
Lecture 26
Union-Find

15-122: Principles of Imperative Computation (Fall 2024)
Frank Pfenning, Iliano Cervesato

Kruskal’s algorithm for minimum weight spanning trees starts with a col-
lection of single-node trees and adds edges until it has constructed a span-
ning tree. At each step, it must decide if adding the edge under considera-
tion would create a cycle. If so, the edge shall not be added to the spanning
tree; if not, it will.

In this lecture we will consider an efficient data structure for checking if
adding an edge to a partial spanning tree would create a cycle, a so-called
union-find structure.

Additional Resources

• Review slides (https://cs.cmu.edu/~15122/handouts/slides/review/26-unionfind.
pdf)

• Code for this lecture (https://cs.cmu.edu/~15122/handouts/code/26-unionfind.
tgz)

This lecture fits our learning goals as follows.

Computational Thinking: We complete our overview of graphs with union-
find, a data structure often used when working with graphs.

Algorithms and Data Structures: Union-find is an important data struc-
ture beyond graphs as it allows to work efficiently with equivalence
classes whenever we can easily designate an element as a canonical
representative of the class.

Programming: We leave it to the reader to study the code that implements
union-find.

1 Maintaining Equivalence Classes

The basic idea behind the union-find data structure is to maintain equiva-
lence classes of nodes, efficiently. An equivalence class is a set of elements

LECTURE NOTES c© Carnegie Mellon University 2024

https://cs.cmu.edu/~15122/handouts/slides/review/26-unionfind.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/26-unionfind.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/26-unionfind.pdf
https://cs.cmu.edu/~15122/handouts/code/26-unionfind.tgz
https://cs.cmu.edu/~15122/handouts/code/26-unionfind.tgz
https://cs.cmu.edu/~15122/handouts/code/26-unionfind.tgz


Lecture 26: Union-Find 2

related by an equivalence relation, which must be reflexive, symmetric, and
transitive. In our case, this equivalence relation is defined on nodes in a
partial spanning tree, where two nodes are related if there is a path be-
tween them. This is reflexive, because from each node u we can reach u by
a path of length 0. It is symmetric because we are working with undirected
graphs, so if u is connected to w, then w is also connected to u. It is tran-
sitive because if there is a path from u to v and one from v to w, then the
concatenation is a path from u to w.

Initially in Kruskal’s algorithm, each node is in its own equivalence
class. When we connect two trees with an edge, we have to form the union
of the two equivalence classes, because each node in either of the two trees
is now connected to all nodes in both trees.

When we have to decide if adding an edge between two nodes u and w
would create a cycle, we have to find out if u and w belong to the same
equivalence class. If so, then there is already a path between u and w;
adding the edge would create a cycle. If not, then there is not already such
a path, and adding the edge would therefore not create a cycle.

The union-find data structure maintains a so-called canonical representa-
tive for each equivalence class, which can be computed efficiently from any
element in the class. We then determine if two nodes u and w are in the
same class by computing the canonical representatives of u and w, respec-
tively, and comparing them. If they are equal, they must be in the same
class, otherwise they are in two different classes.

2 An Example

In order to motivate how the union-find data structure works, we consider
an example of Kruskal’s algorithm. We have the following graph, with the
indicated edge weights.

We have to consider the edges in increasing order, so let’s fix the order AE,
ED, FB, CF , AD, EF , CB. We represent the nodes A–F as integers 0–5.

How shall we keep track of equivalence classes? In its simplest form,
the union-find structure is just an array with as many positions as there are



Lecture 26: Union-Find 3

vertices in the graph (or elements in the set), so that each index represents
a vertex. The contents of the array at position i is the index of the canon-
ical representative of vertex i (or of another vertex in the same connected
component — see below). In particular, if i is a canonical representative,
position i will contain i itself.

Initially, each node is in its own equivalence class.

In the union-find array, UF , is in the following state

We begin by considering the edge AE. We see that vertices A (index 0)
and E (index 4) are in two different equivalence classes because UF [0] = 0
and UF [4] = 4, and 0 6= 4. This means we have to add an edge between A
and E.

In the array of canonical representatives, we either have to set UF [0] = 4
or UF [4] = 0, depending on whether we choose 4 or 0 as the representative
the new class containing A and E. Let’s assume it’s 0. The array then would
be the following:



Lecture 26: Union-Find 4

where we highlighted the change in red. It is convenient to visualize the
contents of the union-find structure as a directed graph with the same ver-
tices as our original graph, and an edge from i to j exactly when UF [i]
contains j. We display this new graph in green to distinguish it from both
the original graph and the spanning tree we are constructing.

The sole purpose of this graph is to make it easier for us humans to vi-
sualize the contents of the union-find structure as we simulate the union-
find algorithm. An implementation would operate exclusively on the array.
From now on, we will display the two representations side by side. They
carry the same information — you can follow the discussion on the one that
works best for you.

Next we consider ED. Again, this edge should be added because UF [4] =
0 6= 3 = UF [3].

The union-find structure tells us that A is the canonical representative of
the tree with vertices A and E, and D is the canonical representative of the
singleton tree containing just D. Which vertex should we appoint as the
canonical representative of the combined tree? E is not a good candidate
because that would involve making two changes in the array (both UF [0]
and UF [3] would need to be set to 4). In general, we want to appoint one
of the existing canonical representatives as the canonical representative of
the combined equivalence class: in this way a single array cell needs to be
modified. As we are learning our way around union-find, we will pick D
to be the new representative, although we will see later that this may not be
the best choice. Therefore, we change UF [0] to 3. The union-find structure
now looks as follows:



Lecture 26: Union-Find 5

Notice that now UF [4] does not contain any more the canonical represen-
tative of E: it points to a vertex from where we can find its canonical repre-
sentative. In general, going through the array and repointing all vertices to
their canonical representative would be very expensive, although we par-
tially revisit this idea later on. Observe also that the edge added to the (di-
rected) union-find visualization graph is different from the edge inserted
in the spanning tree: these two graphs do not carry the same information.

We now combine two more steps, because they are analogous to the
above, adding edges FB and CF .

Again we have some choices. Let’s say the union-find structure becomes:

Next was the edge AD. In the array we have that UF [0] = 3 = UF [3],
so A and D belong to the same equivalence class. Adding the edge would
create a cycle, so we ignore it and move on.

The next edge to consider is EF . Since UF [4] = 0 and UF [0] = 3 6=
5 = UF [5] they are in different equivalence classes. We shall appoint one
among D and F as the canonical representative of the combined class. We
arbitrarily choose F . Taking this step we now have the tree



Lecture 26: Union-Find 6

and a union-find structure which is as follows:

Observe that the edge added to the visualization graph is not in the original
graph.

At this point we can stop, and we don’t even need to consider the last
edge BC. That’s because we have already added 5 = v − 1 edges (where v
is the number of nodes), so we must have a spanning tree at this stage.

How does union-find affect the cost of determining whether two ver-
tices are connected in a graph? We first need to find their canonical repre-
sentatives. Doing so has a maximum cost of O(v) for each of them, since we
may need to chase (nearly) every vertex in the graph to reach its canonical
representative. Therefore, checking whether these vertices are connected
costs O(v), which is what we were able to achieve using BFS (recall that we
checked connectivity on the spanning tree under construction, not on the
original graph). If they are not connected, updating the union-find struc-
ture through a union operation has cost O(1) — we are just modifying one
value in the array.

Thus, adopting union-find as part of Kruskal’s algorithm does not change
the complexity, which remains O(e log e+ ev) or, simplifying, O(ev).

3 Height Tracking

Can we do better?
The cost of the find operation is given by how many vertices we need to

examine to get to the canonical representative of a node. The fewer number
of intermediate vertices the faster this will be.

It is useful to look at the graphical representation of the union-find
structure as a set of trees, each with its canonical representative as its root.



Lecture 26: Union-Find 7

Then, the find operation amounts to following edges to the root of a tree.
Its cost is therefore given by the height of the tree, i.e., the the number of
vertices on the longest path from a leaf to the root.

The union operation merges one tree into another. Key to an efficient
find operation is therefore to keep the height of the merged tree as small
as possible. This insight determines an improved strategy for merging two
trees, T1 of height h1 and T2 of height h2:

• If h1 > h2, merge T2 into T1 by appointing the root of T1 as the canon-
ical representative of the combined tree. The resulting tree will have
height h1.

• If h1 < h2, proceed the opposite way and pick the root of T2 as the
root of the merged tree, which will have height h2.

• If h1 = h2, it doesn’t matter which tree we merge into which: the
combined tree will have height h1 + 1.

Let’s apply this strategy on our ongoing example. When adding edge ED
on the second step, we would appoint A rather than D as the representative
of the new tree, which would give it height 2 instead of 3. These were the
kind of choices we made when adding edges FB and CF . On the final
step, when adding edge EF , we would have to merge two trees of height
2, and so it doesn’t matter which way we go: the resulting tree will have
height 3. Merging the tree rooted at F into the tree rooted at A, the final
union-find structure is as follows:

To implement this strategy, we need to record the height of each tree in
the union-find structure. We can still store a single number in each position
of the array by observing that we need to know the height of a tree only
when reaching its root (so that we can decide which way to merge two
trees) and that recording the fact that i is the root of a tree by storing i in
UF [i] is overkill: a simple flag is enough. Whenever i is the root of a tree,
this suggests setting UF [i] = −h where h is the height of this tree — we
use the sign bit as our flag. Positions that do not correspond to roots store
indices of their parent in the tree, as we did in our first version of union-
find.

Applying this idea to our ongoing example, the UF array evolves as
follows:



Lecture 26: Union-Find 8

Here, we highlight in red the changed at each step and use bold to further
emphasize canonical representatives.

Does using this strategy, known as height tracking, lower the cost of the
find operation? To figure this out, we need to understand what the maxi-
mum height of a tree with v nodes can be. The following property gives us
a way to answer this question:

A tree of height h has at least 2h−1 nodes.

The proof proceeds by a simple induction on h:

Base case: h = 1 A tree of height 1 has exactly one node. And indeed
21−1 = 20 = 1.

Inductive case: h > 1 We need to distinguish subcases on how this tree
came about. This tree was constructed by merging two trees, T1 of
height h1 and T2 of height h2.

• If h1 > h2, then h = h1. We know that T1 contained at least 2h−1

nodes and therefore the combined tree contains all these 2h−1

nodes plus the nodes of T2.

• If h1 < h2, the argument is symmetric.

• If h1 = h2, then h = h1 + 1. Thus the merged tree contains at
least 2h−2 + 2h−2 = 2h−1 nodes.

If a tree of height h contains at least 2h−1 vertices, then a tree with v
nodes has height at most log v. If we have a forest with v vertices and eT
edges, the tallest tree has height at most log(min(eT + 1, v)) because in this
case eT ≤ v − 1.



Lecture 26: Union-Find 9

Consequently, the find operation of union-find has cost O(log(min(e +
1, v)) where e is the number of edges in the original graph: that’s because
the number of edges that end up in the spanning tree (eT above) will be at
most e.

Thus, using union-find with height tracking lowers the cost of com-
puting a minimum spanning tree using Kruskal’s algorithm to O(e log e +
e log(min(e + 1, v))). If e < v, this trivially reduces to O(e log e). If e ≥ v,
this simplifies to O(e log e+ e log v), but since e log v ≤ e log e in this case, it
too reduces to O(e log e).

This shows that the overall cost of our algorithm is O(e log e), which is
an upper bound on the cost of sorting the edges of the original graph.

4 Path Compression

Can we do even better?
A further optimization comes from the observation that when finding

the canonical representative of a node, we have the opportunity to update
every node in the path to point directly to the root of the tree:

In this way, any future find operation that involves one of these nodes will
be one hop away from the root. This will also often reduce the height of the
tree, sometimes dramatically.

This optimization, known as path compression, gives the find operation
a nearly-constant amortized complexity. For a graph with v vertices, the
amortized cost of union-find with height tracking and path compression
is in O(1 + A−1(v)), the inverse of the function A(v) which is equal to
A(n) = Ack(n, n). The function Ack(m,n) is known as the Ackermann func-
tion, defined as follows:

Ack(m,n) =


n+ 1 if m = 0
Ack(m− 1, 1) if m > 0 and n = 0
Ack(m− 1,Ack(m,n− 1)) if m > 0 and n > 0



Lecture 26: Union-Find 10

This function grows very fast: Ack(0, 0) = 1, Ack(1, 1) = 3, Ack(2, 2) = 7,
Ack(3, 3) = 61, Ack(4, 4) is larger than the number of atoms in the universe.
Therefore, 1 +Ack−1(n, n) is nearly 1 for all practical purposes.

5 An Implementation

Instead of developing the implementation here, we refer the reader to the
code on the course web site.

A first implementation, unionfind-lin.c, does not track the height of
the trees, and is therefore linear in the worst case. It does perform a weak
form of path compression: a postcondition of ufs_find(eqs, i) is that
eqs->A[i] == ufs_find(eqs, i). That is, before returning the represen-
tative for i, the implementation stores that representative at A[i]. This
shortens the search time for subsequent find operations on i. (See the exer-
cises for strong path compression.)

A second implementation, unionfind-log.c, changes the representa-
tion to use height tracking as discussed above. This allows us to make a
quick decision how to pick a representative for the union.



Lecture 26: Union-Find 11

6 Exercises

Exercise 1. Prove that after n union operations, the longest chain from an element
to its representative is O(log n) if we always take care to have the class with longer
chains be the canonical representative of the union. This is without any form of
path compression. Since n is bounded by the number v of vertices of the graph, the
length of this chain is O(log v).

Exercise 2. Modify the simple implementation in unionfind-lin.c so it does
strong path compression, which means that on every find operation, every inter-
mediate node will be redirected to point directly to its canonical representative.

Exercise 3. Modify the more efficient implementation at unionfind-log.c to
do path compression. Note that this may require loosening the invariants, since
in the straightforward implementation the stored number is only a bound on the
longest path and may not be exact (since the path may be compressed).


	Maintaining Equivalence Classes
	An Example
	Height Tracking
	Path Compression
	An Implementation
	Exercises

