
Contracts

A Mystery Function

1

The Story

Your first task at your new job is to debug this code written by

your predecessor, who was fired for being a poor programmer.

This is all you

are given

How do you go about this “friendly” challenge?

int f(int x, int y) {

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

2

The Language

 This code is written in C0

o The language we will use for most

of this course

 This is also valid C code

o For the most part, C0 programs

are valid C programs

oWe will use C0 as a gentler

language to

 learn to write complex code that is correct

 learn to write code in C itself

 But what does this function do?

int f(int x, int y) {

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

3

The Programmer

 Is this good code?

o there are no comments

o the names are non-descript

 the function is called f

 the variables are called x, y, r

No!

 No wonder your predecessor

was fired as a bad programmer!

 But what does this function do?

int f(int x, int y) {

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

4

The Function

 But what does this function do?

 We can run experiments

o call f with various inputs and observe the outputs

 We do so by loading it in the C0 interpreter – coin

coin mystery.c0

C0 interpreter (coin) 0.3.3 'Nickel' (r590, Mon Aug 29 12:04:13 UTC 2016)

Type `#help' for help or `#quit' to exit.

-->

Linux Terminal

The command for

the C0 interpreter

The file where we

saved the function

The coin

prompt

5

Running Experiments

 Call f with various inputs and observe the outputs

 These are not very good experiments

o they don’t help us understand what f does

coin mystery.c0

C0 interpreter (coin) …

…

--> f(7, 12);

956385313 (int)

--> f(3, 17);

129140163 (int)

-->

Linux Terminal

The result is 956385313

We are calling f with

inputs 7 and 12

The result has type int

6

Running Experiments

 Call f with various inputs and observe the outputs

owe are better off calling f with small inputs

o and vary them by just a little bit so we can spot a pattern

--> f(2, 3);

8 (int)

--> f(2, 4);

16 (int)

--> f(2, 5);

32 (int)

--> f(2, 6);

64 (int)

-->

Linux Terminal

Much better!

o It looks like f(x, y) computes xy

o Let’s confirm with more

experiments

7

Confirming the Hypothesis

 It looks like f(x, y) computes xy

 Let’s confirm with more experiments

 Let’s run a few more experiments to identify the problem

--> f(2, 2);

4 (int)

--> f(3, 2);

9 (int)

--> f(4, 2);

16 (int)

--> f(5, 2);

25 (int)

-->

Linux Terminal

oWe find a secret memo in a

hidden drawer

Yep! That’s xy

Not the friendliest of work places!

Power not working.

Fix by tonight or you’re out

8

Discovering the Bug

 f(x, y) is meant to computes xy

o but it doesn’t

 Let’s find where it fails with more experiments

 Now we have something to chew on

--> f(-2, 3);

-8 (int)

--> f(-2, 2);

4(int)

--> f(2, 1);

2 (int)

--> f(2, 0);

2 (int)

--> f(2, -1);

2 (int)

-->

Linux Terminal

That’s not 20

It seems to work for

negative values of x

It seems to work for

negative values of x

That’s definitely not 2-1

9

Preconditions

10

The Power Function

 What does it mean to be the power function xy ?

o

Yes, but that’s not very precise

 Let’s write a mathematical definition

o

x * …. * x

y times

x0 = 1

xy = xy-1 * x

and this is its base caseThis is a recursive definition

11

• y times what? x? *?

• What if y is 0?

The Power Function

 What does it mean to be the power function xy ?

oWhat happens if y is negative?

we never reach the base case …

 The power function xy on integers is undefined if y < 0

x0 = 1

xy = xy-1 * x

x0 = 1

xy = xy-1 * x if y > 0
This defines xy for y ≥ 0 onlyThis defines xy for y ≥ 0 only

12

The Power Function

 What does it mean to be the power function xy ?

 To implement the power function, f must disallow negative

exponents

o It can raise an error

o It can tell the caller that the exponent should be ≥ 0

x0 = 1

xy = xy-1 * x if y > 0

int f(int x, int y) {

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

We need to test y.

This would slow f down a bit.

Better!
no need to test y

13

Preconditions

 Disallow negative exponents

o by telling the caller that the exponent should be ≥ 0

 A restriction on the admissible inputs to a function is called

a precondition

oWe need to impose a

precondition on f

 In most languages, we are

limited to writing a

comment
 and hope the

caller reads it

// y must be greater than or equal to 0

int f(int x, int y) {

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

This is how we

would write a

precondition in C

14

Preconditions in C0

 We need to impose a precondition on f

o to tell the caller that y should be ≥ 0

 In C0 we can write an executable contract directive

//@requires y >= 0;

oWe check contracts by invoking coin

with the -d flag

 “dynamic checking”

 but everybody understands it as debug mode

owithout the -d flag, contracts are

treated as comments

int f(int x, int y)

//@requires y >= 0;

{

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

C0 keyword to specify a precondition
• written between the function header and the body

• before the first “{“

C0 keyword to specify a precondition
• written between the function header and the body

• before the first “{“

15

16

Using Contract

Running with contracts disabled Running with contracts enabled

coin mystery.c0

C0 interpreter (coin) …

--> f(2, 3);

8 (int)

--> f(2, -1);

2 (int)

-->

Linux Terminal

coin -d mystery.c0

C0 interpreter (coin) …

--> f(2, 3);

8 (int)

--> f(2, -1);

mystery.c0:2.4-2.20: @requires annotation failed

Last position: mystery.c0:2.4-2.20

f from <stdio>:1.1-1.9

-->

Linux Terminal

Contracts are treated

as comments

Contracts are executed

• if true, execution proceeds normally

• if false, execution aborts

Line number

where contract failed

cc0, the C0 compiler,

works the same way

File where

contract failed

Safety

 If we call f(x,y) with a negative y

owith -d, execution aborts

owithout -d, f can return an arbitrary result

 there is no right value it could return

 Calling a function with inputs that cause a precondition to

fail is unsafe

o execution will never do the right thing

either abort

or compute a wrong result

 The caller must make sure that the call is safe
 that y ≥ 0

17

Postconditions

18

Contracts about Function Outcomes

 Preconditions are checked before the

function starts executing

 A contract that is checked after it is done

executing could tell us if the function did

the right thing
 check that the output is what we expect

o This is a postcondition

function

body

pre

post

19

Postconditions in C0

 In C0, the contract directive

//@ensures <some_condition> ;

allows us to write a postcondition

o <some_condition> can mention the

contract-only variable \result

what the function returns

 can only be used with //@ensures

int f(int x, int y)

//@requires y >= 0;

//@ensures …;

{

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

C0 keyword to specify a precondition
• written between the function header and the body

• before the first “{“

C0 keyword to specify a postcondition
• written between the function header and the body

• after the preconditions (by convention)

• before the first “{“

20

Writing a Postcondition

 The postcondition we want to write is

//@ensures \result == x**y;

o but x**y is not defined in C0

C0 has no primitive power function!

 What do we do?

o transcribe the mathematical definition into a C0 function

That’s how we write xy in Python

x0 = 1

xy = xy-1 * x if y > 0

int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return POW(x, y-1) * x;

}

21

Writing a Postcondition

 Then our postcondition is

//@ensures \result == POW(x, y);

right? … almost

o The function modifies x (and y)

Which values of x and y should C0 evaluate the

postcondition with?

 We want the initial values, but it is checked when returning …

o To avoid confusion, C0 disallows modified variables in postconditions

int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return POW(x, y-1) * x;

}

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * y;

}

coin -d mystery.c0

mystery.c0:18.5-18.6:error:cannot assign to

variable 'x' used in @ensures annotation

x = x * x;

~

Unable to load files, exiting...

Linux Terminal

22

Writing a Postcondition

 C0 disallows modified variables in

postconditions

oMake copies x and y and modify those

oWe’re good

int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return POW(x, y-1) * x;

}

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

coin -d mystery.c0

C0 interpreter (coin) …

--> f(2, 3);

8 (int)

--> f(2, 0);

mystery.c0:11.4-11.33: @ensures annotation failed

Last position: mystery.c0:11.4-11.33

f from <stdio>:1.1-1.8

Linux Terminal

Line number

where contract failed

23

This should always

be on our mind

Recall Safety
int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return POW(x, y-1) * x;

}

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

This should always

be on our mind

 In the postcondition of f, we are making

a call to POW

o Is it safe?
 We need to show that y >= 0

The precondition tells us that y >= 0

 The body of POW makes a call to POW

o Is it safe?
 We need to show that y-1 >= 0

 i.e., y >= 1

The precondition tells us that y >= 0

Since we don’t return on the if, y ≠ 0

So y >= 1 by math

 These are examples of point-to reasoning

oWe justify something by pointing to lines of code that supports it
24

The Power Function

 But wait!

o f was meant to implement the power function

o… but POW is the power function!

 Let’s use it!

o There may be benefits to fixing f instead

 it may be more efficient than POW

o Keep reading …

int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return POW(x, y-1) * x;

}

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

25

Correctness

 If a call violates a function’s postconditions
(assuming its preconditions were met so it actually ran)

the function is doing something wrong

o the function has a bug

 The function is incorrect

oOur mystery function f is incorrect

 When writing a function, we must make sure that it is

correct

o i.e., that its postconditions will be satisfied for any safe input

function

body

pre

post

26

Blame

 If a function preconditions fail, it’s the caller’s fault
 the caller passed invalid inputs

o the call is unsafe

 If its postconditions fail, it’s the implementation’s fault
 the function code does the wrong thing

o the function is incorrect

We will develop methods to make sure that the code we

write is safe and correct

27

How to Use Contracts

 Contract-checking helps us write code that works as

expected

oUse -d while writing our code

o At this stage, this is development code

bugs are likely

 Once we are confident our code works, compile it

without -d

o The code can be used in its intended application

o At this stage, this is production code

 there should be no bugs

 Why not use -d always?

o it slows down execution

28

Specification Functions

 POW is used only in contracts

o It is not executed when

contract-checking is disabled

without -d

 Functions used only in contracts are

called specification functions

o They help us state what the code should do

o They are critical to writing good code

int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return POW(x, y-1) * x;

}

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

29

Function Contracts

30

Where are we?

 We have learned a lot about f

o the preconditions describe what valid

inputs are

o the postconditions describe what it is

supposed to do

on valid inputs

 We have a fully documented function

 We have not looked at all at its body
but we know there is a bug in there

 it is incorrect

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

31

The Caller’s Perspective

Preconditions describe valid inputs

Postconditions describe what it does

 That’s what the caller needs to know

to use the function

 The caller should be able to use it

without knowing anything about how

it is implemented

o The implementation details are abstracted away

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

Header:
• function name

• number and type of its arguments

Contracts:
• pre- and post-conditions

32

Abstraction

 Split a complex system into small chunks that can be

understood independently

 Computer science is all about abstraction

Bother with as few details

as possible at any time

33

The Function’s Perspective

Preconditions describe valid inputs

Postconditions describe what it does

 That’s what the implementation is to do

o guidelines to write the body of the function

 How to write good code

o First write the contracts

o and then the body

 in this way, you always know what you are

aiming for

Now, we need to look at the body of f to find the bug

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

34

Loop Invariants

35

Diving In

 We need to look at the body of f

o The complicated part is the loop

 the values of the variables change at each

iteration

 it’s unclear how many iterations there are

o If we understand the loop, we understand

the function

 How to go about that?

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

36

Abstraction

 If we understand the loop,

we understand the function

 How to go about that?

oContracts summarize what a function does

so we don’t need to bother with the details

of its implementation

An abstraction over functions

oCome up with a summary of the loop so

we don’t need to bother with the details

of its implementation

An abstraction over loops!

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

37

Loop Invariants

The values of the variables change at each iteration

 One valuable abstraction is what does

not change

o This is called a loop invariant

a quantity that remains constant at each iteration

of the loop

 a quantity may be an expression, not just a variable

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}We will see what makes

some loop invariants

really valuable shortly

38

Tracing Code

 How to find a loop invariant?
a quantity that remains constant at each iteration

of the loop

 Run the function on sample inputs

 Track the value of the variables that

change
b, e, r

 no need to bother with x and y since they don’t change

o just before the loop guard is tested

That’s e > 1

 Look for patterns

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

loop

body

e > 1

Here

Loop guard

This is called

tracing

an execution

true

false

39

Tracing Code

 Run the function on sample inputs

and track the value of the variables

o Let’s try with f(2,8)

oCan we spot a quantity that doesn’t change?

b e r

2 8 1

4 4 1

16 2 1

256 1 1

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

This checks

if e is odd

At this point

we exit the loop

40

loop

body

e > 1

Here

true

false

Tracing Code

 Trying with f(2,8)

oCan we spot a quantity that doesn’t change?

o be is always 256

o This is a candidate loop invariant

be is constant on one set of inputs

a loop invariant must stay constant on all inputs

b e r be

2 8 1 256

4 4 1 256

16 2 1 256

256 1 1 256

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

41

loop

body

e > 1

Here

true

false

Tracing Code

 be is a candidate loop invariant

 Let’s try with f(2,7)

o be is not invariant on these inputs!

 It was a candidate that didn’t pan out

 Can we spot another quantity that

doesn’t change?

b e r be

2 7 1 128

4 3 2 64

16 1 8 16

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

Not constant

on these

inputs

42

loop

body

e > 1

Here

true

false

Tracing Code

 Trying with f(2,7)

oCan we spot a quantity that doesn’t change?

o be * r is always 128

 This is another candidate loop invariant

o Let’s test it on f(3,5)

o This seems to work

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

b e r be be * r

2 7 1 128 128

4 3 2 64 128

16 1 8 16 128

b e r be * r

3 5 1 243

9 2 3 243

81 1 3 243

43

loop

body

e > 1

Here

true

false

A Candidate Loop Invariant

 be * r is a promising candidate loop invariant

o It works on three inputs!

 How do we know it works in general?

oWe can’t test it on all inputs

oWe need to provide a proof

 But first, let’s add it to our code

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

44

Loop Invariants in C0

 In C0, we use the directive

//@loop_invariant

to specify a loop invariant

 Then, simply write

//@loop_invariant POW(b, e) * r;

o… this won’t work

C0 would need to keep track of the values of this

expression across all iterations of the loop

also, what if the loop runs 0 times?

 In C0, loop invariants must be boolean expressions

o true means it was satisfied in the current iteration

o false means it wasn’t

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1)

//@loop_invariant … ;

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

C0 keyword to specify a loop invariant
• written between the loop guard and the loop body

45

Loop Invariants in C0

 They are boolean expressions

o true means satisfied

 What can we use?

o As we enter the loop,

b is x and e is y

 so xy is 128 too

 thus, be * r = xy

 Then, we can write

//@loop_invariant POW(b, e) * r == POW(x, y);

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1)

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

b e r be * r

2 7 1 128

4 3 2 128

16 1 8 128

Execution will abort

when ran with -d

if LI is ever false

46

Safety

We have two new calls to POW

oAre they safe?

 POW(x, y)
To show: y >= 0

o y >= 0 by line 2 (precondition of f)

 POW(b, e)
To show: e >= 0

o “e is initially equal to y which is >= 0 and it is halved at each

iteration of the loop so e is always >= 0”

o This is an example of operational reasoning

The justification relies on what is happening in all the iterations of the loop

 This is error-prone

We will disallow safety proofs based on operational reasoning on loops

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant POW(b,e) * r == POW(x,y);

10. {

11. if (e % 2 == 1) {

12. r = b * r;

13. }

14. b = b * b;

15. e = e / 2;

16. }

17. return r * b;

18. }

?

47

Safety

POW(b, e)
To show: e >= 0

oWe can sort of do it with

operational reasoning

error prone!

o but we really want to prove it

using point-to reasoning

 We do believe that e >= 0 at

every iteration of the loop

o Turn it into a candidate loop invariant!

//@loop_invariant e >= 0;

We will need to prove later that it is valid

o Then we prove that POW(b, e) is safe by pointing to line 9

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

An operational hunch

is often a good candidate

loop invariant

48

How Loop Invariants Work

 Loop invariants are checked just

before the loop guard is tested

 If the loop body runs n times,

o the loop invariant is checked n+1 times

must be true all n+1 times

o the loop guard is tested n+1 times too

 true the first n times and false the last time

 When we exit the loop

o the loop invariant is true

o the loop guard false

loop

body

loop guard

Here

true

false

LI

Important!Important!

Note that n could be 0

49

Validating Loop Invariants

50

Where are we?

 We have learned even more about f

o The contracts tell us what it is

meant to do

o The loop invariants give us useful

information about how the loop works

but these are candidate loop invariants

we need to prove that they are valid

 We have started learning about proving things about code
 just safety so far

o point-to reasoning: good

o operational reasoning: error prone

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

51

Proving a Loop Invariant Valid

 We cannot show a loop invariant is

valid by running it on all possible

inputs

oWe need to supply a proof

using point-to reasoning

 Two steps

INIT: show that the loop invariant is true initially

 just before we test the loop guard the very first time

PRES: show that the loop invariant is preserved by the loop

 if it is true at the beginning of an arbitrary iteration of the loop,

 then it is also true at the end of this iteration

loop

body

loop guard
true

false

LI

But it may become

false temporarily

in the middle of

the loop body

P
R

E
S

INIT

52

Validity of e ≥ 0

INIT:
To show: e ≥ 0 initially

A. y ≥ 0 by line 2

B. e = y by line 6

C. e ≥ 0 by math on A and B

PRES:
To show: if e ≥ 0, then e ≥ 0

o The value of e changes in the body of the loop

oWe need a way to distinguish the value at the start and end of

the current iteration

e value of e at the start of the current iteration

e’ value of e at the end of the current iteration

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

This is a typical

proof format in

this course

But isn’t this trivially true?

LI at start of

current iteration
LI at end of

current iteration

We use math notation for brevity

53

Validity of e ≥ 0

INIT: e ≥ 0 initially

PRES:
To show: if e ≥ 0, then e’ ≥ 0

A. e’ = e/2 by line 16

B. e ≥ 0 by assumption

C. e/2 ≥ 0 by math on B

D. e’ ≥ 0 by A and C

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

LI at start of

current iteration
LI at end of

current iteration

Both INIT and PRES were

proved by point-to reasoning

54

Validity of be r = xy

INIT:
To show: be r = xy initially

A. b = x by line 5

B. e = y by line 6

C. r = 1 by line 7

D. be r = xy by math on A, B, C

PRES:
To show: if be r = xy, then b’e’ r’ = xy

oWe need to distinguish 2 cases based on the test e % 2 == 1

e % 2 == 1 is true — e is odd

e % 2 == 1 is false — e is even

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

LI at start of

current iteration
LI at end of

current iteration

x and y don’t change

in the loop

55

Validity of be r = xy

PRES:
To show: if be r = xy, then b’e’ r’ = xy

Case e is odd (e % 2 == 1)

 Then e = 2n+1 for some n

A. b’ = b*b by line 15

B. e’ = e/2 by line 16

C. = n by case assumption and math

D. r’ = b * r by line 13

E. b’e’ r’ = (b*b)n b*r by A, B, C, D

F. = b(b2)n r by math

G. = b2n+1 r by math

H. = be r by case assumption

I. = xy by assumption

o This proves the first case

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

This is one of the

most complex proofs

in this course

56

Validity of be r = xy

PRES:
To show: if be r = xy, then b’e’ r’ = xy

Case e is even (e % 2 == 0)

 Then e = 2n for some n

A. b’ = b*b by line 15

B. e’ = e/2 by line 16

C. = n by case assumption and math

D. r’ = r since r is unchanged

E. b’e’ r’ = (b*b)n r by A, B, C, D

F. = (b2)n r by math

G. = b2n r by math

H. = be r by case assumption

I. = xy by assumption

o This proves the second case too

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

PRES holds

for be r = xy

57

Loop Invariants

 e ≥ 0 is valid

o it holds INITially

o it is PREServed by an arbitrary iteration

of the loop

 if e ≥ 0, then e’ ≥ 0

 be r = xy is valid

o it holds INITially

o it is PREServed by an arbitrary iteration of the loop

 if be r = xy, then b’e’ r’ = xy

 This shows that both are genuine loop invariants

o not just candidates

owe can forget about the body of the loop when reasoning about

this function

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

58

Proof-directed Debugging

59

Where are we?

 The contracts tell us what the

function is meant to do
but we know there is a bug in there

 The loop invariants abstract away the

details of the loop

 Let’s find the bug!

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

But what to do

with them is still

a bit mysterious

60

After the Loop

 What do we know when execution

exits the loop?

o the loop guard is false

e ≤ 1

o the loop invariants are true

e ≥ 0

be r = xy

 Knowing this will

o enable us to prove correctness

o or expose a bug

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

loop

body

loop guard

Here

true

false

LI

Here

61

Since f is incorrect,

this should happen

After the Loop

 What do we know when execution

exits the loop?

o the loop guard is false

e ≤ 1

o the loop invariants are true

e ≥ 0

be r = xy

 From e ≤ 1 and e ≥ 0,

we have that

o either e = 0

o or e = 1

as we exit the loop

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

loop

body

loop guard

Here

true

false

LI

Here

Recall that e

has type int

62

After the Loop

 Either e = 0 or e = 1

o Let’s plug these values in the other

loop invariant, be r = xy

If e = 1, then xy = be r = b1 r = r b

o Thus, xy = r b in this case

if e = 0, then xy = be r = b0 r = r

o Thus, xy = r in this case

 xy ≠ r b

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

Here

This is exactly

what f returns.

This is not

what f returns.

This is the bug!

63

Tracking the Bug

 The bug is when e = 0 as we exit

the loop

 This can happen only if f is called

with 0 as y

o if e = 1, the loop doesn’t run and

e stays 1

o if e > 1 at the start of an iteration,

then e’ ≥ 1 as we end it

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 1)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r * b;

19. }

Here

64

Fixing the Bug

Idea #1: return 1 if y = 0

 This works but it introduces a

special case in the code

 Special cases leads to contrived,

unmaintainable code

o sometimes unavoidable

o but let’s see if we can do better

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

if (y == 0) return 1;

int b = x;

int e = y;

int r = 1;

while (e > 1)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

65

Fixing the Bug

Idea #2: change the precondition

to y > 0

 This forces the caller to have special

cases in their code!

o calls to f need to be guarded

 This also means that f is not the power function any more

o undefined when exponent is 0

 Not a great solution

int f(int x, int y)

//@requires y > 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

int c = f(a, b)
int c = 1;

if (b > 0) c = f(a, b);

66

Fixing the Bug

Idea #3: forget about f and use POW

instead

 Recall the trace of f(2,8)

o the loop ran 4 times

 Trace POW(2, 8)

o 9 recursive calls

 f is much more

efficient

int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return POW(x, y-1) * x;

}

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 1)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

b e r

2 8 1

4 4 1

16 2 1

256 1 1

x y

2 8

2 7

2 6

2 5

2 4

2 3

2 2

2 1

2 0
67

Fixing the Bug

Observations: with this body,

o if e == 1, then

e/2 == 0

 r becomes b*r by line 13

Idea #4: make f return only when e = 0

o change the loop guard to e > 0

 the loop always end with e = 0

o return r instead of r * b

 that’s what we had to return when e = 0

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 0)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. return r;

19. }

No special cases!

Rather than getting rid of the bad case (e = 0),

we make it the good case and do away with

the other case (e = 1)

How’s this for a movie plot?
68

Correctness

69

Did we Really Fix the Bug?

 The loop invariants are still valid

owe didn’t change the body of the loop

owe changed the loop guard

but we didn’t use it in the validity proof

 Right after the loop, we know that

o the loop guard is false: e ≤ 0

o the 1st loop invariant is true: e ≥ 0

o the 2nd loop invariant is true: be r = xy

 so xy = be r = b0 r = r

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r;

}Go back and check

so e = 0

This is what f returns now

70

Assertions

Right after the loop, we know that e = 0

 We can note this with the directive

//@assert e == 0;

o checked only when running with -d

o aborts execution if the test is false

 //@assert is a great way to note

o intermediate steps of reasoning

o expectations about execution

 These are all the run-time directives of C0

//@requires, //@ensures, //@loop_invariant, //@assert

There are no others

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert e == 0;

return r;

}

//@assert can appear

anywhere a statement

is expected

71

Is the Function Correct?

Correctness: for any safe input,

the postconditions are true

 We just proved that, as we exit the

loop, r = xy

 just before return r;

 This tells us that f will never return

the wrong result

… but will it always return the right result?

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert e == 0;

return r;

}

72

Is the Function Correct?

Correctness: for any safe input, the postconditions are true

 Can a function never return the wrong result and yet not

necessarily always return the right result ?

o Let’s empty out the loop body in our example

 … only if it never returns

o if the loop runs for ever

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{ }

return r;

}

The loop invariants are valid

• INIT is unchanged

• PRES holds trivially

If execution were to reach return r,

• e == 0 would have to be true

• r would have to contain xy
This is legal

C0 code

But it never reaches return r!

So the postcondition will never be true

This code is not correct.

73

Termination

 We need to have a reason to believe

the loop terminates
 it doesn’t run for ever

 Here’s a proof of termination

o as the loop runs,

e gets strictly smaller at each iteration

 it can never become smaller than 0

 the loop guard is false when e = 0

o so the loop must terminate

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert e == 0;

return r;

}

This is an operational proof:

we are not pointing to anything

74

Termination

 Operational proof
as the loop runs, e gets strictly smaller,

it can never become smaller than 0, and

the loop guard is false when e = 0

 so the loop must terminate

 Can we prove it using point-to

reasoning?

o Yes! Here’s what we need to show

o in an arbitrary iteration of the loop,

 if e ≥ 0,

 then e’ < e

and e’ ≥ 0

o the loop guard is false when e = 0

0 > 0 is false

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert e == 0;

return r;

}

0 is a lower bound for e

e is strictly decreasing

0 stays a lower bound for e

if e starts >= 0,

it gets strictly smaller and

can never becomes smaller than 0

75

Termination

 Point-to proof
To show: if e ≥ 0, then e’ < e and e’ ≥ 0

A. e > 0 by line 8 (loop guard)

B. e’ = e/2 by line 16

C. e’ < e by math

D. e’ ≥ 0 by math

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == POW(x,y);

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. while (e > 0)

9. //@loop_invariant e >= 0;

10. //@loop_invariant POW(b,e) * r == POW(x,y);

11. {

12. if (e % 2 == 1) {

13. r = b * r;

14. }

15. b = b * b;

16. e = e / 2;

17. }

18. //@assert e == 0;

19. return r;

20. }

However,

for termination proofs,

we will generally be Ok with an operational argument

76

Reasoning about Code

77

Reasoning about C0

 C0 programs have a precise behavior

owe can reason about them mathematically

 We used two types of reasoning

oOperational reasoning: drawing conclusions about how things

change when certain lines of code are executed

o Point-to reasoning: drawing conclusions about what we know

to be true by pointing to specific lines of code that justify them

boolean expressions

basic mathematical properties

 variable assignments

This is operational reasoning,

but really simple

78

Operational Reasoning

 Examples

o Value of variables right after an assignment

o Things happening in the body of a loop from outside this loop

o Things happening in the body of a function being called

o Previously true statement after variables in it have changed

 Operational reasoning is hard to do right consistently
 very error prone!

oWe want to stay away from anything beyond simple assignments

except in termination proofs

But operational intuitions

are a good way to form

conjectures that we can then

prove using point-to reasoning

If a proof about loops uses words

like “always”, “never”, “each”, you

are doing operational reasoning

79

Point-to Reasoning

 Examples

o Boolean conditions

 condition of an if statement in the “then” branch

negation of the condition of an if statement in the “else” branch

 loop guard inside the body of a loop

negation of the loop guard after the loop

oContract annotations

preconditions of the current function

postconditions of a function just called

 loop invariant inside the loop body

 loop invariant after the loop

earlier fully justified assertions

oMath

 laws of logic

 some laws of arithmetic

o Value of variables right after an assignment

80

Point-to Reasoning: Tips and Tricks

 When reasoning about an earlier loop,

pretend the body of the loop is not there

oOnly rely on the loop guard and loop invariants

81

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert r = POW(x,y);

return r;

}

When reasoning about

an earlier loop,

pretend its body is not there

Point-to Reasoning: Tips and Tricks

 When reasoning about a function being called,

pretend the body of the function is not there
unless it’s a specification function

oOnly rely on its contracts

82

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x; int e = y; int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r;

}

int main() {

int k = f(2,5);

//@assert k >= 0;

return 0;

}

When reasoning about the

outcome of a function call,

pretend its body is not there

Safety

 The inputs of a function call satisfy the function’s

preconditions

owe will generalize this definition in the future

We will exclusively use point-to reasoning to justify safety

 The postconditions of a function will be true on any call that

satisfies the preconditions

oWe will not need to generalize this definition

Correctness

83

Straight Line Functions

A non-recursive function without loops

 Proving correctness amounts to

combining assignments
To show: \result = x

A. b = x by line 5

B. r = 1 by line 7

C. \result = r * b by line 8

D. r * b = x by math on A, B, C

1. int f(int x, int y)

2. //@requires y >= 0;

3. //@ensures \result == x;

4. {

5. int b = x;

6. int e = y;

7. int r = 1;

8. return r * b;

9. }

Straight

line code

pre

post

84

Functions with One Loop

 Proving correctness involves

3 steps

o Show that the loop invariants are valid

 INIT: the LI are true initially

PRES: the LI are preserved by an

arbitrary iteration of the loop

o EXIT: the LI and the negation of the

loop guard imply the postcondition

o TERM: the loop terminates

loop

body

loop guard
true

false

LI

pre

post

That’s exactly what

we did for our

mystery function These steps can be

proved in any order

85

Functions with One Loop

INIT: the loop invariant is true initially

 proved by point-to reasoning

typically using

o the preconditions

o simple assignments before

the loop

86

loop

body

loop guard
true

false

LI

pre

post

Functions with One Loop

PRES: the LI are preserved by an arbitrary

iteration of the loop

 proved by point-to reasoning

typically using

o the assumption that the LI is true

at the beginning of the iteration

o the loop guard being true

we are running an iteration

o simple assignments and conditionals

in the loop body

o the preconditions (sometimes)

87

loop

body

loop guard
true

false

LI

pre

post

Functions with One Loop

EXIT: the loop invariants and the negation

of the loop guard imply the postcondition

 proved by point-to reasoning

typically using

o the loop invariant

o the negation of the loop guard

o simple assignments and conditionals

after the loop

88

loop

body

loop guard
true

false

LI

pre

post

Functions with One Loop

TERM: the loop terminates

 proved by operational reasoning

typically using

o the assumption that the LI is true

at the beginning of the iteration

o the loop guard

o simple assignments and conditionals

in the loop body

But it can also be proved

by point-to reasoning

89

loop

body

loop guard
true

false

LI

pre

post

Functions with One Loop

TERM: the loop terminates

 Format of a termination proof

using operational reasoning

“on an arbitrary iteration of the loop,

the quantity _____ gets strictly smaller

but it can’t ever get smaller than _____”

on which the loop guard is false

or

“on an arbitrary iteration of the loop,

the quantity _____ gets strictly bigger

but it can’t ever get bigger than _____”

on which the loop guard is false

A quantity may be an expression,

not necessarily a variable
90

loop

body

loop guard
true

false

LI

pre

post

More Complex Functions

 These techniques can be extended

o but we will rarely deal with functions with more than one loop

 We can also factor out nested loops and the like into

helper functions

o and then use the technique we just saw

91

Seriously??

 All these proofs and complicated reasoning seem overkill!

o the mystery function wasn’t all that hard after all

owe could just spot what was going on

 Yes, but it won’t be that easy for more complex functions

o the technique we saw is systematic and scalable

o reasoning about code will pay off

 Point-to reasoning is what we do in our head all the time

when programming

owriting it down as loop invariants and contracts makes it easier

not to get confused

o and the -d flag will catch lingering issues at run time

92

Epilogue

93

Where are we?

 We fully documented f

o function contracts

o loop invariants

o key assertions

 We fixed the bug

 We gave mathematical proofs that

o all the calls it makes are safe

o it is correct

 Let’s enjoy the fruit of our labor with some more testing!

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert e == 0;

return r;

}

94

Sanity Checks

 Let’s do a last round of testing

int f(int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int b = x;

int e = y;

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant POW(b,e) * r == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert e == 0;

return r;

}

coin -d mystery.c0

C0 interpreter (coin) …

--> f(2, 0);

1 (int)

--> f(2, 1);

2 (int)

--> f(2, 7);

128 (int)

--> f(2, 8);

256 (int)

--> f(2, 19);

524288 (int)

--> f(2, 31);

-2147483648 (int)

--> f(2, 32);

0 (int)

-->

Linux Terminal

Bug fixed!

Looking goodLooking goodLooking good

Plausible

What?

What?

The story

continues …

95

