
Lecture 20
C’s Memory Model

15-122: Principles of Imperative Computation (Fall 2024)
Frank Pfenning, Rob Simmons

In this lecture, we’ll talk about the differences between the memory model
we developed in C0, with local and allocated sections, and the memory
model that C uses. Much of the model will stay the same, but we’ll go
more in depth and learn some new terms.

Additional Resources
• Review slides (https://cs.cmu.edu/~15122/handouts/slides/review/20-cmem.

pdf)

• Code for this lecture (https://cs.cmu.edu/~15122/handouts/code/20-cmem.
tgz)

1 The C0 and C Memory Model

When we talk about memory in C0, C1, and C, that memory is always in
one of three places:

• Local variables (including the arguments to functions) are stored in
memory. In both C0 and C, this memory is reserved automatically
when we declare a new local variable, though in C the contents of that
local memory aren’t initialized. The local memory gets reclaimed as
soon as the local variable goes out of scope.

• Allocated memory was reserved with alloc and alloc_array. We al-
ways accessed this memory by referring to its address (the address
stored in a non-NULL pointer or the address of an array). When we
reserved allocated memory in C0, this memory was initialized to de-
fault values for us. In C, xmalloc does not initialize memory.

• In C1, we said that the compiled code for functions was stored in read-
only memory, and we could get pointers into that read-only memory
by taking the address of a function: &f. Many more things in C are
stored in read-only memory, like string literals.

LECTURE NOTES c© Carnegie Mellon University 2024

https://cs.cmu.edu/~15122/handouts/slides/review/20-cmem.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/20-cmem.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/20-cmem.pdf
https://cs.cmu.edu/~15122/handouts/code/20-cmem.tgz
https://cs.cmu.edu/~15122/handouts/code/20-cmem.tgz
https://cs.cmu.edu/~15122/handouts/code/20-cmem.tgz

Lecture 20: C’s Memory Model 2

In this class, we think about all of this data residing in memory.1 In
this picture, memory is comprised of an enormous array of bytes, where
each index in the array of bytes is an address. The lowest address is 0,
and the highest address on most modern, 64-bit processors is 264 − 1 =
0xFFFFFFFFFFFFFFFF. This is an almost inconceivably large array of bytes,
far larger than the physical RAM installed in any computer, but the operat-
ing system plays tricks to allow processors to pretend like they have access
to this enormous array. One way this is done is by only giving programs
access to individual segments of this array. Modern hardware prevents in-
dividual running programs from accessing memory outside their allocated
segments. (This is a good thing: it means that, no matter how much you
mess up while programming in C, it’s going to be difficult for you to inter-
fere with other running programs like your text editor or virus scanner.)

The memory used for the local variables of a function is allocated and
de-allocated according to a stack discipline, so we call this portion of mem-
ory the stack. Memory that we explicitly allocate is reserved in what we
call the heap, though it has no relationship to the heap data structure. Read-
only memory is divided into the TEXT region which contains the compiled
code of the running program and the DATA region which contains string
literals. Therefore, the big picture of memory looks like this:

0xFFFFFFFFFFFFFFFF |
| OS AREA
| ============
| System stack (local variables)
| ============
| unused
| ============
| System heap (allocated memory)
| ============
| TEXT and DATA (read only memory)
| ============
| OS AREA

0x0000000000000000 |

One consequence of this memory layout is that the stack grows towards
the heap, and the heap usually grows towards the stack. Programs cannot
access addresses (indices in this enormous array) that belong to the oper-
ating system. If they try, programs get an “exception” like a segmentation
fault. C0 takes great care to ensure that it never gives you any pointers to
uninitialized or random or garbage data in memory, except, of course, the

1Later classes will complicate this picture by talking about things like registers that you
don’t need to know about in 15-122.

Lecture 20: C’s Memory Model 3

NULL pointer. NULL is a special pointer to the memory address 0, which be-
longs to the operating system. Attempting to read from or write to a NULL
pointer is undefined behavior, which we’ll discuss more in a later section.
In practice, trying to access such a pointer will cause us to access a segment
of memory we don’t have permissions to — this results in a segmentation
fault, or segfault.

2 Arrays and Pointer Arithmetic

When compared to C0, the most shocking difference is that C does not dis-
tinguish arrays from pointers. We allocate enough space for a single integer
by writing sizeof(int), and we allocate enough space for an array of 5 in-
tegers by just multiplying the size of a single integer by 5.

int *A = xmalloc(sizeof(int) * 5);
for (size_t i = 0; i < 5; i++) A[i] = i*i*i*i;

Assuming 4-byte integers, this 5 element array is treated by C as no
more and no less than a single 20 byte memory segment that we are al-
lowed to use. If the call to malloc returned the memory address 0xCA0,
then after the for loop is done, the four bytes of memory addressed by
0xCA8 to 0xCAB will together represent the integer 16, the contents of the
third index of the array, A[2], and so on:

One consequence of this conflation of pointers and arrays is that writing
*A and writing A[0] necessarily means the same thing. We can also add an
integer to a pointer, but this modifies the pointer not in terms of bytes but
in terms of array elements. This allows us to get pointers into arrays!

int *x = A + 3;

*x += 5;

In the example above, then after running these two lines, the local variable
x will contain the pointer 0xCAC, and the assignment will cause both *x
and A[3] to evaluate to 86 instead of 81. This is a form of aliasing that
was impossible in C0, but it is relatively common in C. But because only
the pointer 0xCA0 in the example above was returned from xmalloc, only
that pointer should be freed: it would be a memory error to free the pointer
0xCAC stored in x.

Lecture 20: C’s Memory Model 4

When we allocate very large arrays, we may want them allocated with
default values, the way we did in C0. The C standard library provides a
function, calloc, to do just that, and our xalloc.h library has a non-NULL-
returning xcalloc version of calloc that you should use. With xcalloc,
we can allocate an array of seven elements, all of which are initialized to 0,
like this:

int *B = xcalloc(7, sizeof(int));
for (size_t i = 1; i < 7; i++) A[i] = A[i-1]*2 + 3;

The only differences between xmalloc and xcalloc is that the latter ini-
tializes the memory to be all zeroes and takes two arguments. The xcalloc
function takes two sizes n and m and allocates n × m bytes. We think of
xmalloc as being like C0’s alloc and we think of xcalloc as being like
C0’s alloc_array, but in C you can allocate arrays and pointers with ei-
ther xmalloc or xcalloc.

3 Undefined Behavior

We have described the following as memory errors:

• Reading uninitialized memory (on the stack or on the heap).

• Dereferencing memory outside of a valid allocated segment (which
includes NULL pointer dereference, array out of bounds errors), or try-
ing to read or write to an int when you’ve only allocated enough size
for a char.

• Writing to memory that is in a read-only segment like TEXT and
DATA.

• Using a memory allocation that has been freed, double-freeing a pointer,
or freeing any pointer that wasn’t returned from xmalloc or xcalloc.

In C0, memory errors would always predictably and consistently cause the
program to stop executing. In C, this is definitely not the case.

Array accesses are not checked at all, and out-of-bounds memory ref-
erences (whose result is formally undefined) may lead to unpredictable re-
sults. The program might stop with an error, or keep going, but after unde-
fined behavior occurs it is difficult, if not impossible, to predict a program’s
behavior. For example, the code fragment

1 int main() {
2 int* A = xmalloc(sizeof(int));
3 A[0] = 0; /* ok - A[0] is like *A */

Lecture 20: C’s Memory Model 5

4 A[1] = 1; /* error - not allocated */
5 A[317] = 29; /* error - not allocated */
6 A[-1] = 32; /* error - not allocated(!) */
7 printf("A[-1] = %d\n", A[-1]);
8 return 0;
9 }

will not raise any compile time error or even warnings, even under the
strictest settings. Here, the call to xmalloc allocates enough space for a sin-
gle integer in memory. In this class, we are using gcc with all our standard
flags:� �
% gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g� �
The code above executes ok, and in fact prints 32, despite four blatant er-
rors in the code.

To discover whether such errors may have occurred at runtime, we can
use the valgrind tool.� �
% valgrind ./a.out
...
==nnnn== ERROR SUMMARY: 4 errors from 4 contexts (suppressed: 0 from 0)� �
which produces useful error messages (elided above) and indeed, flags er-
rors in code that didn’t appear to have any errors when we ran it without
valgrind.

You can also guard memory accesses with appropriate assert state-
ments that abort the program when attempting out-of-bounds accesses.

There’s an old joke that whenever you encounter undefined behavior,
your computer could decide to play Happy Birthday or it could catch on fire.
This is less of a joke considering recent events:

• In 2010, Alex Halderman’s team at the University of Michigan suc-
cessfully hacked into Washington D.C.’s prototype online voting sys-
tem, and caused its web page to play the University of Michigan fight
song, “The Victors.”2

• The Stuxnet worm caused centrifuges, such as those used for ura-
nium enrichment in Iran, to malfunction, physically damaging the
devices.3

Not quite playing Happy Birthday and catching on fire, but close enough.
2Scott Wolchok, Eric Wustrow, Dawn Isabel, and J. Alex Halderman. Attacking the Wash-

ington, D.C. Internet Voting System. Proceedings of the 16th Conference on Financial Cryp-
tography and Data Security, February 2012.

3Holger Stark. Stuxnet Virus Opens New Era of Cyber War. Spiegel Online, August 8, 2011.

Lecture 20: C’s Memory Model 6

4 Address-of

In our C0 and C memory model, almost everything has an address. If e is an
expression (like x, A[12], *x, A.fld, or A->fld) that describes a memory
location which we can read from and potentially write to, then that mem-
ory location exists in memory as some number of bytes with an address.
Writing &e then gives us a pointer to that memory location. In C0, if we
have a struct containing a string and an integer, it’s not possible to get a
pointer to just the integer. This is possible in C:

struct wcount {
char *word;
int count;

};

void increment(int *p) {
REQUIRES(p != NULL);

*p = *p + 1;
}

void increment_count(struct wcount *wc) {
REQUIRES(wc != NULL);
increment(&(wc->count));

}

Because the type of wc->count is int, the expression &(wc->count) is a
pointer to an int. Calling increment_count(B) on a non-null struct will
cause the count field of the struct to be incremented by the increment
function, which is passed a pointer to the second field of the struct.

Because of the address-of operation, we never have to actually use pointer
arithmetic if we don’t want to. For example, &A[3] is equivalent to A + 3,
and much more readable.

5 Stack Allocation

In C, we can also allocate data on the system stack (which is different from
the explicit stack data structure you have studied). Each function allocates
memory in its so-called stack frame for local variables. We can obtain a
pointer to this memory using the address-of operator. For example:

int main() {
int a1 = 1;
int a2 = 2;

Lecture 20: C’s Memory Model 7

increment(&a1);
increment(&a2);
...

}

Note that there is no call to xmalloc or xcalloc which allocate spaces on
the system heap (again, this is different from the heap data structure we
used for priority queues).

We can only free memory allocated with xmalloc or xcalloc, but not
memory that is on the system stack. Such memory will automatically be
freed when the function whose frame it belongs to returns. This has two
important consequences. The first is that the following is a bug, because
free will try to free the memory holding a1, which is not on the heap:

int main() {
int a1 = 1;
int a2 = 2;
free(&a1); // BUG: trying to free a local variable
...

}

The second consequence is pointers to data stored on the system stack do
not survive the function’s return. For example, the following is a bug:

int *f_ohno() {
int a = 1; // BUG: a is deallocated when f_ohno() returns
return &a;

}

(recent versions of gcc recognize that this makes little sense and issue a
compilation error). A correct implementation requires us to allocate on
the system heap, using a call to malloc or calloc (or one of the library
functions which calls them in turn).

int *f() {
int* x = xmalloc(sizeof(int));

*x = 1;
return x;

}

C offers a special syntax to allocate arrays on the stack. The following
main declares an array A with 5 elements, initializes it, calls the function
sum which adds up its elements, and prints the result.

int sum(int* A, int n) {
int res = 0;

Lecture 20: C’s Memory Model 8

for (int i = 0; i < n; i++)
res += A[i];

return res;
}

void main() {
int A[5];
for (int i=0; i < 5; i++)
A[i] = i;

printf("%d\n", sum(A, 5));
}

C even provides syntax to initialize a literal array, i.e., an array whose
length and initial contents are fixed values. The above main function can
indeed be rewritten as follows:

void main() {
int A[] = {0, 1, 2, 3, 4};
printf("%d\n", sum(A, 5));

}

Note that it’s not even necessary to specify the length of A: the compiler
figures it out.

When stack allocation is possible, it can be a real benefit, because it
saves you from having to remember to free memory explicitly. However, if
the data structure we allocate needs to survive past the end of the current
function you must allocate it on the heap.

Lecture 20: C’s Memory Model 9

6 Exercises

Exercise 1 (sample solution on page 18). Translate the following C0 imple-
mentation of UBA’s for strings into C. Make sure to think about whether some
functions are still necessary, and whether you need additional functions. Make a
separate header file for the interface. You may assume that the functions seen in
class for C0-style contracts and safe allocation are declared in lib/contracts.h
and lib/xalloc.h, respectively.

#use <util>
#use <string>
#use <conio>

/**/
/************************* BEGIN IMPLEMENTATION *************************/

typedef struct uba_header uba;
struct uba_header {
int size; // 0 <= size && size < limit
int limit; // 0 < limit
string[] data; // \length(data) == limit

};

// Internal debugging function that prints an UBA without checking contracts
// (useful to debug representation invariant issues)
void uba_print_unsafe(uba* A)
{
printf("UBA limit=%d; length=%d; data=[", A->limit, A->size);
for (int i = 0; i < A->limit; i++)
//@loop_invariant 0 <= i && i <= A->limit;
{
if (i < A->size)
printf("%s", A->data[i]);

else
printf("X");

if (i < A->limit-1) {
if (i == A->size-1) printf(" | ");
else printf(", ");

}
}
printf("]");

}

bool is_array_expected_length(string[] A, int length) {
//@assert \length(A) == length;
return true;

}

Lecture 20: C’s Memory Model 10

bool is_uba(uba* A) {
return A != NULL

&& 0 <= A->size && A->size < A->limit
&& is_array_expected_length(A->data, A->limit);

}

// Internal debugging function that prints an SSA
// (useful to spot bugs that do not invalidate the representation invariant)
void uba_print_internal(uba* A)
//@requires is_uba(A);
{
uba_print_unsafe(A);

}

// Implementation of exported functions
int uba_len(uba* A)
//@requires is_uba(A);
//@ensures 0 <= \result && \result < \length(A->data);
{
return A->size;

}

string uba_get(uba* A, int i)
//@requires is_uba(A);
//@requires 0 <= i && i < uba_len(A);
{
return A->data[i];

}

void uba_set(uba* A, int i, string x)
//@requires is_uba(A);
//@requires 0 <= i && i < uba_len(A);
//@ensures is_uba(A);
{
A->data[i] = x;

}

uba* uba_new(int size)
//@requires 0 <= size;
//@ensures is_uba(\result);
//@ensures uba_len(\result) == size;
{
uba* A = alloc(uba);
int limit = size == 0 ? 1 : size*2;
A->data = alloc_array(string, limit);

Lecture 20: C’s Memory Model 11

A->size = size;
A->limit = limit;

return A;
}

void uba_resize(uba* A, int new_limit)
/* A may not be a valid array since A->size == A->limit is possible! */
//@requires A != NULL;
//@requires 0 <= A->size && A->size < new_limit;
//@requires \length(A->data) == A->limit;
//@ensures is_uba(A);
{
string[] B = alloc_array(string, new_limit);

for (int i = 0; i < A->size; i++)
//@loop_invariant 0 <= i;
{
B[i] = A->data[i];

}

A->limit = new_limit;
A->data = B;

}

void uba_add(uba* A, string x)
//@requires is_uba(A);
//@ensures is_uba(A);
{
A->data[A->size] = x;
(A->size)++;

if (A->size < A->limit) return;
assert(A->limit <= int_max() / 2); // Fail if array would get too big
uba_resize(A, A->limit * 2);

}

string uba_rem(uba* A)
//@requires is_uba(A);
//@requires 0 < uba_len(A);
//@ensures is_uba(A);
{
(A->size)--;
string x = A->data[A->size];

if (A->limit >= 4 && A->size <= A->limit / 4)
uba_resize(A, A->limit / 2);

Lecture 20: C’s Memory Model 12

return x;
}

void uba_print(uba* A)
//@requires is_uba(A);
{
printf("[");
for (int i = 0; i < A->size; i++)
{
printf("%s", A->data[i]);
if (i+1 != A->size) printf(", ");

}
printf("]");

}

// Client type
typedef uba* uba_t;

/************************** END IMPLEMENTATION **************************/
/**/

/**/
/******************************* Interface ******************************/

// typedef ______* uba_t;

int uba_len(uba_t A)
/*@requires A != NULL; @*/
/*@ensures \result >= 0; @*/ ;

uba_t uba_new(int size)
/*@requires 0 <= size; @*/
/*@ensures \result != NULL; @*/
/*@ensures uba_len(\result) == size; @*/ ;

string uba_get(uba_t A, int i)
/*@requires A != NULL; @*/
/*@requires 0 <= i && i < uba_len(A); @*/ ;

void uba_set(uba_t A, int i, string x)
/*@requires A != NULL; @*/
/*@requires 0 <= i && i < uba_len(A); @*/ ;

void uba_add(uba_t A, string x)
/*@requires A != NULL; @*/ ;

Lecture 20: C’s Memory Model 13

string uba_rem(uba_t A)
/*@requires A != NULL; @*/
/*@requires 0 < uba_len(A); @*/ ;

// bonus function
void uba_print(uba_t A)
/*@requires A != NULL; @*/ ;

Exercise 2 (sample solution on page 24). Identify all lines in the following code
with undefined behavior, and correct those issues. Try to do this without using
Valgrind.

1 #include <stdlib.h>
2 #include "lib/xalloc.h"
3

4 typedef struct rectangle rect;
5 struct rectangle {
6 int x1;
7 int y1;
8 int x2;
9 int y2;

10 };
11

12 int calc_area(rect* r) {
13 int* area;
14 *area = (r->x2 - r->x1) * (r->y2 - r->y1);
15 free(r);
16 return *area;
17 }
18

19 int main() {
20 rect r1;
21 r1.x1 = 0;
22 r1.y1 = 0;
23 r1.x2 = 4;
24 r1.y2 = 5;
25 int area1 = calc_area(&r1);
26

27 rect* r2 = xmalloc(sizeof(rect));
28 int area2 = calc_area(r2);
29 if (area2 > area1) return area2;
30 return area1;
31 }

Lecture 20: C’s Memory Model 14

Exercise 3 (sample solution on page 25). Use Valgrind to find and correct the
issues in the following code (the --leak-check=full and track-origins=yes
flags will be very useful for this).

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include "lib/xalloc.h"
4

5 struct point {
6 int x;
7 int y;
8 };
9

10 int main () {
11 int len = 63;
12 struct point **arr = xmalloc(sizeof(struct point*) * len);
13 for (int i = 0; i < len/2; i++) {
14 arr[2*i] = xmalloc(sizeof(struct point));
15 arr[2*i + 1] = xmalloc(sizeof(struct point));
16 arr[2*i]->x = i+1;
17 arr[2*i]->y = i+1;
18 arr[2*i+1]->x = i/2;
19 arr[2*i+1]->y = 5*i+3;
20 }
21

22 for (int i = 0; i < len; i++) {
23 if (arr[i]->x + 100 < arr[i+1]->y) {
24 printf("%s\n", "Small x value");
25 }
26 free(arr[i]);
27 }
28 }

Exercise 4 (sample solution on 27). The function count_words counts the
number of words in a file. Upon successful return, the function returns 0, indi-
cating no error, and the number of words is stored at the address referenced by
num_words. If there is an error reading the file, a nonzero error value is returned.

error_t count_words(file_t f, size_t *num_words);
//@requires num_words != NULL;

Complete the main function below such that the local variable n will contain the
number of words in the file new_text without using heap allocated memory.

Lecture 20: C’s Memory Model 15

int main() {
// ...
// assume file_t new_text has been previous initialized

________________;

error_t e = count_words(_________, __________);
if (e != 0) printf("count_words failed with error %d.\n", e);
else printf("The text file contains %zu words", n);

// ...
}

Exercise 5 (sample solution on 28). Rewrite this code so that it does not use
pointer arithmetic.

int main () {
int *A = xcalloc(sizeof(int), 100);
int **B = xcalloc(sizeof(int*), 100);
int *C = xcalloc(sizeof(int), 100);

for (int i = 0; i < 100; i++) {

*(A + i) = i*i;

*(B + i) = A + i;

*(C + i) = **(B + i);
}
return 0;

}

Exercise 6 (sample solution on 28). Pointer arithmetic is error-prone and should
be avoided. It is instructive to know about it as you may encounter it in code
written by others. Replace all uses of the bracket notation to access an element of
an array with pointer arithmetic (e.g., A[0] with *a).

#include <stdlib.h>
#include "lib/xalloc.h"

void mult2(int* x) {

*x = *x * 2;
}

int main(){
int* arr = xmalloc(sizeof(int)*5);

Lecture 20: C’s Memory Model 16

for (int i = 0; i < 5; i++) {
arr[i] = i;

}
for (int j = 0; j < 5; j++) {
mult2(&arr[j]);

}

free(arr);
return 0;

}

Exercise 7 (sample solution on 29). Consider the following code

#include <stdlib.h>
#include <stdio.h>
#include "lib/xalloc.h"

void set_values(int *arr, size_t n) {
for (size_t i = 0; i < n; i++) {
arr[i] = 2*i;

}
}

int main () {
int *A = xmalloc(sizeof(int)*15);
set_values(A, 15);
for (size_t i = 0; i < 15; i++) {
printf("%d\n", A[i]);

}
free(A);
return 0;

}

Does this code behave differently if we instead create A as int A[15]? If so, what
about the code is different, and what needs to be changed to make it work the same
as before?

Exercise 8 (sample solution on 29). One of the consequences of having stack
allocation in C is that we can assign a struct to another of the same type. Doing so
copies the fields of the former to the fields in the latter. This can come really handy.

We are given an unknown struct type, struct foobar. We do not know any
of the fields of this struct, but we are asked to write a function that takes in two

Lecture 20: C’s Memory Model 17

variables of type struct foobar* and swaps the values that the two point to.
How can we do this, and was this possible in C0? If not, why can we do this in C?

Exercise 9 (sample solution on 30). Implement the function str_shorten
that takes a string and a length, and truncates the string based on the given new
length. You may assume that the given length is less than or equal to the original
length of the string. Your function should have the following type:

char *str_shorten(char *s, size_t len)
/*@requires len <= strlen(s); @*/ ;

Exercise 10 (sample solution on 30). Write the function interweave, that takes
two strings and interweaves their characters (e.g., "ab" and "cd" becomes "acbd").
The returned string should be in allocated memory and the inputs should not be
modified. Your function should have the following type:

char *interweave(char *s1, char *s2);

Lecture 20: C’s Memory Model 18

Sample Solutions

Solution of exercise 1
First, we need to create the header file with the interface. As usual, we

need a header guard (using the macro definition of UBA_H). We also have to
provide a typedef for uba_t, in order for the type to be defined when we
use it later in the file. While this does tell the client that we are using a struct
for our implementation, it does not reveal any of the fields. Finally, notice
that we need to add a uba_free function to the interface, since uba_new
allocates memory to return, so we need to provide a function for the client
to free the UBA when they are done with it. The resulting header file is

Lecture 20: C’s Memory Model 19

#ifndef UBA_H
#define UBA_H

typedef struct uba_header* uba_t;

size_t uba_len(uba_t A)
/*@requires A != NULL; @*/ ;

uba_t uba_new(size_t size)
/*@ensures \result != NULL; @*/
/*@ensures uba_len(\result) == size; @*/ ;

char *uba_get(uba_t A, size_t i)
/*@requires A != NULL; @*/
/*@requires i < uba_len(A); @*/ ;

void uba_set(uba_t A, size_t i, char* x)
/*@requires A != NULL; @*/
/*@requires i < uba_len(A); @*/ ;

void uba_add(uba_t A, char *x)
/*@requires A != NULL; @*/ ;

char *uba_rem(uba_t A)
/*@requires A != NULL; @*/
/*@requires 0 < uba_len(A); @*/ ;

void uba_print(uba_t A)
/*@requires A != NULL; @*/ ;

void uba_free(uba_t A)
/*@requires A != NULL; @*/ ;

#endif

Lecture 20: C’s Memory Model 20

The actual uba.c file is very similar to the original C0 file, with a few
small differences that we will now highlight. Let’s start with the first few
lines of this file.

This file starts by including some of the standard C libraries (used by
the rest of the translation), our usual custom libraries, and the header files
for UBA’s.

We set type of any integer used to index arrays to size_t. We do the
same for bounds on such indices, here the fields size and limit.

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <limits.h>
#include <stdbool.h>
#include <stdint.h>
#include <assert.h>
#include "lib/contracts.h"
#include "lib/xalloc.h"
#include "uba.h"

typedef struct uba_header uba;
struct uba_header {
size_t size; // size < limit
size_t limit; // 0 < limit
char **data; // \length(data) == limit

};

Lecture 20: C’s Memory Model 21

Next we translate the representation invariant function is_uba and the
other helper functions. Since is not possible to check the length of an array
in C, we get rid of the is_array_expected_length function.

Note that we don’t have to change any of the printing, since the original
code used printf which we have in C, but if different print functions were
used we would need to change them to printf.

// Internal debugging function that prints an UBA without checking contracts
// (useful to debug representation invariant issues)
void uba_print_unsafe(uba *A) {
printf("UBA limit=%zu; length=%zu; data=[", A->limit, A->size);
for (size_t i = 0; i < A->limit; i++)
{
if (i < A->size)
printf("%s", A->data[i]);

else
printf("X");

if (i < A->limit-1) {
if (i == A->size-1) printf(" | ");
else printf(", ");

}
}
printf("]");

}

bool is_uba(uba *A) {
return A != NULL && A->size < A->limit;

}

// Internal debugging function that prints an SSA
// (useful to spot bugs that do not invalidate the representation invariant)
void uba_print_internal(uba *A) {
REQUIRES(is_uba(A));
uba_print_unsafe(A);

}

Lecture 20: C’s Memory Model 22

Next are the basic functions exported by the interface. When allocating
arrays and structs, we have to use one of xmalloc/xcalloc. We translate
the contracts directly.

// Implementation of exported functions
size_t uba_len(uba *A) {
REQUIRES(is_uba(A));
return A->size;

}

uba *uba_new(size_t size) {
uba *A = malloc(sizeof(uba));
size_t limit = size == 0 ? 1 : size*2;
A->data = xmalloc(sizeof(char*) * limit);
A->size = size;
A->limit = limit;

ENSURES(is_uba(A));
ENSURES(uba_len(A) == size);
return A;

}

char *uba_get(uba *A, size_t i) {
REQUIRES(is_uba(A));
REQUIRES(i < uba_len(A));
return A->data[i];

}

void uba_set(uba *A, size_t i, char *x) {
REQUIRES(is_uba(A));
REQUIRES(i < uba_len(A));
ENSURES(is_uba(A));
A->data[i] = x;

}

void uba_print(uba* A) {
REQUIRES(is_uba(A));
printf("[");
for (size_t i = 0; i < A->size; i++) {
printf("%s", A->data[i]);
if (i+1 != A->size) printf(", ");

}
printf("]");

}

Lecture 20: C’s Memory Model 23

In uba_resize when we are done with the old array, we need to free it
before we switch to the new array, to avoid losing access to the old array
and leaking it. We omit the translation of the loop invariants, although it
can easily be emulated with ASSERTs.

void uba_resize(uba *A, size_t new_limit) {
/* A may not be a valid array since A->size == A->limit is possible! */
REQUIRES(A != NULL);
REQUIRES(A->size < new_limit);
char **B = (char **)xmalloc(sizeof(char*)* new_limit);

for (size_t i = 0; i < A->size; i++)
B[i] = A->data[i];

A->limit = new_limit;
free(A->data);
A->data = B;
ENSURES(is_uba(A));

}

void uba_add(uba *A, char *x) {
REQUIRES(is_uba(A));
A->data[A->size] = x;
(A->size)++;

if (A->size < A->limit) return;
assert(A->limit <= SIZE_MAX / 2); // Fail if array would get too big
uba_resize(A, A->limit * 2);
ENSURES(is_uba(A));

}

char *uba_rem(uba *A) {
REQUIRES(is_uba(A));
REQUIRES(0 < uba_len(A));
(A->size)--;
char *x = A->data[A->size];

if (A->limit >= 4 && A->size <= A->limit / 4)
uba_resize(A, A->limit / 2);

ENSURES(is_uba(A));
return x;

}

Lecture 20: C’s Memory Model 24

The new function uba_free frees a UBA to avoid memory leaks. Given
a UBA A, we will have it free two pieces of data:

1. the array A->data, and

2. the struct A itself.

uba_free does not free the strings contained in the array — it will be the
client’s responsibility to do so.

Note that just having free(A) is not sufficient, since this only frees the
uba struct itself, and the array inside the struct is not freed. We also cannot
do free(A) and then free(A->data), because after we free A, it is then un-
defined behavior to dereference A to use its fields, since the block of mem-
ory it points to has been freed.

void uba_free(uba *A) {
REQUIRES(is_uba(A));
free(A->data);
free(A);

}

Solution of exercise 2
The first issue is on line 14, with *area. When area was declared, it was

not given a value and is thus uninitialized, and it is undefined behavior to
dereference it.

The second issue is line 15, in particular with respect to the call on
line 25. On line 25, we call calc_area with the address of a local vari-
able, so the pointer we pass in did not come from malloc/calloc. Thus it
is invalid to free it.

Finally, because we use xmalloc on line 27, the fields of r2 are unini-
tialized, and any lines which depend on the values of these fields are un-
defined behavior, meaning line 14 which looks at these fields, as well as
line 29 since area2 is calculated from these uninitialized fields, so we have
no idea what value area2 could contain.

One possible fixed version of the code is as follows:

Lecture 20: C’s Memory Model 25

1 #include <stdlib.h>
2 #include "lib/xalloc.h"
3

4 typedef struct rectangle rect;
5 struct rectangle {
6 int x1;
7 int y1;
8 int x2;
9 int y2;

10 };
11

12 int calc_area(rect* r) {
13 return (r->x2 - r->x1) * (r->y2 - r->y1);
14 }
15

16 int main() {
17 rect r1;
18 r1.x1 = 0;
19 r1.y1 = 0;
20 r1.x2 = 4;
21 r1.y2 = 5;
22 int area1 = calc_area(&r1);
23

24 rect* r2 = xcalloc(sizeof(rect), 1);
25 int area2 = calc_area(r2);
26 free(r2);
27 if (area2 > area1) return area2;
28 return area1;
29 }

Solution of exercise 3
First, we compile our code with the usual flags:� �

% gcc -Wall -Wextra -Werror -Wshadow -std=c99 -pedantic -g file.c� �
It is especially important to have the -g flag, since that provides additional
debugging information. Then if we run Valgrind with these flags, it will re-
port a number of errors. We will want to look at the very first error reported
and fix that, since errors can often cause those which come after them.

Let’s run Valgrind and look at the first error:

Lecture 20: C’s Memory Model 26� �
% valgrind --leak-check=full --track-origins=yes ./a.out
...
Use of uninitialised value of size 8

at 0x10940D: main (file.c:26)
Uninitialised value was created by a heap allocation
at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
by 0x109261: xmalloc (xalloc.c:32)
by 0x1092BC: main (file.c:13)� �

This is telling us that on line 26, we access uninitialized memory, and then
that line 13 allocated this uninitialized memory: line 13 of main calls xmalloc,
which then calls malloc, but we only care about line 13 which is in our
code. This means that some part of our array is not initialized, and after
thinking about it for a bit we realize that the first loop actually misses the
last element of our array and leaves it uninitialized.

We add the line arr[len-1] = xcalloc(sizeof(struct point), 1)
to fix this, and run Valgrind again, getting a different error:� �
Invalid read of size 8

at 0x109431: main (file.c:27)
Address 0x4a5b238 is 0 bytes after a block of size 504 alloc‘d
at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
by 0x109261: xmalloc (xalloc.c:32)
by 0x1092BC: main (file.c:13)� �

Here, we are being told that line 27 does an invalid read. The additional
context reveals that we are 0 bytes outside of the block allocated on line 13,
which is where we allocate our array, so this indicates we are going out of
bounds of our array on line 27. Indeed, we can see that doing arr[i+1]
will go out of bounds, so we change the loop guard to i < len-1 to stay
in bounds.

Now we no longer have any safety issues, but Valgrind still reports
some memory leaks. In particular, we get� �
512 (504 direct, 8 indirect) bytes in 1 blocks are definitely lost in loss record 2 of 2

at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
by 0x109261: xmalloc (xalloc.c:32)
by 0x1092BC: main (file.c:13)� �

which tells us that on line 13, we allocate memory which we never free, and
indeed we never free arr. Let’s do that at the bottom the main function.
However, we still have a memory leak! Valgrind tells us� �
8 bytes in 1 blocks are definitely lost in loss record 1 of 1

at 0x483DD99: calloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
by 0x10920F: xcalloc (xalloc.c:19)
by 0x1093F0: main (file.c:23)� �

Lecture 20: C’s Memory Model 27

This says that we are not freeing the memory we allocated for the last ele-
ment of the array, and indeed the second loop does not free the last element,
so we also need to add that in. Once we do this, there are no more errors,
and the overall corrected file is as follows:

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include "lib/xalloc.h"
4

5 struct point {
6 int x;
7 int y;
8 };
9

10 int main () {
11 int len = 63;
12 struct point **arr = xmalloc(sizeof(struct point*) * len);
13 for (int i = 0; i < len/2; i++) {
14 arr[2*i] = xmalloc(sizeof(struct point));
15 arr[2*i + 1] = xmalloc(sizeof(struct point));
16 arr[2*i]->x = i+1;
17 arr[2*i]->y = i+1;
18 arr[2*i+1]->x = i/2;
19 arr[2*i+1]->y = 5*i+3;
20 }
21 arr[len-1] = xcalloc(sizeof(struct point), 1);
22

23 for (int i = 0; i < len-1; i++) {
24 if (arr[i]->x + 100 < arr[i+1]->y) {
25 printf("%s\n", "Small x value");
26 }
27 free(arr[i]);
28 }
29 free(arr[len-1]);
30 free(arr);
31 }

Solution of exercise 4 The resulting code is as follows:

Lecture 20: C’s Memory Model 28

int main() {
// ...
// assume file_t new_text has been previous initialized

size_t n;

error_t e = count_words(new_text, &n);
if (e != 0) printf("count_words failed with error %d.\n", e);
else printf("The text file contains %zu words", n);

// ...
}

Solution of exercise 5 The updated code is as follows:

int main () {
int *A = xcalloc(sizeof(int), 100);
int **B = xcalloc(sizeof(int*), 100);
int *C = xcalloc(sizeof(int), 100);

for (int i = 0; i < 100; i++) {
A[i] = i*i;
B[i] = &A[i];
C[i] = *(B[i]);

}
return 0;

}

Solution of exercise 6 The updated code is as follows:

Lecture 20: C’s Memory Model 29

#include <stdlib.h>
#include "lib/xalloc.h"

void mult2(int* x) {

*x = *x * 2;
}

int main(){
int* arr = xmalloc(sizeof(int)*5);

for (int i = 0; i < 5; i++) {

*(arr + i) = i;
}
for (int j = 0; j < 5; j++) {
mult2(arr + j);

}

free(arr);
return 0;

}

Solution of exercise 7 If we make A a stack-allocated array instead, it will
still have uninitialized values in it until we set the values. Printing ev-
erything works the same, but we need to remove the line about freeing A,
since we can only free pointers returned by malloc or calloc. As a stack-
allocated array, A automatically stops existing when the function returns.

Solution of exercise 8 The resulting code is as follows:

void swap(struct foobar* x, struct foobar* y) {
REQUIRES(x != NULL && y != NULL);
struct foobar temp = *x;

*x = *y;

*y = temp;
}

This was not possible in C0. In order to swap the values of pointers in C0,
we had to work with the fields directly. Variables cannot have struct types
in C0, so we could not just swap the structs. In C, however, since C allows
for stack allocation of structs, we can make a local copy of the struct. This
means that we can make a temporary variable to help with swapping the
values.

Lecture 20: C’s Memory Model 30

Solution of exercise 9 Since the shortened string is a prefix of the input
string, it is tempting to simply replace the character at position len with the
NUL-terminator, which is what determines where a string ends and there-
fore its length:

char *str_shorten(char *s, size_t len) {
REQUIRES(len <= strlen(s));
s[len] = ’\0’;
return s;

}

This is however incorrect as the input string may be a string literal. String
literals reside in the DATA segment of memory and therefore are read-only.

The correct way to solve this problem is to allocate a new string, copy
the first len characters of s into it (the library function strncpy does pre-
cisely this!), add a NUL-terminator, and return the resulting string:

char* str_shorten(char *s, size_t len) {
REQUIRES(len <= strlen(s));
char* res = xmalloc(sizeof(char) * (len + 1));
strncpy(res, s, len);
res[len] = ’\0’;
return res;

}

Solution of exercise 10 The resulting code is as follows:

Lecture 20: C’s Memory Model 31

char *interweave(char *s1, char *s2) {
size_t len1 = strlen(s1);
size_t len2 = strlen(s2);

char *s3 = xmalloc(len1+len2+1);

size_t i = 0;
while (i < len1 && i < len2) {
s3[2*i] = s1[i];
s3[2*i+1] = s2[i];
i++;

}
size_t remainder = 2*i;
while (i < len1) {
s3[remainder] = s1[i];
remainder++;
i++;

}
while (i < len2) {
s3[remainder] = s2[i];
remainder++;
i++;

}

s3[remainder] = ’\0’;
return s3;

}

	The C0 and C Memory Model
	Arrays and Pointer Arithmetic
	Undefined Behavior
	Address-of
	Stack Allocation
	Exercises

