Lecture 1
Contracts

15-122: Principles of Imperative Computation (Fall 2024)
Frank Pfenning, Iliano Cervesato

In these notes we review contracts, which we use to collectively denote
function contracts, loop invariants, and other assertions about a program.
Contracts will play a central role in this class, since they represent the key
to connect algorithmic ideas to imperative programs. We do this through
an example, developing annotations for a given program that express the
contracts, thereby making the program understandable (and allowing us to
find a bug).

Additional Resources
e Review slides (https://cs.cmu.edu/~15122/handouts/slides/review/01-contracts.
pdf)
e OLI modules (https://cs.cmu.edu/~15122/handouts/oli/01.shtml)
e Code for this lecture (https://cs.cmu.edu/~15122/handouts/code/01- contracts.
tgz)
In term of our learning goals, this lecture addresses:

Computational Thinking: Developing contracts (preconditions, postcon-
ditions, assertions, and loop invariants) that establish the safety and
correctness of imperative programs.

Using point-to reasoning to develop proofs of the safety and correct-
ness of code with contracts.

Developing informal termination arguments for programs with loops
and recursion.

Identifying the difference between specification and implementation.
Algorithms and Data Structures: Integer algorithms (fast power).

Programming: Identifying, describing, and effectively using while-loops
and contracts (in CO0).
We invite you to read this chapter section by section to see how much

of the story you can figure out on your own before moving on to the next
section.

LECTURE NOTES (© Carnegie Mellon University 2024

https://cs.cmu.edu/~15122/handouts/slides/review/01-contracts.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/01-contracts.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/01-contracts.pdf
https://cs.cmu.edu/~15122/handouts/oli/01.shtml
https://cs.cmu.edu/~15122/handouts/oli/01.shtml
https://cs.cmu.edu/~15122/handouts/code/01-contracts.tgz
https://cs.cmu.edu/~15122/handouts/code/01-contracts.tgz
https://cs.cmu.edu/~15122/handouts/code/01-contracts.tgz

Lecture 1: Contracts 2

1 A Mysterious Program

You are a new employee in a company, and a colleague comes to you with
the following program, written by your predecessor who was summarily
fired for being a poor programmer. Your colleague claims he has tracked a
bug in a larger project to this function. It is your job to find and correct this
bug.

int f(int x, int y) {

1

2 int r = 1;

5 while (y > 1) {

4 if (y%2==1) {
5 r=X*x1r,

6 }

7 X = X * X;

8 y=y/ 2

9o}

return r x Xx;

Ju
o

H
=
-

Before you read on, you might examine this program for a while to try
to determine what it does, or is supposed to do, and see if you can spot the
problem.

Lecture 1: Contracts 3

2 Forming a Conjecture

The first step is to execute the program on some input values to see its
results. The code is in a file called mystery.c0 so we invoke the coin in-
terpreter to let us experiment with code.

% coin mystery.coO

SoD

At this point we can type in statements and they will be executed. One
form of statement is an expression, in which case coin will show its value.
For example:

--> 3+8;
11 (int)

-->

We can also use the functions in the files that we loaded when we
started coin. In this case, the mystery function is called f, so we can eval-
uate it on some arguments.

F-—> (2,3);
8 (int)
--> f(2,4);
16 (int)
--> f(1,7);
1 (int)
--> (3,2);
9 (int)

SoS

Can you form a conjecture from these values?

Lecture 1: Contracts i

From these and similar examples, you might form the conjecture that

f(z,y) = 2Y, that is, = to the power y. One can confirm that with a few
more values, such as

--> f(-2,3);
-8 (int)
--> (2,8);
256 (int)
--> f(2,10);
1024 (int)

Sy

It seems to work out! Our next task is to see why this function actually

computes the power function. Understanding this is necessary so we can
try to find the error and correct it.

10

11

Lecture 1: Contracts 5

3 Finding a Loop Invariant

Now we start to look inside the function and see how it computes.

int f(int x, int y) {

int r = 1;
while (y > 1) {
if (y%2==1) {
r=x % r;
}
X = X * X;
y=y/2;
}
return r x Xx;
}
We notice the conditional
if (y%s2==1) {
r=x*r;
}

The condition tests if y modulo 2 is 1. For positive y, this is true if y is odd.
We also observe that in the loop body, y must indeed be positive so this is
a correct test for whether y is odd.

Each time around the loop we divide y by 2, using integer division
(which rounds towards 0). It is exact division if y is even. If y starts as
a power of 2, it will remain even throughout the iteration. In this case r
will remain 1 throughout the execution of the function. Let’s tabulate how
the loop works for x = 2 and y = 8. But at which point in the program do
we tabulate the values? It turns out generally the best place for a loop is just
before the exit condition is tested. By iteration 0 we mean when we enter the
loop the first time and test the condition; iteration 1 is after the loop body
has been traversed once and we are looking again at the exit condition, etc.

iteration | = |y |r
0 2 181
1 4 14|11
2 16 |21
3 256 |11

After 3 iterations, x = 256 and y = 1, so the loop condition y > 1 becomes
false and we exit the loop. We return r * = = 256.

To understand why this loop works we need to find a so-called loop in-
variant: a quantity that does not change throughout the loop. In this exam-

Lecture 1: Contracts 6

ple, when y is a power of 2 then r is a loop invariant. Can you find a loop
invariant involving just z and y?

Lecture 1: Contracts 7

Going back to our earlier conjecture, we are trying to show that this
function computes z¥. Interestingly, after every iteration of the loop, this
quantity is exactly the same! Before the first iteration it is 2° = 256. After
the first iteration it is 4* = 256. After the second iteration it is 16> = 256.
After the third iteration, it is 256! = 256. Let’s note it down in the table.

iteration | « |y |r | Y
0 2 | 8]1]256
1 4 4111256
2 16 | 2] 1] 256
3 256 | 1| 1] 256

Still concentrating on this special case where y is a power of 2, let’s see
if we can use the invariant to show that the function is correct.

Lecture 1: Contracts 8

4 Proving the Loop Invariant

To show that the quantity =¥ is a loop invariant, we have to prove that if
we execute the loop body once, 2¥ before executing the body will be equal
to 2¥ after executing the body. We cannot write this as ¥ = zY, because
that is of course always true, speaking mathematically. Mathematics does
not understand the idea of assigning a new value to a variable. The general
convention we follow is to add a prime (') to the name of a variable to
denote its value after an iteration.

So assume we have x and y, and y is a power of 2. After one iteration
we have 2/ = 2 x z and v/ = y/2. To show that ¥ is a loop invariant, we

have to show that ¥ = 2/ v, So let’s calculate:

ol (z * x)¥/? by lines 7 and 8 (definition of z’ and y’)
= (2%)%? by math (since a * a = a?)
= 2>*W/?2) by math (since (a’)¢ = a*)
= oY by math (since 2 % (a/2) = a when a is even)

Moreover, if y is a power of 2, then 3y’ = y/2 is also a power of 2 (subtracting
1 from the exponent).

We have confirmed that 2V is a loop invariant if y is a power of 2. Does
this help us to ascertain that the function is correct when y is a power of
two?

10

11

Lecture 1: Contracts 9

5 Loop Invariant Implies Postcondition

The postcondition of a function is usually a statement about the result it re-
turns. Here, the postcondition is that f(x,y) = z¥. Let’s recall the function:

int f(int x, int y) {
int r = 1;
while (y > 1) {
if (y%s2==1) {
r=x*r;
}
X = X % X;
y=y/ 2;
}

return r *x X;

}

If y is a power of 2, then the quantity ¥ never changes in the loop (as we
have just shown). Also, in that case r never changes, remaining equal to 1.
When we exit the loop, y = 1 because y starts out as some (positive) power
of 2 and is divided by 2 every time around loop. So then

1:$y

rxrx=1lxrx=x==x
so we return the correct result, z¥!
By using two loop invariant expressions (r and zY) we were able to
show that the function returns the correct answer if it does return an an-
swer. Does the loop always terminate?

Lecture 1: Contracts 10

6 Termination

In this case it is easy to see that the loop always terminates. To show that
a loop always terminates, we need to define some expression whose value
always gets strictly smaller during any arbitrary iteration of the loop, that
can never become smaller than 0, and that causes the loop guard to be false
when equal to zero. This means that the loop can only run a finite number
of times.

The expression y/2 is always less than y when y > 0, so on any arbitrary
iteration of the loop, y gets strictly smaller, and it can never become nega-
tive. Moreover, the loop guard is false when y==0. Therefore, we know
the loop has to terminate.

By the same token, we could identify any lower bound, not just zero,
that causes the loop guard to be false and an expression whose value
strictly decreases and never passes that lower bound, or we could iden-
tify an upper bound that causes the loop guard to be false and an ex-
pression whose value strictly increases but never passes that upper
bound!

Lecture 1: Contracts 11

7 A Counterexample

We don’t have to look at y being a power of 2 — we already know the func-
tion works correctly there. Some of the earlier examples were not powers
of two, and the function still worked:

(-—> f(2,3);
8 (int)

--> f(-2,3);
-8 (int)
--> f(2,1);
2 (int)

-->

-

What about 0, or negative exponents?

--> f(2,0);
2 (int)

--> f(2,-1);
2 (int)

- >

It looks like we have found at least two problems. 20 — 1, so the answer
2 is definitely incorrect. 27! = 1/2 so one might argue it should return
0. Or one might argue in the absence of fractions (we are working with
integers), a negative exponent does not make sense. In any case, f(2, —1)
should certainly not return 2.

—_

[N]

10

11

12

13

Lecture 1: Contracts 12

8 Imposing a Precondition

Let’s go back to a mathematical definition of the power function z¥ on inte-
gers x and y. We define:

0 = 1
2Vl = zxa¥ fory>0

In this form it remains undefined for negative exponents. In programming,
this is captured as a precondition: we require that the second argument to
f not be negative. Preconditions are written as //@requires and come
before the body of the function.

int f(int x, int y)
//@requires y >= 0;
{
int r = 1;
while (y > 1) {
if (y % 2 =
r=x %

= * X
y=y/2;
}

return r * X;

}

This is the first part of what we call the function contract. It expresses what
the function requires of any client that calls it, namely that the second ar-
gument be non-negative. It is an error to call it with a negative argument;
no promises are made about what the function might return in such case. It
might even abort the computation due to a contract violation. When calling
a function, its preconditions must be satisfied for the arguments it is called
with. If this is the case, the call is safe. We always need to have a reason to
believe that function calls are safe.

But a contract usually has two sides. What does f promise? We know it
promises to compute the exponential function, so this should be formally
expressed.

-

[N]

w

10

11

12

13

14

Lecture 1: Contracts 13

9 Promising a Postcondition

The CO language does not have a built-in power function. So we need to
write it explicitly ourselves. But wait! Isn’t that what f is supposed to do?
The idea in this and many other examples is to capture a specification in the
simplest possible form, even if it may not be computationally efficient, and
then promise in the postcondition to satisfy this simple specification. Here,
we can transcribe the mathematical definition into a recursive function.

int POW (int x, int y)
//@requires y >= 0;
{
if (y == 0)
return 1;
else
return x * POW(x, y-1);
}

In the rest of the lecture we often silently go back and forth between z¥
and POW(x,y). Now we incorporate POW into a formal postcondition for
the function. Postconditions have the form //@ensures e;, where ¢ is a
boolean expression. They are also written before the function body, by con-
vention after the preconditions. Postconditions can use a special variable
\result to refer to the value returned by the function.

int f(int x, int y)
//@requires y >= 0;
//@ensures \result == POW(X,Yy);

{
int r = 1;
while (y > 1) {
if (y %2 ==1) {
r=xx*r;
}
X = X % X;
y=y/2;
}
return r x Xx;
}

Note that as far as the function f is concerned, if we are considering calling
it we do not need to look at its body at all. Just looking at the pre- and
post-conditions (the @requires and @ensures clauses) tells us everything
we need to know. As long as we adhere to our contract and pass f a non-

Lecture 1: Contracts 14

negative y, then f will adhere to its contract and return z¥.

The postconditions of a function are facts that ought to be true when the
function returns. Like here, we often use postconditions to describe what
the function is expected to do. A function is correct if its postconditions are
always satisfied when called with inputs that satisfy its preconditions.

1

2

Lecture 1: Contracts 15

10 Dynamically Checking Contracts

During the program development phase, we can instruct the CO compiler
or interpreter to check adherence to contracts. This is done with the -d flag
on the command line, which stands for dynamic checking. Let’s see how the
implementation now reacts to correct and incorrect inputs, assuming we
have added POW as well as pre- and postconditions as shown above.

p
% coin mystery2b.cO0 -d

mystery2b.c0:20.5-20.6:error:cannot assign to variable ’'x’
used in @ensures annotation
X = X * X;
Unable to load files, exiting...

%

°
-

The error is that we are changing the value of z in the body of the loop,
while the postcondition refers to x. If it were allowed, it would violate the
principle that we need to look only at the contract when calling the func-
tion, because assignments to x change the meaning of the postcondition.
We want \result POW(x,y) for the original x and y we passed as argu-
ments to f and not the values = and y might hold at the end of the function.

We therefore change the function body, creating auxiliary variables b
(for base) and e (for exponent) to replace x and y, which we leave un-
changed.

int f(int x, int y)
//@requires y >= 0;

s //@ensures \result == POW(Xx,y);

s {

5 int r = 1;

¢ int b = x; /* base */
7 int e = y; /* exponent x/
s while (e > 1) {

9 if (e %2 ==1) {

10 r==>b % r,

11 }

12 b=>b % b;

13 e=e/ 2;

14 }

15

return r x b;

Lecture 1: Contracts 16

Now invoking the interpreter with -d works correctly when we return
the right answer, but raises an exception if we give it arguments where we
know the function to be incorrect, or arguments that violate the precondi-

tion to the function.

p
% coin mystery2c.c0 -d

--> £(3,2);
9 (int)
--> 1(3,-1);

mystery2c.c0:11.4-11.20: @requires annotation failed

Last position: mystery2c.c0:11.4-11.20
f from <stdio>:1.1-1.8
--> f(2,0);
mystery2c.c0:12.4-12.32: @ensures annotation failed
Last position: mystery2c.c0:12.4-12.32
f from <stdio>:1.1-1.7

SoD

The fact that @requires annotation fails in the second example call means
that our call is to blame, not f. The fact that the @ensures annotation fails
in the third example call means the function f does not satisfy its contract
and is therefore to blame.

1

2

3

4

10

11

12

13

14

15

16

Lecture 1: Contracts 17

11 Generalizing the Loop Invariant

Before fixing the bug with an exponent of 0, let’s figure out why the func-
tion apparently works when the exponent is odd. Our loop invariant so far
only works when y is a power of 2. It uses the basic law that b**¢ = (b?)¢ =
(b * b)© in the case where the exponent e = 2 * c is even.

What about the case where the exponent is odd? Then we are trying
to compute b**“*!. With analogous reasoning to above we obtain v**! =
b * b?*¢ = b * (b * b)°. This means there is an additional factor of b in the
answer. We see that we exactly multiply r by b in the case that e is odd!

int f(int x, int y)
//@requires y >= 0;
//@ensures \result == POW(X,y);

{
int r = 1;
int b = x; /* base */
int e = vy; /* exponent x/

while (e > 1) {
if (e %2 ==1) {
r=>bxr;

}
b

b x b;
e / 2;

e

}

return r x b;

}

What quantity remains invariant now, throughout the loop? Try to form a
conjecture for a more general loop invariant before reading on.

1

2

3

4

10

11

12

13

14

15

16

17

Lecture 1: Contracts 18

Let’s make a table again, this time to trace a call when the exponent is
not a power of two, say, while computing 27 by calling f(2, 7).

iteration | b |e | r | b | r*xb®
0 2 | 7]1]128| 128
1 4 |32 64 128
2 16 |18 16 128

As we can see, b€ is not invariant, but r * b¢ = 128 is! The extra factor from
the equation on the previous page is absorbed into .

We now express this proposed invariant formally in C0O. This requires
the @loop_invariant annotation. It must come immediately before the
loop body, but it is checked just before the loop exit condition. We would
like to say that the expression r * POW(b,e) is invariant, but this is not
possible directly.

Loop invariants in CO are boolean expressions which must be either true
or false. We can achieve this by stating that r * POW(b,e) == POW(x,y).
Observe that x and y do not change in the loop, so this guarantees that
r x POW(b,e) never changes either. But it says a little more, stating what
the invariant quantity is in terms of the original function parameters.

int f(int x, int y)

//@requires y >= 0;
//@ensures \result == POW(X,y);

{
int r = 1;
int b = x; /* base */
int e = y; /* exponent x/

while (e > 1)
//@loop_invariant r x POW(b,e) == POW(X,y);

{
if (e %2 ==1) {
r=>bx*r;
}
b=0>bx*b;
e=¢e/ 2;
}

return r x b;

Lecture 1: Contracts 19

12 Fixing the Function

The bug we have discovered so far was for y = 0. In that case, e = 0
so we never go through the loop. If we exit the loop and e = 1, then the
loop invariant implies the function postcondition. To see this, note that we
return r xband r x b = r x b' = r x b¢ = ¥, where the last equation is the
loop invariant. When y (and therefore e) is 0, however, this reasoning does
not apply because we exit the loop and ¢ = 0, not 1: 2° = 1butr b = z
sincer =1land b = z.

Think about how you might fix the function and its annotations before
reading on.

Lecture 1: Contracts 20

We can fix it by carrying on with the while loop until e = 0. On the
last iteration e is 1, which is odd, so we set ' = b x r. This means we now
should return 7’ (the new r) after the one additional iteration of the loop,
and not r * b.

1 int f(int x, int y)

2 //@requires y >= 0;
3 //@ensures \result == POW(X,Yy);

s {

5 int r = 1;

¢ int b = x; /* base */
7 int e = vy; /* exponent x/
s while (e > 0)

9 //@loop_invariant r x POW(b,e) == POW(x,y);
10 {

1 if (e %2 ==1) {

12 r==>b % r;

13 }

14 b=0>b x b;

15 e = / 2;

16 }

17 return r;

18 }

Now when the exponent y = 0 we skip the loop body and return » = 1,
which is the right answer for z°! Indeed:

~
% coin mystery2e.c0 -d

--> f(2,0);
1 (int)

Sy

-

1

2

3

4

11

12

13

14

15

16

17

Lecture 1: Contracts 21

13 Strengthening the Loop Invariant Again

We would now like to show that the improved function is correct. That
requires two steps: one is that the loop invariant implies the postcondition;
another is that the proposed loop invariant is indeed a loop invariant. The
loop invariant, r * b¢ = z¥ implies that the result r = ¥ if we know that
e = 0 (since b° = 1).

But how do we know that e = 0 when we exit the loop? Actually,
we don’t: the loop invariant is too weak to prove that. The negation of
the exit condition only tells us that e < 0. However, if we add another
loop invariant, namely that e > 0, then we know e = 0 when the loop is
exited and the postcondition follows. For clarity, we also add a (redundant)
assertion to this effect after the loop and before the return statement.

int f(int x, int y)
//@requires y >= 0;
//@ensures \result == POW(X,y);

{
int r = 1;
int b = x; /* base */
int e = y; /* exponent x/

while (e > 0)
//@loop_invariant e >= 0;
//@Loop_invariant r x POW(b,e) == POW(X,y);
{
if (e %52 ==1) {
r=>b %

O

}
//@assert
return r;

(0]
Il
|

The @assert annotation can be used to verify an expression that should
be true. If it is not, our reasoning must have been faulty somewhere else.
@assert is a useful debugging tool and sometimes helps the reader under-
stand better what the code author intended.

Lecture 1: Contracts 22

14 Verifying the Loop Invariants

It seems like we have beaten this example to death: we have added pre- and
post-conditions, stated loop invariants, fixed the original bug and shown
that the loop invariants imply the postcondition. But we have not yet veri-
fied that the loop invariant actually holds! Ouch! Let’s do it.

We begin with the invariant //@loop_invariant e >= 0;, which we
write in the mathematical form e > 0 for convenience. We have to demon-
strate two properties.

Init: The invariant holds initially. When we enter the loop, e = yand y > 0
by the precondition of the function. Done.
More formally,
e=y byline7

y >0 Dby line 2 (precondition)
e > 0 by math (logic on the previous two lines)

Preservation: Assume the invariant holds just before the exit condition is
checked. We have to show that it is true again when we reach the exit
condition after one iteration of the loop.

Assumption: e > 0.

To show: ¢’ > 0 where ¢’ = ¢/2, with integer division.
Here’s the simple proof:

e>0 by assumption
¢ =e/2 Dbyline 16
e >0 by math (definition of integer division)

Next, we look at the invariant //@loop_invariant r x POW(b,e) == POW(x,y);,
again written in its mathematical form as r * b = a¥ for clarity.

Init: The invariant holds initially, because when entering the loop we have
r=1,b=xande=y.

The mathematical proof is as follows:

r=1 by line 5
b=z by line 6
e=y by line 7

r*b®=2Y by math on the above three lines

Preservation: We show that the invariant is preserved on every iteration.

Lecture 1: Contracts 23

Assumption: r * b® = Y.

!
To show: ' /¢ = z¥, where 1/, b/, and €’ are the values of r, b, and e
after one iteration.

To prove this, we distinguish two cases: e is even and e is odd.

Case e is even, so that e = 2 * n for some positive n. Then, the proof
proceeds as follows:

ro=r since r does not change when e is even
b = bxb by line 15
¢ = e/2 by line 7
= 2x%xn/2 because e is even
= n by math
b = (bxb)" by math from the above
= rxbHn by math (since (a?)¢ = a**)
= rxb° by math (since we set e = 2 * n)
= aY by assumption

Case eis odd, thus e = 2 x n + 1 for some non-negative n. Then, the
proof proceeds as follows:

v = bxr by line 13
b = bxb by line 15
e = e/2 by line 16
= (2xn+1)/2 because e is odd
= n by math (definition of integer division)
P = (bxr)*(bxb)" by math from the above
= (bx*7r)*b>" by math (since (a?)¢ = a**)
= prxp¥rtl by math (since a * (a%) = a“*1)
= 7rx*b° by math (since we sete = 2% n + 1)
= aY by assumption

This shows that both loop invariants hold on every iteration.

Lecture 1: Contracts 24

15 Termination

The previous argument for termination still holds. By the loop invariant,
we know that e > 0. When we enter the body of the loop, the condition
must be true so e > 0. Now we just use that e/2 < e for e > 0, so the value
of e is strictly decreasing and positive, which, as an integer, means it must
eventually become 0, upon which the loop guard becomes false causing to
exit the loop and return from the function after one additional step.

Now that we have learned about priming a variable to refer to its value
after the current iteration of the loop, we can make this termination argu-
ment more precise. We will do so in the context of our example, where the
expression we claim is strictly decreasing is e and the lower bound is 0.
What we want to show is that, during an arbitrary iteration of the loop

Ife >0, thene’ <eande >0

The checks e > 0 and ¢’ > 0 state that 0 is indeed a lower bound for our
expression. Instead, €’ < e says that e is strictly decreasing.

Let’s put ourselves in an arbitrary iteration of the loop. Since we en-
ter the body, the loop guard holds and therefore e > 0. This satisfies the
antecedent of this property: e > 0. We then need to show that both conse-

quents have to be true:
¢/ <e: By line 15, we know that ¢/ = ¢/2. For strictly positive integers

(recall that e > 0 — line 8), mathematics tell us that e/2 < e.

¢’ > 0: In this case, we use the exact same argument to show that e/2 > 0.

Lecture 1: Contracts 25

16 A Surprise

Now, let’s try our function on some larger numbers, computing some pow-
ers of 2.

% coin mystery2f.cO0 -d

--> f(2,30);
1073741824 (int)
--> f(2,31);
-2147483648 (int)
--> 1(2,32);

0 (int)

5o

-

230 Jooks plausible, but how could 23! be negative or 232 be zero? We
claimed we just proved it correct!

The reason is that the values of type int in C0 or C and many other
languages actually do not represent arbitrarily large integers, but have a
fixed-size representation. In mathematical terms, this means that we are
dealing with modular arithmetic. The fact that 232 = 0 provides a clue that
integers in CO have 32 bits, and arithmetic operations implement arithmetic
modulo 232,

In this light, the results above are actually correct. We examine modular
arithmetic in detail in the next lecture.

Lecture 1: Contracts 26

17 Summary: Contracts, and Why They are Important

We have introduced contracts, using the example of an algorithm for integer
exponentiation.

Contracts are expressed in the form of annotations, started with //@.
These annotations are checked when the program is executed if it is com-
piled or interpreted with the -d flag. Otherwise, they are ignored.

The forms of contracts, and how they are checked, are:

@requires: A precondition to a function. This is checked just before the
function body executes.

@ensures: A postcondition for a function. This is checked just after the
function body has been executed. We use \result to refer to the
value returned by the function to impose a condition on it.

@loop_invariant: Aloop invariant. This is checked every time just before
the loop exit condition is tested.

@assert: An assertion. This is like a statement and is checked every time
it is encountered during execution.

Contracts are important for two purposes.

Testing: Contracts represent a kind of generic test of a function. Rather
than stating specific inputs (like f(2,8) and testing the answer 256),
contracts talk about expected properties for arbitrary values. On the
other hand, contracts are only useful in this regard if we have a good
set of test cases, because contracts that are not executed with values
that cause them to fail cannot cause execution to abort.

Reasoning: Contracts express properties of programs so we can prove them.
Ultimately, this can mathematically verify program correctness. Since
correctness is the most important concern about programs, this is a
crucial aspect of program development. Different forms of contracts
have different roles, reviewed below.

The proof obligations for contracts are as follows:

@requires: At the call sites we have to prove that the precondition for the
function is satisfied for the given arguments. We can then assume it
when reasoning in the body of the function.

@ensures: At the return sites inside a function we have to prove that the
postcondition is satisfied for the given return value. We can then as-
sume it at the call site.

Lecture 1: Contracts 27

@Lloop_invariant: We have to show:

Initialization: The loop invariant is satisfied initially, when the loop
is first encountered.

Preservation: Assuming the loop invariant is satisfied at the begin-
ning of the loop (just before the exit test), we have to show it still
holds when the beginning of the loop is reached again, after one
iteration of the loop.

We are then allowed to assume that the loop invariant holds after the
loop exits, together with the exit condition.

@assert: We have to show that an assertion is satisfied when it is reached
during program execution. We can then assume it for subsequent
statements.

Contracts are crucial for reasoning since (a) they express what needs to
be proved in the first place (give the program’s specification), and (b) they
localize reasoning: from a big program to the conditions on the individual
functions, from the inside of a big function to each loop invariant or asser-
tion.

Lecture 1: Contracts 28

18 Reasoning about Code

Throughout this lecture, we have been reasoning about code. We did so to
prove that our candidate loop invariants for f were valid, to argue that f
terminated, and that its fixed version was correct. But how do we reason
about code in general?

There are two common ways to reason about code:

o Logical reasoning is using what we know to be true to prove certain
properties about code.

o Operational reasoning is drawing conclusions about how things change
when certain lines of code are run.

Both are sound reasoning strategies, but operational reasoning can be tricky.
In particular, it is easy to make mistakes when reasoning operationally
about large pieces of code (and even small ones).

For this reason, every time we need to reason about code, we will use
point-to reasoning, which relies on any form of logical reasoning as well
as one very simple form of operational reasoning. Intuitively, to justify a
reasoning step using point-to reasoning, we need to be able to point to a line
of code that supports our argument (or rely on general math principles).
With the only exception of termination, all the proofs in this course will use
point-to reasoning exclusively.

To make things a bit more concrete, we will demonstrate various forms
of logical and of operational reasoning on the following toy program. Here,
we use reasoning to justify the many //@assert annotations in the pro-
gram. The comment after each of them uses logical or operational reason-
ing for this purpose. Comments in green are uses of logical or operational
reasoning that are valid forms of point-to reasoning. Comments in red are
disallowed uses of operational reasoning.

Do not yet look at these justifications in detail. Instead, skip just past
the program to learn about common forms of logical and of operational rea-
soning, and which among them are also valid forms of point-to reasoning.
As you learn about them, to back to the code to see them in action.
int g(int w)

//@requires w >= 0;
//@ensures \result > 0;

{

return w + 3;

}

int f(int Xx)
//@requires 0 <= x && X < 42;

Lecture 1: Contracts

29

10 {
1
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
)
43
44
45
16
47
48
19
50
51
5
53
54
55
56

int y = 42;

//@assert
//@assert

X
y

int z = 84;

int k = 168;

//@assert

4

>=

while (y > x)

//@loop_invariant y >=
//@loop_invariant z

{

//@assert y > Xx;
//@assert z

y =y-1;
z = 2-2;
k = k-4;
}
//@assert y <= X;
//@assert y >= Xx;
//@assert y == x;
//@assert z == 2*y;
//@assert z
//@assert k == 4xy;
z = g(x);
//@assert z >= 0;
//@assert z >= 3;
if (x > 0) {
//@assert x > 0;
//@assert x+1 > 0 || X
y = X;

- X == Z*y -

//@assert y
//@assert y

}

else {

//@assert x

X = Kk;

// ?777 assert x > 0;

}

0;
42;

2%y;

== X;
> 0;

<= 0;

//@assert z >= 0;

// by line 9 (precondition)
// by line 11 (assignment to y)

// by math (laws of modular arithmetic)
// on lines 11 (or 13) and 14

X;
2xy;

// by line 18 (loop guard)
// by line 20 (loop invariant 2)

// by line 18 (negation of the loop guard)
// by line 19 (loop invariant 1)
// by math (laws of two’s complement)
// on lines 29 and 30
// by line 20 (loop invariant 2)
X; // by math (laws of modular arithmetic)
// on line 33
// NOT POINT-TO REASONING (peeking inside
// a loop body)

// by line 3 (postcondition of g)

// NOT POINT-TO REASONING (peeking inside
// a function body)

// by line 42 (conditional)

== int_max(); // by math (laws of two’s

// complement) on line 42
// by line 46 (assignment to y)
// by math (laws of logic) on lines 42 and 46
// by line 50 (negation of conditional)

// NOT POINT-TO REASONING (no info about k)

// by line 3 (postcondition of g)

Lecture 1: Contracts

30

57 return z;

58 }

Let’s start with logical reasoning. We said that logical reasoning is

using what we know to be true to prove certain properties about code.

The following table gives examples of logical reasoning relative to the above
program. We group these situations into three classes: boolean conditions,
contracts, and math. (The last two situations in the “math” group will be
defined precisely in the next lecture.)

Every kind of logical reasoning is a valid form of point-to reasoning.

Logical Reasoning

Method Situation E.g. Point-to?

Boolean Condition of an if statement in the “then” | L. 43 YES

conditions | branch
Negation of the condition of an if state- | L.51 YES
ment in the “else” branch
Loop guard inside the body of a loop L.22 YES
Negation of the loop guard after the loop L.29 YES

Contracts | Preconditions of the current function L.12 YES
Loop invariants inside the body of a loop L.23 YES
Loop invariants after a loop L. 30,33 YES
Postconditions of a function after calling it | L. 39 YES
Earlier (fully justified) assertion (if still | L. 56 YES
valid)

Math Laws of logic L.48 YES
Laws of modular arithmetic L. 16,34 YES
Laws of two’s complement (carefully) L.3144 YES

Lecture 1: Contracts 31

Operational reasoning is

drawing conclusions about how things change when certain lines of
code are run.

The simplest kind of change is assigning a value to a variable. Using the
fact that this variable has this value (until we assign this variable to some-
thing else) is the only form of operational reasoning that counts as point-to
reasoning.

Other forms of operational reasoning are too error-prone to use in this
class, and we will will not accept them in a proof. For example, it is tempt-
ing to reason about what happens in a loop by talking about all its itera-
tions. Operational reasoning about loops are justifications that use words
like “always”, “never”, and “all”: if we find ourselves using these words
(or being able to rephrase our justification in a way that uses them), we are
not doing point-to reasoning (we can’t point to a line of code as the justi-
fication). In general, when outside of a loop, we should pretend that the
body of the loop is not there: we can only refer to its loop guard and loop
invariants.

Operational reasoning about loops is not all bad. In fact, itis a good way
to come up with potential loop invariants: if you think about something
that refers to all iterations of a loop, turn it into a loop invariant and use
point-to reasoning to check that it is valid.

Another error-prone form of operational reasoning is referring to the
body of a function we are calling (unless it is a specification function).
When reasoning about the outcome of such a function call, we should pre-
tend that the body of the function is not there: we can only use its con-
tracts (specifically its postconditions). Specification functions are different as
they are typically a transcription of behind-the-scene mathematical proper-
ties.

Operational Reasoning

Situation E.g. Point-to?
Value of variables right after assigning to them L.13,46 YES
Things that refer to the body of an earlier loop (but arenot | L. 36 NO
mentioned in its loop invariants)

Things that happen in a function we are calling (but are | L. 40 NO
not mentioned in its postconditions) — unless it’s a specifi-

cation function

A previously true statement after a variable in it has | L. 53 NO
changed

The only situation where we use (non point-to) operational reasoning
is when proving that a loop terminates. The argument we use has the form

Lecture 1: Contracts 32

During an arbitrary iteration of the loop, the expression al-
ways gets strictly bigger/smaller and can never become bigger/smaller
than on which the loop guard is false.

Notice the use of “always” and “never”. (We can use point-to reasoning
also for termination, but we typically don’t do it in this course.)

1

2

3

4

5

© ® N o

Lecture 1: Contracts 33

19 Exercises

Exercise 1 (sample solution on page 36). Find an input for f that fails our first
guess of a loop invariant in section 3:

//@loop_invariant POW(b,e) == POW(x,y);

Exercise 2 (sample solution on page 36). Consider the following function:

int foo(int x)
//@requires ___________ ;
//@ensures ____________ ;
{
int p = 0;
for (int i = 0; 1 < x; i++)
//@loop_invariant ____________ ;
//@loop_invariant ____________ ;
{
p += POW(2, 1i);
}

return p;

}

where POW is the power function defined in this lecture.

After running this function on a few inputs, form a conjecture as to what it
does. Then, express your conjecture by filling in the precondition with any con-
straints on the input x and the postcondition with a description of what it com-
putes. Finally, fill in the loop invariants that enables you to prove that the safety
of every statement in the loop body and that the postcondition holds whenever the
input satisfies the precondition.

Exercise 3 (sample solution on page 36). The greatest common divisor (GCD)
of two positive integers a and b is the largest integer d such that a % d = 0 and
b%d = 0. The following function computes the GCD of a and b by trying all
possible values for d from the smallest among a and b down to 1.

int GCD(int a, int b)

//@requires a > 0 && b > 0;
//@ensures \result >= 1;

//@ensures a % \result == 0 & b % \result == 0;
{

int d = min(a, b);

while (d > 1)

//@loop_invariant d >= 1;

15

16

1

2

3

4

o ® N o oy

10

Lecture 1: Contracts 34

{
if (a%d==0& b % d==20)
return d;
d=4d - 1;
}

return d;

}

Using the methodology studied in this chapter and point-to reasoning, we will
show that this code is correct. Recall that correctness means that the postcondi-
tions must be true for any input that satisfies the preconditions. Note that the
postconditions say nothing about the returned value being the greatest common
divisor of the inputs, only that it is one of their divisors.

We will proceed in a number of steps.

a [INIT] Show that the loop invariant on line 9 holds just before checking the
loop guard for the very first time.

b [PRES] Show that it is preserved by an arbitrary iteration of the loop.

c [EXIT] Show that the loop invariant and the negation of the loop guard
imply the postconditions.

d [TERM] Show that the loop terminates.

e But what if the function exits on line 127 Using point-to reasoning, show
that the postconditions are satisfied also in this case.

Exercise 4 (sample solution on page 37). Euclid’s algorithm computes the
greatest common divisor of two numbers, a problem we already explored in Ex-
ercise 3. It is often more efficient, but not as obviously correct. In this exercise,
we will use the methodology developed in his chapter to convince ourselves (and
others) of its correctness.

This code uses the function GCD from Exercise 3 as a specification function.

int euclid(int a, int b)
//@requires a > 0 & b > 0;
//@ensures \result == GCD(a, b);

{
int x = a;
int y = b;
while (x !=y)
//@loop_invariant x > 0 & y > 0;

//@loop_invariant GCD(x, y) == GCD(a, b);

Lecture 1: Contracts 35

un {

12 if (x > y)
13 X =X -Y,
14 else

15 y=Yy - X
16 }

17 //@assert x == y;
18 return x;

We will follow the usual steps to prove correctness, plus one, to ensure safety.
a Show that the calls to GCD on line 10 are safe.

b [INIT] Show that the loop invariants on lines 9-10 hold just before checking
the loop guard for the very first time.

¢ [PRES] Show that they are preserved by an arbitrary iteration of the loop.

d [EXIT] Show that the loop invariants and the negation of the loop guard
imply the postconditions.

e [TERM] Show that the loop terminates.

Lecture 1: Contracts 36

Sample Solutions

Solution of exercise 1 A call that causes this loop invariant to failis f(2,7).

Solution of exercise 2 This function computes 2” — 1 according to the for-

mula
rx—1 ‘
2" —1=) 2
i=0

Here is the resulting code with all contracts filled in:

int foo(int x)

//@requires x >= 0;

//@ensures \result == POW(2,x) - 1;

{
int p = 0;
for (int i = 0; 1 < x; i++)
//@loop_invariant 0 <= i & 1 <= x;
//@loop_invariant p == POW(2,1i) - 1;

{

p += POW(2, 1i);
}
return p;

}

Solution of exercise 3

a [INIT] Show that the loop invariant on line 9 holds just before check-
ing the loop guard for the very first time.

We need to show thatd >= 1 initially.

A.a>0andb > 0 by line 2

B.a>= landb >= 1 by math on A

C. d == min(a,b) by line 6

D. min(a,b) >=1 by math on Band C

b [PRES] Show that it is preserved by an arbitrary iteration of the loop.
We need to show that if d >= 1 as we enter an arbitrary iteration of
the loop, thend* >= 1.

A.d>1 by line 8
B. d* == d-1 by line 13

Lecture 1: Contracts 37

C.d>=1 by math on A and B

In this proof, we did not make use of the assumption that d >= 1.
This is not typical as most proofs of preservation rely critically on
their assumption.

¢ [EXIT] Show that the loop invariant and the negation of the loop
guard imply the postconditions.

We need toshow thatd >= landa % d == 0 & b % d == 0 hold

on line 15.
A.d>=1 by line 9
B.d <=1 by line 8
C.d==1 by math on A and B
D. n%1=0foranyn >0 by math

This proof suggest simplifying line 15 into return 1, since this is the
only possible value that d can assume.

d [TERM] Show that the loop terminates.
During an arbitrary iteration of the loop, the expression d strictly de-
creases and can never get smaller than 1.

e But what if the function exits on line 12? Using point-to reasoning,
show that the postconditions are satisfied also in this case.
We need to show thatd >= landa % d == 0 & b % d == 0 hold

on line 12.
A d>=1 by line 9
B.a%d==048&% b % d == by line 11

Solution of exercise 4

a) Show that the calls to GCD on line 10 are safe.

We need to show that the preconditions of both calls to GCD are sat-
isfied, i.e., that x > 0 & y > 0 for GCD(x,y) anda > 0 & b > 0
for GCD(a,b).

A x>08&&y >0 by line 9
B.a>04& b >0 by line 2

Lecture 1: Contracts 38

b) [INIT] Show that the loop invariants on lines 9-10 hold just before
checking the loop guard for the very first time.

We need toshow thatx > 0 && y > 0andthatGCD(x,y) == GCD(a,b).

initially.
A. x =a by line 5
B.y=0» by line 6
C.a>0& b >0 by line 2
D. GCD(a,b) == GCD(a,b) by math on A-B

¢) [PRES] Show that they are preserved by an arbitrary iteration of the
loop.

Assuming that x > 0 & y > 0 and that GCD(x,y) == GCD(a,b),
weneed toshow thatx’ > 0 & y‘ > 0and GCD(x‘,y‘) == GCD(a,b).

We need to consider two cases depending on whether x > yorx < vy.

Assume that x > y:

A x" =x -y by line 13

B.y'" ==y by (y unchanged)
C. x>y by assumption
D. GCD(x,y) == GCD(a,b) by assumption
E.x-y>0 by math on A

FE x* >0 by AE

Gy >0 by line 9 and D
H. GCD(n,m) == GCD(n —m,m) by math

I. GCD(x-y,y) == GCD(a,b) by mathon D, H
J. GCD(x‘,y*) == GCD(a,b) by math on A, B, I

Assume that x < y: the proof is similar.

d) [EXIT] Show that the loop invariants and the negation of the loop
guard imply the postconditions.

A x ==y by line 8
B. GCD(x,x) == GCD(a,b) by line 10
C. GCD(n,n) ==nforanyn >0 by math
D. x == GCD(a,b) by math on B-C
E. \result == x by line 18

Lecture 1: Contracts 39

F. \result == GCD(a,b) by math on D-E

Step (A) is also noted as an assertion on line 17.

e) [TERM] Show that the loop terminates.

During an arbitrary iteration of the loop, the expression x + vy is
strictly decreasing and can never get smaller than 2. The fact that
X + vy is strictly decreasing relies on the fact that x and y are positive
by the second loop invariant (line 10): if x > y the expression x + y
is updated to x, and otherwise it is updated to y, either of which is
strictly smaller than x + y. The lower bound (2) is a consequence of
the first loop invariant.

	A Mysterious Program
	Forming a Conjecture
	Finding a Loop Invariant
	Proving the Loop Invariant
	Loop Invariant Implies Postcondition
	Termination
	A Counterexample
	Imposing a Precondition
	Promising a Postcondition
	Dynamically Checking Contracts
	Generalizing the Loop Invariant
	Fixing the Function
	Strengthening the Loop Invariant Again
	Verifying the Loop Invariants
	Termination
	A Surprise
	Summary: Contracts, and Why They are Important
	Reasoning about Code
	Exercises

