
Lecture 25
Spanning Trees

15-122: Principles of Imperative Computation (Fall 2024)
Frank Pfenning, Iliano Cervesato

The following is a simple example of a connected, undirected graph with 5
vertices (A,B,C,D,E) and 6 edges (AB, BC, CD, AE, BE, CE).

In this lecture we are particularly interested in the problem of computing
a spanning tree for a connected graph. What is a tree here? They are a bit
different than the binary search trees we considered earlier in the course.
One simple definition is that a tree is a connected graph with no simple cycles,
where a simple cycle is a path that lets you go from a node to itself with-
out repeating an edge. A spanning tree for a connected graph G is a tree
containing all the vertices of G and a subset of the edges of G.

Additional Resources

• Review slides (https://cs.cmu.edu/~15122/handouts/slides/review/25-spanning.
pdf)

The corresponding learning goals are as follows:

Computational Thinking: We continue our introduction to graphs by defin-
ing spanning trees as well as minimum spanning trees for graphs
with weighted edges.

Algorithms and Data Structures: We examine two ways to compute a span-
ning tree, and introduce Kruskal’s algorithm, a classical method for
calculating a minimum spanning tree.

LECTURE NOTES c© Carnegie Mellon University 2024

https://cs.cmu.edu/~15122/handouts/slides/review/25-spanning.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/25-spanning.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/25-spanning.pdf


Lecture 25: Spanning Trees 2

Programming: We leave the implementation of these algorithms as exer-
cises to the reader.

1 Spanning Trees

Below are two spanning trees for our original example graph — there are
more.

When dealing with a new kind of data structure, it is a good strategy
to try to think of as many different characterizations as we can. This is
somewhat similar to the problem of coming up with good representations
of the data; different ones may be appropriate for different purposes. Here
are some alternative characterizations:

1. Connected graph with no cycle (original).

2. Connected graph where no two neighbors are otherwise connected.
Neighbors are vertices connected directly by an edge, otherwise con-
nected means connected without the connecting edge.

3. Two trees connected by a single edge. This is a recursive characteriza-
tion. The base case is a single node, with the empty tree (no vertices)
as a possible special case.

4. A vertex connected to a tree by a single edge. The base case is again
a single vertex. This is another recursive characterization.

5. A connected graph with exactly v − 1 edges, where v is the number
of vertices.

6. A graph with exactly one path between any two distinct vertices,
where a path is a sequence of distinct vertices where each is connected
to the next by an edge. (For paths in a tree to be distinct, we have to
disallow paths that double back on themselves).

We call a collection of trees a forest. Naturally, for a graph with more than
one connected component, we will want to compute a spanning forest con-
sisting of a spanning tree for each connected component.



Lecture 25: Spanning Trees 3

2 Computing a Spanning Tree

There are many algorithms to compute a spanning tree for a connected
graph. We will look at two of them.

2.1 Edge-centric Algorithm

The first is an example of an edge-centric algorithm. It leverages definition
(3) of trees in the last section. It proceeds as follows:

1. Start with the collection of singleton trees, each with exactly one node.

2. As long as we have more than one tree, connect two trees together
with an edge in the graph.

In the second step, we repeatedly examine one of the original graph edges
and determine whether it spans two disconnected trees. We can naively
do so by using DFS or BFS to check if its endpoints are already connected
in our spanning forest — if so we discard the edge, if not we add it to
the spanning tree. Recall that, with an adjacency list representation, the
complexity of DFS and BFS is bounded by the number of edges. The cost
of this test is then O(v) because we carry it out on the trees which contain
at most v − 1 edges at any time — not on the original graph. How many
edges will we need to examine? We know by definition (5) of a tree that, if
the graph has v vertices, we will end up adding v − 1 edges. However, not
all tests are successful! In the worst case, we will need to examine all edges
in the original graph, i.e., perform the test e times. This give this version of
the edge-centric algorithm an O(ev) complexity.

Can we do better? The efficiency of this algorithm is greatly affected
by how quickly we can tell if an edge would connect two trees or would
connect two nodes already in the same tree. Using DFS or BFS to answer
this question seems overkill because it does not account for any information
about which node is in which tree — something we can track since we put
them in there. We will come back to this question in the next lecture.

Let’s try this algorithm on our first graph, considering edges in the
listed order: (AB, BC, CD, AE, BE, CE).



Lecture 25: Spanning Trees 4

The given graph is highlighted on top. The completely disconnected graph
on the left is the starting point for this algorithm. At the far right, we have
computed a spanning tree, which we know because we have added v−1 =
4 edges. If we tried to continue, the next edge BE could not be added
because it does not connect two trees, and neither can CE. The spanning
tree is complete.

2.2 Vertex-centric Algorithm

The second algorithm is vertex-centric. It is based on definition (4) of a tree
and proceeds as follow:

1. Pick an arbitrary node and mark it as being in the tree.

2. Repeat until all nodes are marked as in the tree:

Pick an arbitrary node u in the tree with an edge e to a node
w not in the tree. Add e to the spanning tree and mark w as
in the tree.

We can implement this by modifying BFS or other algorithm to check con-
nectivity, where we use a work list (a queue if adapting BFS) to remember
vertices to expand next in step 2. Specifically, step 1 will pick an arbitrary
vertex and insert it in the queue. Step 2 will repeatedly pick a vertex v
from the queue and replace it with every neighbor w that has never been
encountered before (which can be tracked using an array of marks). At the
same time, it will add the edge (v, w) to the spanning tree. This will con-
tinue as long as there are vertices in the queue (were the original graph to
be disconnected, we can pick an unmarked node and repeat the algorithm
starting from it, thereby building a spanning forest).

If the original graph is connected, this algorithm has cost O(e) by an
analysis that is identical as that of DFS in the last chapter: for each vertex



Lecture 25: Spanning Trees 5

it checks whether its neighbors have been visited, which amounts to two
checks for each edge in the graph (one from each endpoint). If the origi-
nal graph is not connected, we will repeat this procedure for all connected
components. In particular, we will end up visiting all v vertices — and
nothing else in the degenerate case of a graph with no edges. Therefore,
this algorithm has cost O(max(v, e)). This is better than the edge-centric
algorithm we saw earlier.

Let’s play it out on our running example, starting with vertex A and
enqueuing new vertices in alphabetical order:

At each step, the vertex highlighted in red is the node we are visiting, after
dequeuing it but before examining its neighbors. It is a coincidence that
the resulting spanning tree is identical to the one we obtained by using the
edge-centric algorithm.

3 Creating a Random Maze

We can use the algorithm to compute a spanning tree for creating a random
maze. We start with the graph where the vertices are the cells and the
edges represent the neighbors we can move to in the maze. In the graph,
all potential neighbors are connected. A spanning tree will be defined by a
subset of the edges in which all cells in the maze are still connected by some
(unique) path. Because a spanning tree connects all cells, we can arbitrarily
decide on the starting point and end point after we have computed it.

How would we ensure that the maze is random? The idea is to gener-
ate a random permutation (see Exercise 1) of the edges and then consider
the edges in the fixed order. Each edge is either added (if it connects two
disconnected parts of the maze) or not (if the two vertices are already con-
nected). But, of course, we need an efficient way to determine if the two
vertices are already connected. The best we can do so far is O(v); we will
see in the next lecture how to do better.



Lecture 25: Spanning Trees 6

4 Minimum Weight Spanning Trees

In many applications of graphs, there is some measure associated with the
edges. For example, when the vertices are locations then the edge weights
could be distances. We might then be interested in not any spanning tree,
but one whose total edge weight is minimal among all the possible span-
ning trees, a so-called minimum weight spanning tree (MST). An MST is not
necessarily unique. For example, all the edge weights could be identical in
which case any spanning tree will be minimal.

We annotate the edges in our running example with edge weights as
shown on the left below. On the right is the minimum weight spanning
tree, which has weight 9.

Before we develop a refinement of our edge-centric algorithm for span-
ning trees to take edge weights into account, we discuss a basic property it
is based on.

Cycle Property.

Let C be a simple cycle in graph G, and e be an edge of maximal
weight in C. Then there is some MST of G that does not contain
e.

How do we convince ourselves of this property? Assume we have a
minimum spanning tree T , and edge e from the cycle property connects
vertices u and w. If e is not in T , then, indeed, we don’t need it. If e is in
T , we will construct another spanning tree without e of weight less than
or equal to T ’s weight. Removing edge e splits T into two subtrees. There
must be another edge e′ from C that is not in T which also connects the two
subtrees. Removing e and adding e′ instead yields another spanning tree,
T ′, which does not contain e. T ′ has equal or lower weight to T , since e′

must have weight less than or equal to e.
The cycle property is the basis for Kruskal’s algorithm.

1. Sort all edges in increasing weight order.



Lecture 25: Spanning Trees 7

2. Consider the edges in order. If the edge does not create a cycle, add
it to the spanning tree. Otherwise discard it. Stop when v − 1 edges
have been added, because then we must have a spanning tree.

Why does this create a minimum-weight spanning tree? It is a straightfor-
ward application of the cycle property (see Exercise 2).

Sorting the edges will take O(e log e) steps with most appropriate sort-
ing algorithms. The complexity of the second part of the algorithm depends
on how efficiently we can check if adding an edge will create a cycle or not.
So far, the best we can do is O(ev).

Illustrating the algorithm on our example

we first sort the edges. There is some ambiguity — say we obtain the fol-
lowing list

AE 2
BE 2
CE 2
BC 3
CD 3
AB 3

We now add the edges in order, making sure we do not create a cycle. After
AE, BE, CE, we have

At this point we consider BC. However, this edge would create a cycle
BCE since it connects two vertices in the same tree instead of two differ-
ent trees. We therefore do not add it to the spanning tree. Next we consider



Lecture 25: Spanning Trees 8

CD, which does connect two trees. At this point we have a minimum span-
ning tree

We do not consider the last edge, AB, because we have already added v −
1 = 4 edges.

In the next lecture we will analyze the problem of incrementally adding
edges to a tree in a way that allows us to quickly determine if an edge
would create a cycle.

Kruskal’s algorithm is nothing more than the edge-centric algorithm ex-
amined in Section 2, preceded by the additional step of sorting the edges
by increasing weight (and examining edges on the basis of that order). The
vertex-centric algorithm can similarly be adapted to compute a minimum
spanning tree of a weighted graph. At each step, of all edges between ver-
tices in the tree and vertices outside the tree, we will add an edge of min-
imal weight. To this end, when visiting a vertex v, we cannot put down
the edge (v, w) to an unvisited neighbor w since there may be a cheaper
way to get to w. Instead, we will record these edges (rather than just the
vertices) not in a queue but in a priority queue with lighter edges having
priority over heavier edges. A step now consists in retrieving an edge of
minimal weight from the priority queue: if its endpoint is already in the
spanning tree we discard it (we have already found a cheaper way to get to
that vertex), otherwise we add it (and insert its unvisited neighbors in the
priority queue). The resulting procedure is known as Prim’s algorithm and
its run time complexity is dominated by the cost of inserting edges in the
priority queue. This cost is O(e log e) since we may be inserting all edges in
the priority queue.

5 Exercises

Exercise 1 (Randomizing an Array). Write a function to generate a random
permutation of a given array, using a random number generator with the interface
in the standard rand library. What is the asymptotic complexity of your function?



Lecture 25: Spanning Trees 9

Exercise 2 (Proving Correctness). Prove that the cycle property implies the cor-
rectness of Kruskal’s algorithm.


	Spanning Trees
	Computing a Spanning Tree
	Edge-centric Algorithm
	Vertex-centric Algorithm

	Creating a Random Maze
	Minimum Weight Spanning Trees
	Exercises

