
Vim Guide

1 What is Vim

Vim, or Vi IMproved, is a powerful yet lightweight command-line text editor that supports many
features to allow users to improve their editing speed in many ways. It is in fact so powerful and
useful that all modern Integrated Development Environments or IDEs (like VSCode and Sublime
Text) have a Vim emulation feature.

2 Basics of Vim

Important: Throughout this document, we will be using angle brackets to denote a Vim command
(e.g. <yy>). When using Vim, you do not need to type out the angle brackets � only the actual
command (in the above case, you would only type out yy).

In order to open up a �le using Vim, simply enter the following onto the command line:

% vim path/to/file.txt

Vim has two main modes through which you can interact with the text:

• Normal Mode� In normal mode, you can interact with the text and run powerful commands
to edit your �le in bulk, or move around more freely. As its name suggests, it is meant for
commands and not for typing actual text!

• Insert Mode � In insert mode, you can type text freely and it will be inserted into your �le
at the location of your cursor

Note that Normal Mode is the default mode. To switch to insert mode from normal mode, simply
press <i>. To switch back to normal mode from insert mode, press <ESC>.

Once you are done with the �le you are trying to edit, you can exit in one of three ways. These
must be executed while in normal mode.

• <:wq> � This will save your �le and exit Vim. Note: <:w> only save your �le without
quitting

• <:q> � This will exit Vim without saving your �le. If you have unsaved changes, this will
display an error, which you can bypass with the last command.

• <:q!> � This will exit Vim, discarding any changes WARNING: Any unsaved changes
will be lost permanently!

3 Anatomy of a Vim command

Before we go into a list of useful Vim commands, we explore the structure of an arbitrary Vim
command, and see how to use Vim to make the command do di�erent things. A Vim command is
composed of three parts:

1

• How many times to repeat this command. This can be a number, or just not included (which
implies run it once).

• The command name � this is generally one letter (such as <d> for "delete").

• What piece of the �le the command should act on � this could mean a speci�c line number
or something relative to the current location of the cursor.

For example, if we take the command <3dtc>; the 3 means run <dtc> 3 times; the d means
"Delete"; the tc means "until you see the �rst instance of the letter c". So, <3dtc> means "Delete
until you see the 1st instance of c 3 times"; or put more simply "Delete until you see the 3rd instance
of c". Thus, if we were to run this on the text "I am ∧crossing the crosswalk at Forbes and cyert"
(the cursor is represented by the ∧), we would end up with "I am ∧cyert".

Note: This search is case-sensitive, so if you were to run <3dtc> on "I am ∧crossing the crosswalk
at Forbes and Cyert", nothing would happen, as Vim cannot �nd 3 instances of "c" to delete to.

4 Useful Pieces of the �le

Note: For this section, we will continue to use the delete command as an example to illustrate the
various pieces of a �le that a command can act on.

• $ � "Until the end of the current line". Executing <d$> would delete all the text up to the
end of the current line.

• 0 � "Until the beginning of the current line". Executing <d0> would delete backwards up
to the beginning of the current line.

• w � "Until the end of the current word". A "word" is considered to end once punctuation or
a space is encountered. Thus, executing <dw> on "fo∧o_bar: banana" would leave you with
"fo∧: banana".

• iw � "The whole word I am in". As before, a "word" is considered to begin/end once
punctuation or a space is encountered. Thus, executing <diw> on "foo b∧ar baz" would
leave you with "foo ∧baz".

• i) or i(� "Within the nearest set of enclosing parentheses". Thus, executing <di)> on "(a
fool is (a pe∧rson) who)" would leave you with "(a fool is (∧) who)".

• i[, i{ or i< � Same as above but with square brackets, curly brackets and angle brackets
respectively.

• tchar � "Until the �rst occurence of char". Thus, executing <dts> on "sudge∧icles" would
leave you with "sudge∧s".

• Tchar �"Backwards until the �rst occrence of char". Thus, executing<dTs> on "sudge∧icles"
would leave you with "s∧icles".

• The same character as the command� "The entire line". Thus, executing <dd> would
delete the entire line.

2

5 Useful Vim Commands

d � delete � This command deletes a section of text as speci�ed by the piece of the �le (see
the previous section). Note: This command will also move the deleted text into your clipboard
automatically. As such it more resembles a "cut" operation than a "delete" operation.

y � yank � This command copies (yanks) a section of text as speci�ed by the piece of the �le
and puts it in your clipboard.

p � paste � This command pastes the last thing to be placed in your clipboard into the text.
Note that this command does not require any �le location modi�ers.

J � join lines � This command appends the line following the current line to the current line.
Note that this command does not require any �le location modi�ers.

= � autoindent � This command indents a section of text as best Vim knows. Note: as
its not really possible to indent anything less than a full line; the only way to actually use this
command is by executing <==> (e.g. autoindent the entire line).

g � go to � This command goes to the section of text speci�ed. The only standard sections of
text that work with this command are the beginning of the line (<g0>), the end of the line (<g$>)
and the whole line (<gg>). When using <gg>, you are asking to go to a certain line (so <gg>
takes you to the �rst line, <300gg> takes you to line 300). One can also go to the last line by
using <G>. Note: It is also possible to go to the next or previous word with <gtw> and <gTw>
respectively.

u � undo � Undo the previous command or insertion.
CTRL-r � redo � Redo the previously undone command or insertion.
. � Do again � Repeat the previous command or insertion.
/{TEXT} � Find � Searches forward for the �rst occurance of {TEXT}. To go to the next

instance, one can use <n>. To search backward and go to the previous instance one can use <N>.
:%s/OLD/NEW/g � Find and replace � Finds all occurrences of {OLD} and replaces them

with {NEW}. If you only want to replace some instances, then you can add a c at the end of the
command (so :%s/OLD/NEW/gc) and it will ask for con�rmation before each occurrence. The
Vim Find/Replace tool is extremely powerful and the above is just one of many ways to use it. See
https://vim.fandom.com/wiki/Search_and_replace for more on this tool.

6 Useful Aliases

An alias is a command that is e�ectively two or more commands rolled into one. What follows is a
list of useful aliases:

• c � change � This command deletes a section of text as speci�ed by the piece of the �le;
and then immediately puts you in insert mode. <diw><i> will accomplish the exact thing
as <ciw>.

• A� Append text � This command moves you to the end of the current line and immediately
puts you in insert mode. As such, it is equivalent to <g$><i>.

• o � open new line � This command starts a new line immediately after the current one and
puts you in insert mode at the start of the new line. It is equivalent to <g$><i><ENTER>.

3

https://vim.fandom.com/wiki/Search_and_replace

7 Customizing VIM

Vim draws all of its settings from a global settings �le called the vimrc. This �le can be found at
~/.vimrc and can be edited just like any other �le. During the setup lab, we added some useful
settings to your vimrc, so it should contain some things. If it does not, then please ask a TA for
help!

Note: The settings �le contains a list of Vim commands that is executed as any new �le is opened.
As such, any of these commands can be executed at any time by pre�xing the command with ":".
For example, in the default vimrc you may notice the line set nu, which causes line numbers to
be displayed. If you wanted to enable this temporarily without putting it in the vimrc, you would
simply execute <:set nu> in Vim.

Note: If you want to temporarily disable a setting, you can take the name of the setting, prepend
it with no and then set that "setting". As an example, for line numbers, the name of the setting
to enable line numbers is nu, so to disable it you would run <:set nonu>.

Some useful Vim settings are

• set paste� Turns o� autocompletion and autoindent to allow for a nicer pasting experience

• set nu � Turns on absolute line numbering

• set rnu � Turns on relative line numbering

• set mouse=a � Turns on mouse support

• set background=dark � Changes the color scheme to better match a dark background

• set background=light � Changes the color scheme to better match a light background

• noremap <C-a> g^ � Causes CTRL-a to move you to the beginning of the line (Note:
CTRL-a has this behavior in many other applications including Chrome and Terminal)

• noremap <C-a> g_ � Causes CTRL-e to move you to the end of the line (Note: (Note:
CTRL-e has this behavior in many other applications including Chrome and Terminal)

• noremap <C-k> d$ � Causes CTRL-k to delete the rest of the line (Note: CTRL-k has
this behavior in many other applications including Chrome and Terminal)

4

8 "Found a swap �le by the name ..."

Throughout your Vim career you may encounter the following message when opening a �le:� �
Found a swap file by the name "PATH/TO/FILE.swp"

owned by: astanesc dated: Mon Dec 15 14:10:40 2018
file name: PATH/TO/FILE
modified: YES
user name: astanesc host name: unix4.andrew.cmu.edu
process ID: 3348

While opening file "PATH/TO/FILE"
dated: DATE

(1) Another program may be editing the same file. If this is the case,
be careful not to end up with two different instances of the same
file when making changes. Quit, or continue with caution.

(2) An edit session for this file crashed.
If this is the case, use ":recover" or "vim -r PATH/TO/FILE"
to recover the changes (see ":help recovery").
If you did this already, delete the swap file "PATH/TO/FILE.swp"
to avoid this message.

Swap file "PATH/TO/FILE.swp" already exists!
[O]pen Read-Only, (E)dit anyway, (R)ecover, (D)elete it, (Q)uit, (A)bort:� �

This can appear if you were editing a �le and then your instance of Vim unexpectedly closed
� usually because you closed your terminal window or disconnected from the internet. The reason
this message appears is that vim saves your unsaved work in a "swap" �le which gets deleted when
you close Vim normally or save (hence the beginning of the error message). Thus, if your instance
of Vim unexpectedly closed, Vim would not have had a chance to remove the swap �le, leading to
this message.

What to do about this: Since the swap �le may contain unsaved work, it is generally
recommended you �rst try to recover any unsaved work. To do this, hit R when you see this screen.
Once you are sure that there is no unsaved work, you need to delete the swap �le so that the above
message does not appear every single time you open up the �le. To delete the swap �le you can
either hitD at the above screen or just delete it as with any regular �le (% rm path/to/file.swp).

9 Vim Quick Reference Guide

Note: This section lists the most commonly used commands and what they do. This is not meant
as a comprehensive guide and it assumes that you have read the previous sections too.

• <dd> � Delete the current line

• <di)> � Delete within the nearest set of enclosing parentheses

• <di}> � Delete within the nearest set of enclosing curly braces

5

• <yy> � copy the current line

• <==> � Autoindent the current line

• <g0> � Go to the beginning of the current line

• <g$> � Go to the end of the current line

• <NUMgg> � Go to line number NUM

• <u> � Undo

• <CTRL-r> � Redo

• /{TEXT} � Find {TEXT}

6

	What is Vim
	Basics of Vim
	Anatomy of a Vim command
	Useful Pieces of the file
	Useful Vim Commands
	Useful Aliases
	Customizing VIM
	"Found a swap file by the name ..."
	Vim Quick Reference Guide

