definition is wrong or the code is wrong
- Definition
 - it magically picks the right neighbor v if there is one
 - > the magic of "there is ..."

• Code

- it must examine the neighbors in some order
 - the first v may not be the right one

```
There is a path from start to target if
\circ start == target, or

    there is an edge from start to some vertex v

   and there is a path from v to target
bool naive_dfs(graph_t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_si...
 printf(" Visiting %u\n", start);
 // there is a path from start to target if
 // target == start, or
 if (target == start) return true;
// there is an edge from start to ...
 neighbors_t nbors = graph_get_neighbors(G, start);
 while (graph_hasmore_neighbors(nbors)) {
  // ... some vertex v ...
  vertex v = graph_next_neighbor(nbors);
  // ... and there is a path from v to target
  if (naive_dfs(G, v, target)) {
   graph_free_neighbors(nbors);
   return true;
 graph_free_neighbors(nbors);
 return false:
```

Why doesn't it Work?

• The code examines the neighbors in some order

- \odot it always starts with the same ${\bf v}$
 - ➤ the first neighbor
- $\odot\ldots$ even if it has been examined before
- The code will never visit the second neighbor (if there is one)
 - it charges ahead with the first neighbor, always
 - if there is a path by only examining first neighbors, it will find it
 - \odot if the path involves some other neighbor, it won't

start	target	nbors
0	3	1 4
1	3	0 2, 4
0	3	1 4
1	3	0 2, 4

start

0

target

3

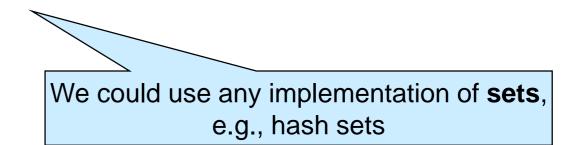
2

4

Recursive Depth-first Search – II

Fixing the Code

- Problems: the code examines the same neighbors over and over
- Solution: mark vertices that are being examined
 only examine a vertex if it is unmarked
 mark it right away
- How to mark vertices?
 - carry around an array of booleans
 - true = marked
 - false = unmarked



Fixing the code

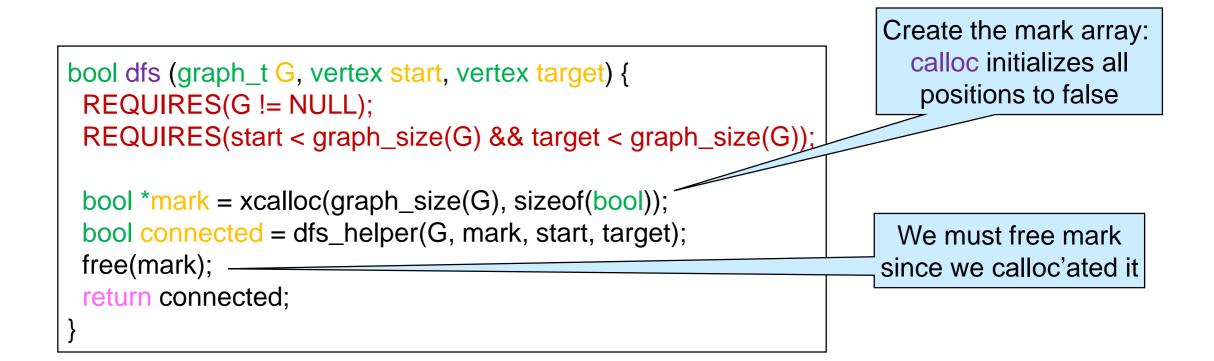
- Carry around an array of booleans
- Only run if start is unmarked
- Mark it right away
- Only examine a neighbor if it's unmarked

we need to guard the recursive call

bool dfs_helper(graph_t G bool *mark)vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G)); REQUIRES(!mark[start]); mark[start] = true; printf(" Visiting %u\n", start); // there is a path from start to target if // target == start, or if (target == start) return true; // there is an edge from start to ... neighbors_t nbors = graph_get_neighbors(G, start); while (graph_hasmore_neighbors(nbors)) { // ... some vertex v ... vertex v = graph_next_neighbor(nbors); // ... and there is a path from v to target (mark[v] & dfs_helper(G(mark, v, target)) { graph_free_neighbors(nbors); return true; graph_free_neighbors(nbors); return false;

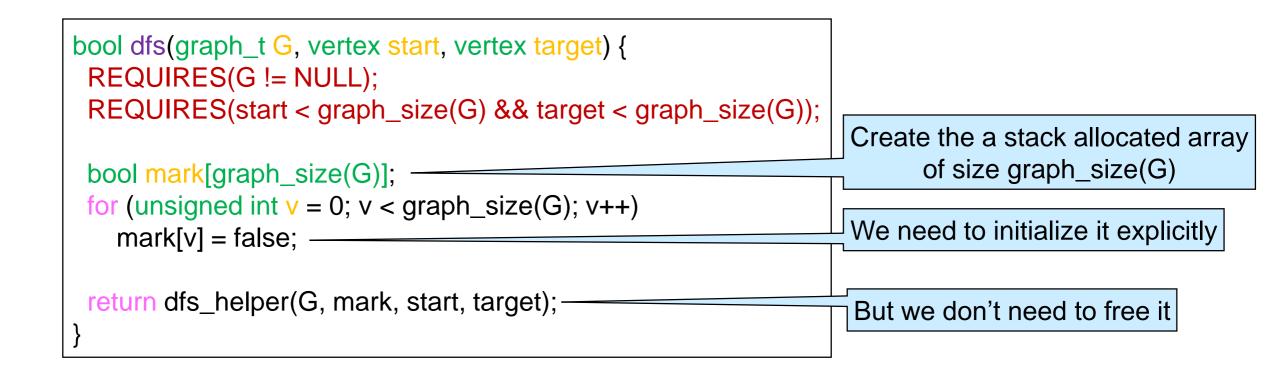
Fixing the Code

We have modified the prototype of the function
 but the client should not have to deal with the added details
 export a wrapper instead of dsf_helper



An Alternative Wrapper

• We can also use a stack-allocated array for mark



- Is this version preferable?
 - stack space is limited
 - \odot for a large graph, the stack may not be big enough
 - stack overflow

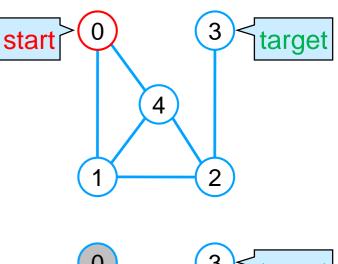
Does it Work?

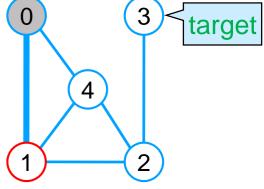
• Let's check there is a path from 0 to 3

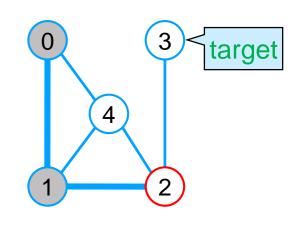
start	target	nbors	marked
0	3	1.4	0
1	3	0, 2 4	0, 1
2	3	1, 3, 4	0, 1, 2
3	3	V	

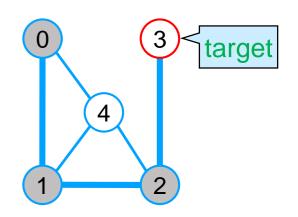
• Let's run it

Linux Terminal
gcc lib/*.c connected.c main.c
./a.out 0 3
Visiting 0
Visiting 1
Visiting 2
Visiting 3
Reachable







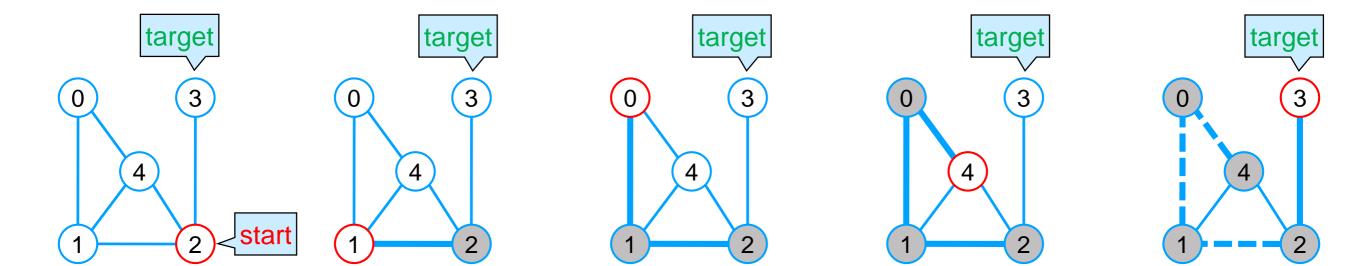


Backtracking

Let's check there is a path from 2 to 3

 $\begin{array}{c|c} 1 & 3 \\ \hline 0 & 3 \\ \hline 3 \neq 4 \text{ and all the neighbors of 4 are marked} \end{array}$

We **backtrack** to a vertex that has a still unmarked neighbor continue from it



start

2

3

target

3

3

nbors

3,

2,

1, (4)

★0, 1, 2

4

4

1.

(0)

marked

2

1, 2

0, 1, 2

0, 1, 2, 4

Backtracking

 We backtrack to a vertex that has a still unmarked neighbor and continue from it

start	target	nbors	marked
2	3	134	2
1	3	0 2, 4	1, 2
0	3	1,4	0, 1, 2
4	3	x 0, 1, 2	0, 1, 2, 4
3	3	v	/

This is achieved by returning false from the recursive call
 the caller will then try the next unmarked neighbor

• Let's run it

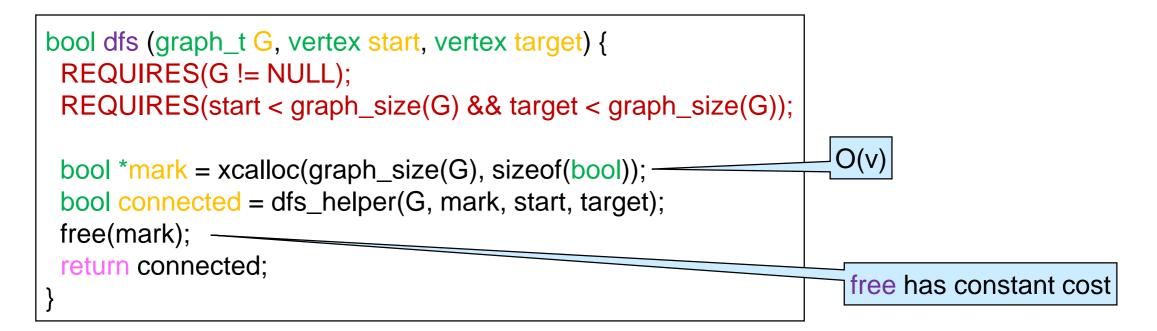
Linux Terminal			
# gcc lib/*.c connected.c main.c			
# ./a.out 2 3			
Visiting 2			
Visiting 1			
Visiting 0			
Visiting 4			
Visiting 3			
Reachable			

```
...
while (graph_hasmore_neighbors(nbors)) {
    // ... some vertex v ...
    vertex v = graph_next_neighbor(nbors);
    // ... and there is a path from v to target
    if (!mark[v] && dfs_helper(G, mark v, target)) {
      graph_free_neighbors(nbors);
      return true;
    }
    graph_free_neighbors(nbors);
return false;
}
```

O(1)

Complexity of dfs

- Let's call dfs on a graph with
 - \circ v vertices,
 - \odot e edges, and
 - implemented using adjacency lists



The cost of dfs is O(v) plus the cost of dfs_helper

Complexity of dfs_helper

graph_get_neighbors	O(1)
graph_hasmore_neighbors	O(1)
graph_next_neighbor	O(1)
graph_free_neighbors	O(1)

The body of the loop runs at most 2e times altogether Just like for □ at most 2e calls to graph_next_neighbors graph_print > e edges from either endpoint > each endpoint is examined at most once In reality, it's more There are at most v recursive calls like min(v,e) bool dfs_helper(graph_t G, bool *mark, vertex start, vertex target) { \circ up to v vertices mark[start] = true; O(1)O(v)can be marked O(1) O(v)if (target == start) return true; Every operation neighbors_t nbors = graph_get_neighbors(G, start); O(1) O(v)costs O(1)while (graph_hasmore_neighbors(nbors)) { O(1)vertex v = graph_next_neighbor(nbors); O(1) if (!mark[v] && dfs_helper(G, mark, v, target)) { O(1) O(e) • dfs_helper has graph_free_neighbors(nbors); O(v + e)O(1)altogether return true; $\cos t O(e + v)$ O(1) graph_free_neighbors(nbors); O(v + e)return false; Tall

Complexity of dfs

graph_size	O(1)
graph_get_neighbors	O(1)
graph_hasmore_neighbors	O(1)
graph_next_neighbor	O(1)
graph_free_neighbors	O(1)

• Let's call dfs on a graph with

- ➤ v vertices,
- \geq e edges, and
- implemented using adjacency lists

```
bool dfs (graph_t G, vertex start, vertex target) {
    REQUIRES(G != NULL);
    REQUIRES(start < graph_size(G) && target < graph_size(G));
    bool *mark = xcalloc(graph_size(G), sizeof(bool));
    bool connected = dfs_helper(G, mark, start, target);
    free(mark);
    return connected;
}</pre>
```

• The cost of dfs is O(v + e)

Complexity of dfs

For a graph with v vertices and e edges

O(v + e) using the adjacency list implementation

Holds for both sparse and dense graphs

O(v²) using the adjacency matrix implementation
 Exercise

AL is more efficient for sparse graphs
 the most common kind of graphs

Moving forward, we will always assume an adjacency list implementation

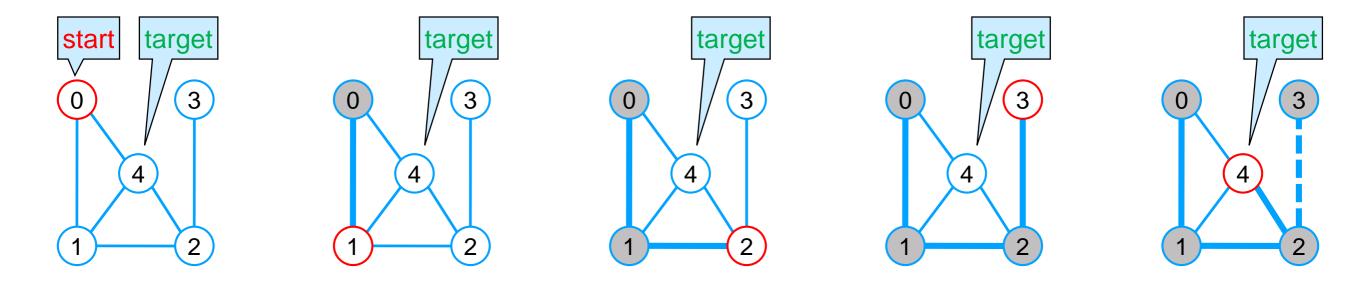
Breadth-first Search

How does dfs Work?

- When calling dfs on 0 and 4, it finds the path 0–1–2–4
 o it also visits 3 and backtracks
- But there is a much shorter path: 0–4

start	target	nbors	marked
0	4	1.4	0
1	4	0, 2 4	0, 1
2	4	1, 34	0, 1, 2
3	4	X 2	0, 1, 2, 3
4	4	\checkmark	

 $\odot\,\text{dfs}$ does more work than strictly necessary

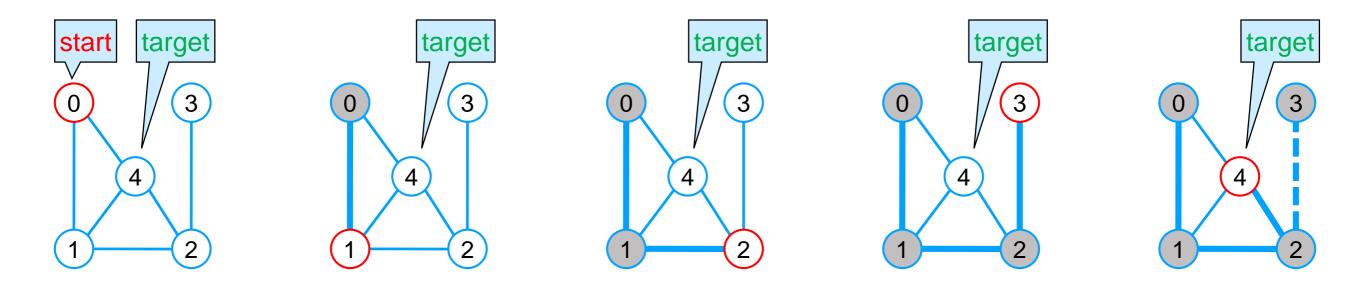


How does dfs Work?

dfs charges ahead until
 it finds the target vertex
 or it hits a dead end
 > then it backtracks to the last

choice point

start	target	nbors	marked
0	4	1.4	0
1	4	0, 2, 4	0, 1
2	4	1, 34	0, 1, 2
3	4	x 2	0, 1, 2, 3
4	4	V	



Breadth-first Search

- To find the shortest path, we need to explore the graph **level by level** from the start vertex
 - \odot first look at the vertices 0 hops away from start,
 - \succ if start == end
 - \odot then look at the vertices 1 hop away from start
 - then 2 hops away
 - then 3 hops away

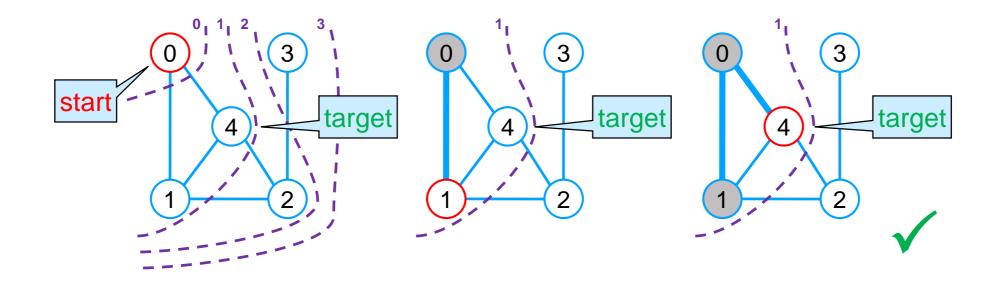
Ο...

3 3 star target target target 4 4

This strategy is called breadth-first search BFS

Breadth-first Search

• We need to traverse the graph level by level

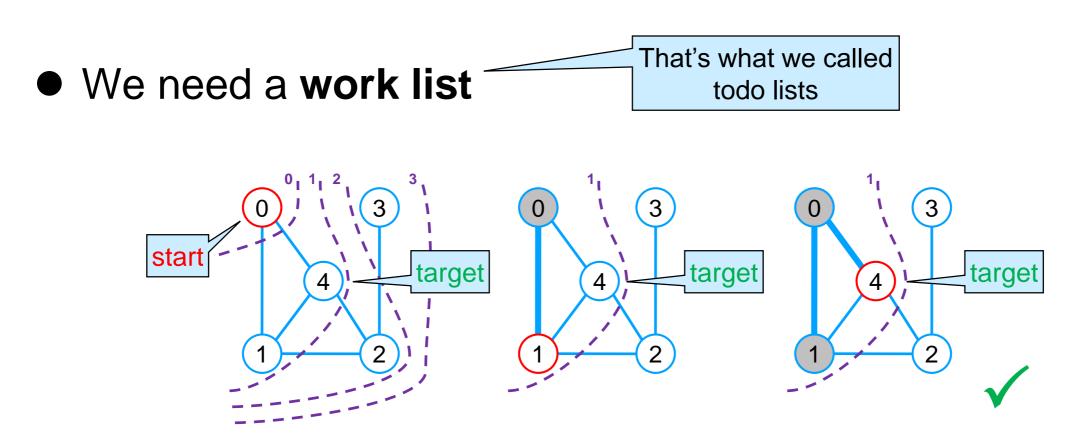


- When we examine 0, we need to remember that we will have to examine 1 and 4 later
- When we examine 1, we need to remember we may have to examine 2 later

 \succ but first we need to look at 4

• We need a todo list

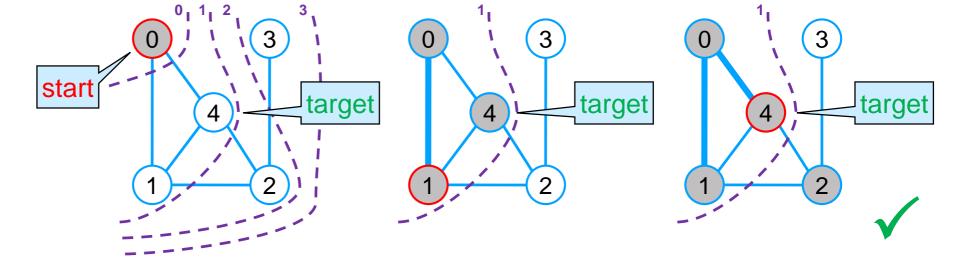
Breadth-first Search



- We need to traverse the graph level by level
 o finish examining the current level before starting the next level
 o we need to retrieve the vertices inserted the longest time ago
- This work list must be a queue
 older nodes need to be visited before newer nodes

Breadth-first Search

This
 work list
 must be
 a queue



 \odot start with 0 in the queue

 \odot at each step, retrieve the next vertex to examine

next	target	queue	marked
	4	0	0
0	4	1, 4	0, 1, 4
1	4	4, 2	0, 1, 4, 2
4	4	\checkmark	

- We mark the vertices so we don't put them in the queue twice
 - either because we examined them already
 - In or because they are already in the queue and will be examined later

• We need

- \odot a **queue** where to store the vertices to examine next
- o a mark array where to track the vertices we know about
 - > either already examined or queued up to be examined

For as long as there are vertices still to be processed

 \odot retrieve the vertex v inserted in the queue the longest time ago

> if v is target, we are done — there is a path

 \odot examine each neighbor w of v

 \succ if w is unmarked add it to the queue and mark it

 \succ otherwise ignore w – it was already queued up for processing

• if the queue is empty

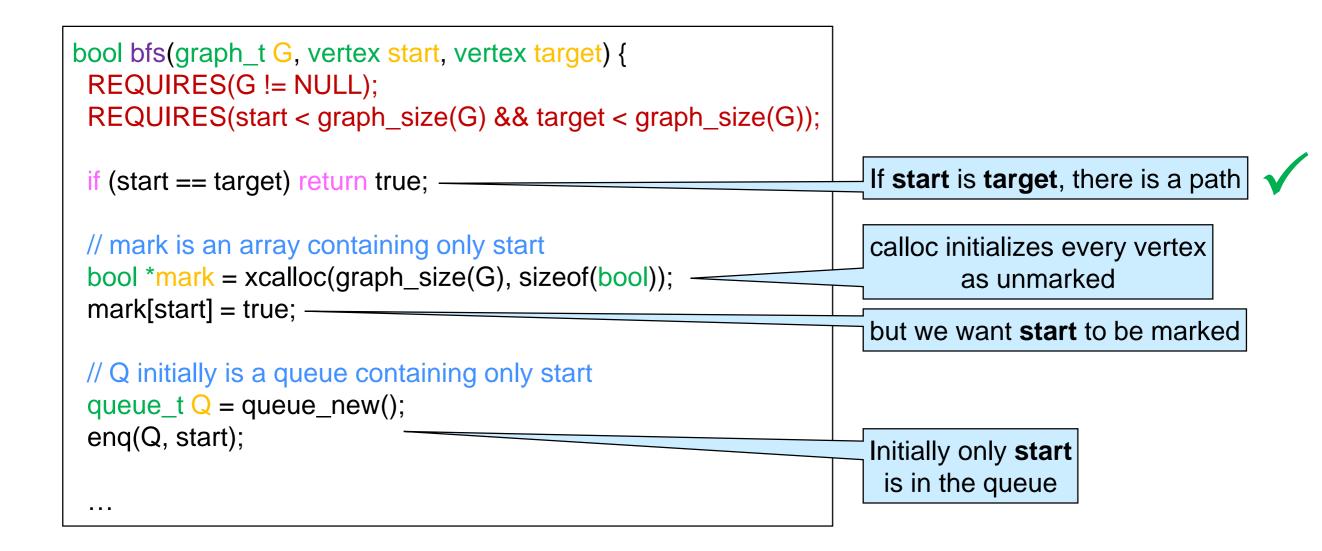
 \odot there are no vertices left to process

o and we have not found a path

○ we are done — there is no path

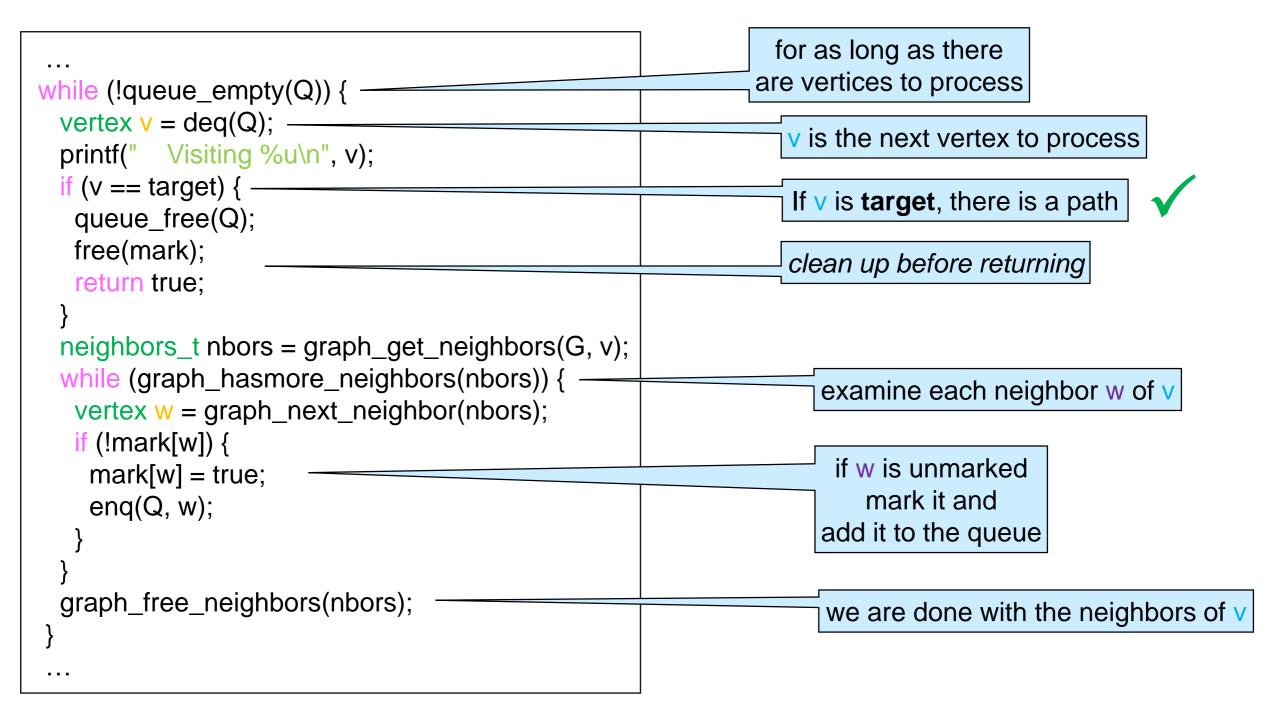
Implementing BFS – I

Initial setup



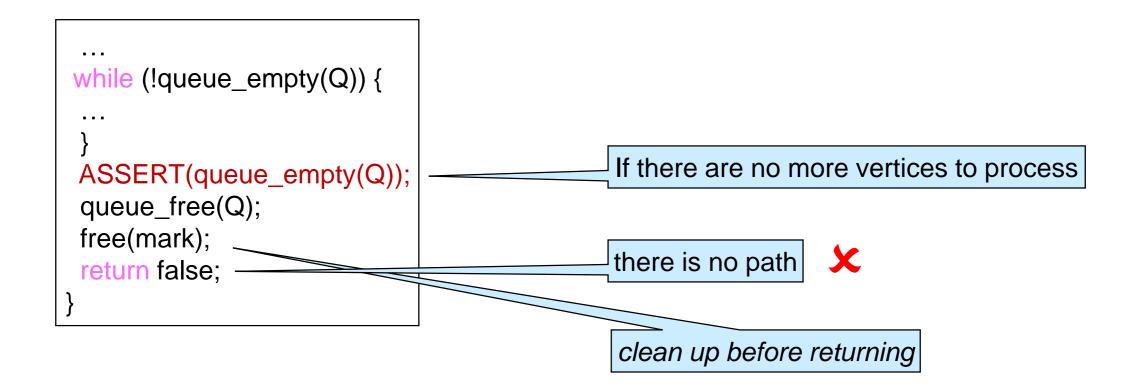
Implementing BFS – II

Traversing the graph



Implementing BFS – III

Giving up



• Here's the overall code

bool bfs(graph_t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_size(G));</pre>

```
if (start == target) return true;
```

```
// mark is an array containing only start
bool *mark = xcalloc(graph_size(G), sizeof(bool));
mark[start] = true;
```

```
// Q is a queue containing only start initially
queue_t Q = queue_new();
enq(Q, start);
```

```
while (!queue_empty(Q)) {
    // v is the next vertex to process
    vertex v = deq(Q);
    printf(" Visiting %u\n", v);
    if (v == target) { // if v is target return true
        queue_free(Q);
        free(mark);
        return true;
    }
}
```

```
// for every neighbor w of v
neighbors_t nbors = graph_get_neighbors(G, v);
while (graph_hasmore_neighbors(nbors)) {
    vertex w = graph_next_neighbor(nbors);
    if (!mark[w]) { // if w is not already marked
        mark[w] = true; // mark it
        enq(Q, w); // enqueue it onto the queue
    }
    graph_free_neighbors(nbors);
}
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark);
```

return false;

- This code is **iterative** ○ DFS earlier was recursive
- The code structure is the same as graph_print

```
void graph_print(graph_t G) {
for (vertex v = 0; v < graph_size(G); v++) {
  printf("Vertices connected to %u: ", v);
  neighbors_t nbors = graph_get_neighbors(G, v);
  while (graph_hasmore_neighbors(nbors)) {
   vertex w = graph_next_neighbor(nbors);
   printf(" %u,", w);
  graph_free_neighbors(nbors);
  printf("\n");
```

bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph size(G) && target < graph size(G));

if (start == target) return true;

```
// mark is an array containing only start
bool *mark = xcalloc(graph_size(G), sizeof(bool));
mark[start] = true;
```

// Q is a queue containing only start initially queue_t Q = queue_new(); enq(Q, start);

while (!queue_empty(Q)) { // v is the next vertex to process vertex v = deq(Q); printf(" Visiting %u\n", v); if (v == target) { // if v is target return true queue_free(Q); free(mark); return true:

```
// for every neighbor w of v
neighbors_t nbors = graph_get_neighbors(G, v);
while (graph_hasmore_neighbors(nbors)) {
 vertex w = graph_next_neighbor(nbors);
 if (!mark[w]) { // if w is not already marked
  mark[w] = true;
                    // mark it
```

enq(Q, w);

// enqueue it onto the queue

graph_free_neighbors(nbors);

```
ASSERT(queue_empty(Q));
queue free(Q):
free(mark):
return false:
```

 The code structure is the same as graph_print

except that we return early if we find a path

The complexity of bfs is
 O(v + e) with adjacency lists
 O(v²) with adjacency matrices

same as dfs

bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph size(G) && target < graph size(G)); if (start == target) return true; O(1) // mark is an array containing only start bool *mark = xcalloc(graph_size(G), sizeof(bool)); O(v) mark[start] = true; O(1) // Q is a queue containing only start initially queue_t Q = queue_new(); O(1) O(1) eng(Q, start); v times while (!queue_empty(Q)) { // v is the next vertex to process vertex v = deq(Q); printf(" Visiting %u\n", v); if (v == target) { // if v is target return true queue_free(Q); O(1) free(mark); return true: // for every neighbor w of v neighbors_t nbors = graph_get_neighbors(G, v); while (graph_hasmore_neighbors(nbors)) { vertex w = graph_next_neighbor(nbors); if (!mark[w]) { // if w is not already marked O(e) mark[w] = true; // mark it // enqueue it onto the queue altogether enq(Q, w);graph_free_neighbors(nbors); O(1)ASSERT(queue_empty(Q)); queue free(Q): O(1) free(mark); return false:

Correctness

• bfs is correct if it returns

- *true* when there is a path from start to target
- false when there is no path from start to target
- It returns in three places

bool bfs(graph_t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_size(G));</pre>

```
if (start == target) return true;
```

```
// mark is an array containing only start
bool *mark = xcalloc(graph_size(G), sizeof(bool));
mark[start] = true;
```

```
// Q is a queue containing only start initially
queue_t Q = queue_new();
enq(Q, start);
```

```
while (!queue_empty(Q)) {
    // v is the next vertex to process
    vertex v = deq(Q);
    printf(" Visiting %u\n", v);
    if (v == target) { // if v is target return true
        queue_free(Q);
        free(mark);
    return true
```

```
// for every neighbor w of v
neighbors_t nbors = graph_get_neighbors(G, v);
while (graph_hasmore_neighbors(nbors)) {
    vertex w = graph_next_neighbor(nbors);
    if (!mark[w]) { // if w is not already marked
    mark[w] = true; // mark it
    enq(Q, w); // enqueue it onto the queue
    }
    graph_free_neighbors(nbors);
}
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark);
return false;
```

- bfs is correct if it returns
 true when there is a path from start to target
- We need to show that there is a path in this case
 - \odot recall the definition

There is a path from start to target if

o start == target, or

• there is an edge from start to some vertex v

and there is a path from v to target

 \odot we are in the first case

bool bfs(graph_t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_size(G));</pre>

if (start == target return true;

```
// mark is an array containing only start
bool *mark = xcalloc(graph_size(G), sizeof(bool));
mark[start] = true;
```

// Q is a queue containing only start initially
queue_t Q = queue_new();
enq(Q, start);

while (!queue_empty(Q)) {
 // v is the next vertex to process
 vertex v = deq(Q);
 printf(" Visiting %u\n", v);
 if (v == target) { // if v is target return true
 queue_free(Q);
 free(mark);
 return true;
 }
}

```
// for every neighbor w of v
neighbors_t nbors = graph_get_neighbors(G, v);
while (graph_hasmore_neighbors(nbors)) {
    vertex w = graph_next_neighbor(nbors);
    if (!mark[w]) { // if w is not already marked
        mark[w] = true; // mark it
        enq(Q, w); // enqueue it onto the queue
    }
    graph_free_neighbors(nbors);
}
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark);
return false;
```

- bfs is correct if it returns
 true when there is a path from start to target
- We need to show that there is a path

```
There is a path from start to target if
```

- \circ start == target, or
- $\,\circ\,$ there is an edge from start to some vertex v

and there is a path from v to target

o but we have nowhere to point to

bool bfs(graph_t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_size(G));</pre>

if (start == target) return true;

```
// mark is an array containing only start
bool *mark = xcalloc(graph_size(G), sizeof(bool));
mark[start] = true;
```

```
// Q is a queue containing only start initially
queue_t Q = queue_new();
enq(Q, start);
```

```
while (!queue_empty(Q)) {
    // v is the next vertex to process
    vertex v = deq(Q);
    printf(" Visiting %u\n", v);
    if (v == target) { // if v is target return true
        queue_free(Q);
    free(mark);
    return true;
}
```

```
// for every neighbor w of v
neighbors_t nbors = graph_get_neighbors(G, v);
while (graph_hasmore_neighbors(nbors)) {
    vertex w = graph_next_neighbor(nbors);
    if (!mark[w]) { // if w is not already marked
        mark[w] = true; // mark it
        enq(Q, w); // enqueue it onto the queue
    }
}
```

```
graph_free_neighbors(nbors);
```

```
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark);
return false;
```

There is a path from start to target if

- start == target, or
- $\,\circ\,$ there is an edge from start to some vertex v
 - and there is a path from v to target

We need to show there is a path o but we have nowhere to point to

• We need loop invariants

- O What do we know about marked vertices?
 - there is a path from start to every marked vertex
- What do we know about vertices in the queue?
 - > every vertex in the queue is marked

bool bfs(graph_t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_size(G));</pre>

if (start == target) return true;

```
// mark is an array containing only start
bool *mark = xcalloc(graph_size(G), sizeof(bool));
mark[start] = true;
```

```
// Q is a queue containing only start initially
queue_t Q = queue_new();
enq(Q, start);
```

```
while (!queue_empty(Q)) {
    // v is the next vertex to process
    vertex v = deq(Q);
    printf(" Visiting %u\n", v);
    if (v == target) { // if v is target return true
        queue_free(Q);
    free(mark);
    return true;
}
```

```
// for every neighbor w of v
neighbors_t nbors = graph_get_neighbors(G, v);
while (graph_hasmore_neighbors(nbors)) {
    vertex w = graph_next_neighbor(nbors);
    if (!mark[w]) { // if w is not already marked
        mark[w] = true; // mark it
        enq(Q, w); // enqueue it onto the queue
    }
    graph_free_neighbors(nbors);
}
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark);
return false;
```

• Candidate loop invariants

- LI 1: there is a path from start to every marked vertex
- LI 2: every vertex in the queue is marked

• INIT

0 LI 1:

> initially only **start** is marked by *I.7*

> there is a path from start to start by def

o LI 2:

> initially only **start** is in the queue by *I.10*

by *I*.7

start is marked

```
    bool bfs(graph_t G, vertex start, vertex target) {

    REQUIRES(G != NULL);
2.
    REQUIRES(start < graph_size(G) && target < ...);
3.
   if (start == target) return true;
4.
   // mark is an array containing only start
5.
    bool *mark = xcalloc(graph_size(G), sizeof(bool));
6.
    mark[start] = true;
7.
    // Q is a queue containing only start initially
8.
    queue_t Q = queue_new();
9.
    enq(Q, start);
10.
    while (!queue_empty(Q)) {
11.
     // v is the next vertex to process
12.
     vertex v = deq(Q);
13.
     printf(" Visiting %u\n", v);
14.
     if (v == target) { // if v is target return true
15.
      queue_free(Q);
16.
      free(mark);
17.
      return tru
18.
19.
     // for every neighbor w of v
20.
     neighbors_t nbors = graph_get_neighbors(G, v);
21.
     while (graph_hasmore_neighbors(nbors)) {
22.
      vertex w = graph_next_neighbor(nbors);
23.
      if (!mark[w]) { // if w is not already marked
24.
       mark[w] = true;
                            // mark it
25.
                            // enqueue it onto the queue
        enq(Q, w);
26.
27.
28.
     graph free neighbors(nbors);
29.
30.
   ASSERT(queue_empty(Q));
31.
    queue_free(Q);
32.
   free(mark);
33.
   return false:
34.
35.
```

• Candidate loop invariants

- LI 1: there is a path from start to every marked vertex
- LI 2: every vertex in the queue is marked

PRES

o LI 1:	
\succ v is in the queue	by I.13
it is marked	by LI 2
there is a path from start to v	by LI 1
w is a neighbor of v	by I.23
there is a path from start to w	by def
w gets marked	by I.25
o LI 2:	
w gets added to the queue	by I.26

1. 2. 3.	oool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target <);
4.	if (start == target) return true;
5. 6. 7.	<pre>// mark is an array containing only start bool *mark = xcalloc(graph_size(G), sizeof(bool)); mark[start] = true;</pre>
8. 9. 10.	<pre>// Q is a queue containing only start initially queue_t Q = queue_new(); enq(Q, start);</pre>
11.	while (!queue_empty(Q)) {
12.	// v is the next vertex to process
13.	vertex $v = deq(Q);$
14.	printf(" Visiting %u\n", v);
15.	<pre>if (v == target) { // if v is target return true</pre>
16.	queue_free(Q);
17.	free(mark);
18.	return true;
19.	}
20.	// for every neighbor w of v
21.	<pre>neighbors_t nbors = graph_get_neighbors(G, v); while (graph_hasmore_neighbors(nbors)) {</pre>
22. 23.	vertex w = graph_next_neighbor(nbors);
23.	if (!mark[w]) { // if w is not already marked
25.	mark[w] = true; // mark it
26.	enq(Q, w); // enqueue it onto the queue
27.	}
28.	}
29.	graph_free_neighbors(nbors);
30.	}
31.	ASSERT(queue_empty(Q));
	queue_free(Q);
	free(mark);
	return false;
35.	

There is a path from start to target if

- start == target, or
- $\odot\,$ there is an edge from start to some vertex v
 - and there is a path from v to target
- We can now prove the correctness of this case
 - \checkmark v was in the queueby l.15 \triangleright so, v is markedby Ll 2 \triangleright there is a path from start to vby Ll 1 \triangleright v == targetby l.17 \triangleright there is a path from start to targetby def

	1. 2. 3.	bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target <);
	4.	if (start == target) return true;
	5. 6. 7.	<pre>// mark is an array containing only start bool *mark = xcalloc(graph_size(G), sizeof(bool)); mark[start] = true;</pre>
	8. 9. 10.	<pre>// Q is a queue containing only start initially queue_t Q = queue_new(); enq(Q, start);</pre>
	11.	<pre>while (!queue_empty(Q)) { //@ I I 1: there is a path from start to every marked vertex </pre>
¢	12. 13.	<pre>//@ LI 1: there is a path from start to every marked vertex //@ LI 2: every vertex in the queue is marked</pre>
	 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 	<pre>// v is the next vertex to process vertex v = deq(Q); printf(" Visiting %u\n", v); if (v == target) { // if v is target return true queue_free(Q); tree(mark); return true; } // for every neighbor w of v neighbors_t nbors = graph_get_neighbors(G, v); while (graph_hasmore_neighbors(nbors)) { vertex w = graph_next_neighbor(nbors); if (!mark[w]) { // if w is not already marked mark[w] = true; // mark it enq(Q, w); // enqueue it onto the queue</pre>
	29. 30.	}
	31.	graph_free_neighbors(nbors);
	32. 33.	} ASSERT(queue_empty(Q));
	33. 34.	queue_free(Q);
	35.	free(mark);
	36.	return false;
	37.	}
-		

- bfs is correct if it returns
 false when there is *no* path from start to target
- LI 1 and LI 2 are insufficient
- We need more insight into the way bfs works

bool bfs(graph_t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_size(G));</pre>

if (start == target) return true;

// mark is an array containing only start
bool *mark = xcalloc(graph_size(G), sizeof(bool));
mark[start] = true;

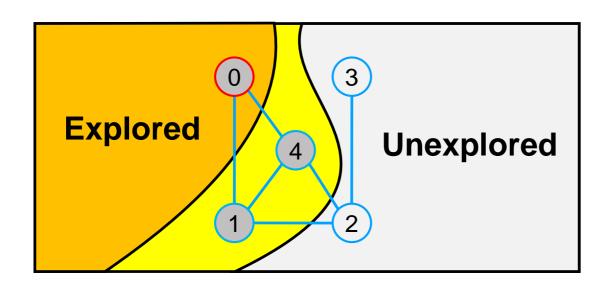
// Q is a queue containing only start initially
queue_t Q = queue_new();
enq(Q, start);

while (!queue_empty(Q)) { //@ LI 1: there is a path from start to every marked vertex //@ LI 2: every vertex in the queue is marked

```
// v is the next vertex to process
 vertex v = deq(Q);
 printf(" Visiting %u\n", v);
 if (v == target) { // if v is target return true
  queue_free(Q);
  free(mark);
  return true:
 // for every neighbor w of v
 neighbors t nbors = graph get neighbors(G, v);
 while (graph_hasmore_neighbors(nbors)) {
  vertex w = graph_next_neighbor(nbors);
  if (!mark[w]) { // if w is not already marked
   mark[w] = true; // mark it
   enq(Q, w);
                      // enqueue it onto the queue
 graph_free_neighbors(nbors);
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark):
return false
```

• What do the elements of the queue represent?

	next	target	queue	marked
		4	0	0
\langle	0	4	1, 4	0, 1, 4
	1	4	4, 2	0, 1, 4, 2
	4 4		Success!	



 \odot The frontier of the search

bool bfs(graph_t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_size(G));</pre>

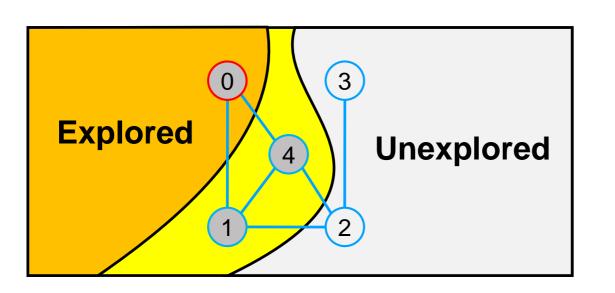
if (start == target) return true;

// mark is an array containing only start
bool *mark = xcalloc(graph_size(G), sizeof(bool));
mark[start] = true;

// Q is a queue containing only start initially
queue_t Q = queue_new();
enq(Q, start);

while (!queue_empty(Q)) { //@ LI 1: there is a path from start to every marked vertex //@ LI 2: every vertex in the queue is marked

```
// v is the next vertex to process
 vertex v = deq(Q);
 printf(" Visiting %u\n", v);
 if (v == target) { // if v is target return true
  queue_free(Q);
  free(mark);
  return true;
 // for every neighbor w of v
 neighbors t nbors = graph get neighbors(G, v);
 while (graph_hasmore_neighbors(nbors)) {
  vertex w = graph_next_neighbor(nbors);
  if (!mark[w]) { // if w is not already marked
   mark[w] = true; // mark it
                     // enqueue it onto the queue
   enq(Q, w);
 graph_free_neighbors(nbors);
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark):
return false
```



- All vertices behind the frontier are marked they have been explored
- All vertices beyond the frontier are unmarked graph_get_neighbors(G, v); while (graph_hasmore_neighbors(nbors)) { they are still unexplored vertex w = graph_next_neighbor(nbors); // if w is not already marked
- Every path from start to target goes through graph free neighbors(nbors); the frontier ASSERT(queue_empty(Q));

This is a new loop invariant

bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start bool *mark = xcalloc(graph_size(G), sizeof(bool)); mark[start] = true;

// Q is a queue containing only start initially queue_t Q = queue_new(); enq(Q, start);

while (!queue_empty(Q)) { //@ LI 1: there is a path from start to every marked vertex //@ LI 2: every vertex in the gueue is marked

// mark it

// enqueue it onto the queue

// v is the next vertex to process vertex v = deq(Q); printf(" Visiting %u\n", v); // if v is target return true

queue_free(Q);

free(mark):

eturn false

56

- Every path from **start** to **target** goes through the frontier
- When we finally return,
 - 1. every path from **start** to **target** goes through the frontier
 - ≻ LI 3 hold
 - 2. the frontier is empty
 - negation of the loop guard
 - therefore there can't be a path from start to target
 - > this is the only way (1) can hold

bfs is correct

bool bfs(graph_t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_size(G));</pre>

if (start == target) return true;

// mark is an array containing only start
bool *mark = xcalloc(graph_size(G), sizeof(bool));
mark[start] = true;

```
// Q is a queue containing only start initially
queue_t Q = queue_new();
enq(Q, start);
```

while (!queue_empty(Q)) {

//@ LI 1: there is a path from start to every marked vertex
 //@ LI 2: every vertex in the queue is marked
 //@ LI 3: every path from start to target goes through Q

```
// v is the next vertex to process
 vertex v = deq(Q);
 printf(" Visiting %u\n", v);
 if (v == target) { // if v is target return true
  queue_free(Q);
  free(mark);
  return true;
 // for every neighbor w of v
 neighbors_t nbors = graph_get_neighbors(G, v);
 while (graph_hasmore_neighbors(nbors)) {
  vertex w = graph_next_neighbor(nbors);
  if (!mark[w]) { // if w is not already marked
   mark[w] = true;
                      // mark it
                      // enqueue it onto the queue
   enq(Q, w);
 graph_free_neighbors(nbors);
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark).
eturn false
```

Other Searches

Work List Choice

- bfs uses a queue as a work list
 - But the correctness proof does not depend on this
- We get a correct implementation of reachability whatever work list we use

bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G)); if (start == target) return true; // mark is an array containing only start bool *mark = xcalloc(graph_size(G), sizeof(bool)); mark[start] = true; // Q is a queue containing only start initially queue_t (= queue_new(); enq(Q, start): while (Iqueue empty(Q)) //@ LI 1: there is a path from start to every marked vertex //@ LI 2: every vertex in the queue is marked //@ LI 3: every path from start to target goes through Q // v is the next vertex to process vertex v deq(Q); printf(" Visiting %u\n", v); if (w -- target) { // if w is target return true queue free(Q) free(mark); return true; } // for every neighbor w of v neighbors_t nbors = graph_get_neighbors(G, v); while (graph_hasmore_neighbors(nbors)) { vertex w = graph_next_neighbor(nbors); // if w is not already marked if (!mark[w]) { mark[w] = true; // mark it // enqueue it onto the queue enq(Q, w); graph_free_neighbors(nbors); ASSERT(queue_empty(Q)); queue_free(Q); free(mark); return false;

Work List Choice

• We get a correct implementation of reachability whatever work list we use

• Stack?

- The next vertex we process is the last we inserted
- We get an iterative implementation of depth-first search
- \circ Complexity
 - > O(v + e) with adjacency lists
 - $> O(v^2)$ with adjacency matrices

because stack and queue operations have the same complexity



Work List Choice

 We get a correct implementation of reachability whatever work list we use

• Priority queues?

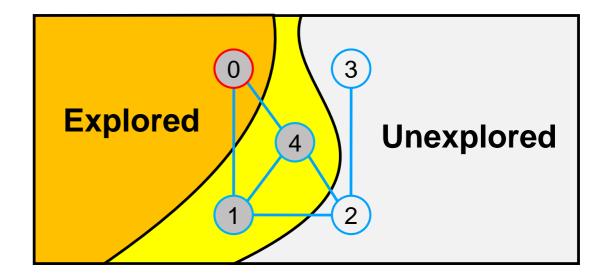
- The next vertex we process is the most promising
- We get artificial intelligence search algorithms like A*´
 - > used in planning problems, game search, ...
 - the priority function becomes a heuristic function that tells how good a vertex is

pronounced "A star

 Complexity is higher because insertion and removal from a priority queue is not O(1)

Reachability

 All these graph reachability algorithms share the same basic idea



Explore the graph by expanding the frontier

• The difference is the kind of work list they use to remember the vertices to examine next

O DFS: a stack

- \odot BFS: a queue
- A*: a priority queue