
General Debugging Practices in C

1 Intro

Welcome to the wild world of C! Fortunately, all of the debugging tips for C0 you learned in the
Guide to Debugging C0 Code are still applicable in C. As such, this guide will focus on certain
common C-only errors and provide tips on how to debug your code when you encounter one of these
errors. Of course, it is impossible for such a guide to go over every possible error!

2 A Segmentation Fault has Occurred

If a segmentation fault occurs, this is fundamentally because somewhere memory was accessed
incorrectly. Some of the most common causes for this are:

• Dereferencing a NULL pointer

• Dereferencing a pointer whose value is unde�ned

• Attempting to write to read-only memory

• Out of bounds array accesses

If you get a segmentation fault, your �rst step should be to isolate exactly what line caused the
segmentation fault, and what about that line caused the segmentation fault. If you have a suspicion
about what the error is, it could be helpful to add print statements near the lines you think might
be causing the error to verify exactly which line is the problem. See the Printing in C Guide for
the mechanics of printing in C, and the Debugging with Print Statements Guide for helpful tips on
where to add print statements (how you print is a bit di�erent in C but the tips about how to use
print statements remain the same). If you have no idea where your error comes from, then using
Valgrind can help you �nd the error as well as pinpoint exactly what kind of error it is. For help
on how to use Valgrind, see the How to Use Valgrind guide.

Once you have determined the line and what about the line caused the bug, the techniques
discussed in the C0 Debugging guide (Guide to Debugging C0 Code) will once again aid you in
resolving the bug.

3 My code does not do the same thing every time I run it

If you are not recompiling your code (or recompiling without changing it), and yet the result
changes unexpectedly, you are most likely encountering unde�ned behavior! If this is happening,
using Valgrind can be a great way to identify where your unde�ned behaviour is happening. For
help on how to use Valgrind, see the How to Use Valgrind guide.

One common reason for this to happen would be if you use an uninitialized variable as if it
were initialized. As an example, the following code will sometimes print "Hello!", and sometimes
"Goodbye!":

1

ghost:cdebugging0
ghost:cprint
ghost:print
ghost:valgrind
ghost:cdebugging0
ghost:valgrind

int x;
if(x == 0) {

printf("Hello!\n");
} else {

printf("Goodbye!\n");
}

4 Big Scary Memory Dump

When we say "big scary memory dump", we mean something that looks like this:

*** Error in ‘./a.out’: free(): invalid pointer: 0x0000000000400680 ***
======= Backtrace: =========
/lib64/libc.so.6(+0x81299)[0x7fccb0755299]
./a.out[0x400599]
/lib64/libc.so.6(__libc_start_main+0xf5)[0x7fccb06f6555]
./a.out[0x4004b9]
======= Memory map: ========
00400000-00401000 r-xp 00000000 00:28 1992317346 /afs/andrew.cmu.edu/usr23/astanesc/a.out
00600000-00601000 r--p 00000000 00:28 1992317346 /afs/andrew.cmu.edu/usr23/astanesc/a.out
00601000-00602000 rw-p 00001000 00:28 1992317346 /afs/andrew.cmu.edu/usr23/astanesc/a.out
7fccac000000-7fccac021000 rw-p 00000000 00:00 0
7fccac021000-7fccb0000000 ---p 00000000 00:00 0
7fccb04be000-7fccb04d3000 r-xp 00000000 fd:00 12073754 /usr/lib64/libgcc_s-4.8.5-20150702.so.1
7fccb04d3000-7fccb06d2000 ---p 00015000 fd:00 12073754 /usr/lib64/libgcc_s-4.8.5-20150702.so.1
7fccb06d2000-7fccb06d3000 r--p 00014000 fd:00 12073754 /usr/lib64/libgcc_s-4.8.5-20150702.so.1
7fccb06d3000-7fccb06d4000 rw-p 00015000 fd:00 12073754 /usr/lib64/libgcc_s-4.8.5-20150702.so.1
7fccb06d4000-7fccb0897000 r-xp 00000000 fd:00 12059270 /usr/lib64/libc-2.17.so
7fccb0897000-7fccb0a97000 ---p 001c3000 fd:00 12059270 /usr/lib64/libc-2.17.so
7fccb0a97000-7fccb0a9b000 r--p 001c3000 fd:00 12059270 /usr/lib64/libc-2.17.so
7fccb0a9b000-7fccb0a9d000 rw-p 001c7000 fd:00 12059270 /usr/lib64/libc-2.17.so
7fccb0a9d000-7fccb0aa2000 rw-p 00000000 00:00 0
7fccb0aa2000-7fccb0ac4000 r-xp 00000000 fd:00 12059263 /usr/lib64/ld-2.17.so
7fccb0c88000-7fccb0c8b000 rw-p 00000000 00:00 0
7fccb0cc1000-7fccb0cc3000 rw-p 00000000 00:00 0
7fccb0cc3000-7fccb0cc4000 r--p 00021000 fd:00 12059263 /usr/lib64/ld-2.17.so
7fccb0cc4000-7fccb0cc5000 rw-p 00022000 fd:00 12059263 /usr/lib64/ld-2.17.so
7fccb0cc5000-7fccb0cc6000 rw-p 00000000 00:00 0
7ffdcf716000-7ffdcf738000 rw-p 00000000 00:00 0 [stack]
7ffdcf77a000-7ffdcf77c000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

If this is happening to you, the most likely reason is an error related to malloc/free like freeing
something twice or freeing something that shouldn't be freed. The way to get a more understandable
error is to re-run the program with valgrind. This will provide a more clear error with useful
debugging information. For help on how to use Valgrind, see the How to Use Valgrind guide.

2

ghost:valgrind

5 Integers suddenly having unexpected values

If you are working with integers and you notice that suddenly your integers have extremely unex-
pected values1, then you most likely encountered a casting issue. Make sure that:

• You are always casting explicitly

• When you perform arithmetic operations, the two integers being operated on have the same
type.

• You are using an appropriate integer type for what your integer is supposed to represent.

In making sure that you are casting correctly, using print statements can help elucidate exactly
what is going on - just make sure to match the length sub-speci�er and the speci�er character to
the exact integer type you are using! The quick reference table in the printing in C guide can be
very helpful. A direct link to the table is here.

6 General Tips and Tricks

• Make sure to always cast explicitly with integers!

• Before anything else, make sure you run Valgrind and don't have any errors. There are cases
in which memory errors lead to other seemingly unrelated problems.

• Good data structure invariants are more important than ever - with the myriad of new possible
memory errors, it is very useful to know that your data structures are correct.

• In general, make sure you don't forget to use contracts!

• The lib/contracts.h library contains a useful macro called IF_DEBUG. Essentially any code
you write inside the IF_DEBUG will only be executed when contracts are enabled. This can be
useful to add prints in such a way that they do not slow down your code or clutter the output
all the time. An example way to use this is below:

IF_DEBUG(int count = 0); // Count is only defined when contracts are enabled
while(!stack_empty(S)) {

IF_DEBUG(printf("Inside loop for %d times!\n", count)); // Only printed when contracts are enabled

// Some code dealing with the stack

IF_DEBUG(count++); // Count is only incremented when contracts are enabled
}

• Sometimes, the value of a pointer can be a hint as to what type of memory you are dealing
with:

� If the value starts with 0x400 (e.g. 0x400650) then the pointer likely points to read-only
memory (such as for string literals

1For instance, if you are working with a variable that has been steadily increasing by quantities smaller than 5

and all of a sudden it increments by 2 billion, then that would count as an unexpected value

3

ghost:cprint
tbl:cprint:integer

� If the value is between 0x1000000 and 0x10000000 (e.g. 0x16e0010), then the pointer
likely points to a location in the heap. In other words, the pointer is likely one returned
by malloc

� If the value starts with 0x7ff and is very long (e.g. 0x7ffd592511f0) then it is likely
a stack address

� If the value of a pointer is anything else, then it is likely a garbage value.

4

	Intro
	A Segmentation Fault has Occurred
	My code does not do the same thing every time I run it
	Big Scary Memory Dump
	Integers suddenly having unexpected values
	General Tips and Tricks

