Contracts

A Mystery Function

The Story

Your first task at your new job is to debug this code written by your predecessor, who was fired for being a poor programmer.

int f(int x, int y) {

\nint r = 1,

\nwhile (y > 1) {

\nif (y % 2 == 1) {

\n
$$
r = x * r
$$
;

\n}\n $x = x * x$;

\n $y = y / 2$;

\nreturn r * x;

This is all you are given

How do you go about this "friendly" challenge?

The Language

- This code is written in **C0** o The language we will use for most of this course
- This is also valid **C** code
	- o For the most part, C0 programs are valid C programs
	- o We will use C0 as a gentler language to
		- \triangleright learn to write complex code that is correct
		- \triangleright learn to write code in C itself
- *But what does this function do?*

```
int f(int x, int y) {
 int r = 1;
 while (y > 1) {
   if (y % 2 == 1) {
    r = x * r;
   }
  X = X^* X;y = y / 2;
 }
 return r * x;
}
```
The Programmer

- Is this good code? o there are no comments o the names are non-descript \triangleright the function is called f \triangleright the variables are called x, y, r No! X
- No wonder your predecessor was fired as a bad programmer!

```
int f(int x, int y) \{int r = 1;
 while (y > 1) {
  if (y % 2 = 1) {
    r = x * r;
   }
  X = X^* X;y = y / 2;}
 return r * x;
}
```
But what does this function do?

The Function

- *But what does this function do?*
- We can run *experiments* o call f with various inputs and observe the outputs
- We do so by loading it in the **C0 interpreter** coin

Running Experiments

Call f with various inputs and observe the outputs

• These are not very good experiments o they don't help us understand what f does

Running Experiments

 Call f with various inputs and observe the outputs o we are better off calling f with small inputs o and vary them by just a little bit so we can spot a pattern

 \circ It looks like f(x, y) computes x^y o Let's confirm with more experiments

Confirming the Hypothesis

- It looks like $f(x, y)$ computes x^y
- *Let's confirm with more experiments*

• Let's run a few more experiments to identify the problem

Discovering the Bug

- f(x, y) is *meant to* computes x^y o but it doesn't
- Let's find where it fails with more experiments

• Now we have something to chew on

Preconditions

• What does it mean to be the power function x^y ?

Let's write a *mathematical* definition

What does it mean to be the power function x ^y ?

$$
\begin{cases}\n x^0 = 1 \\
 x^y = x^{y-1} * x\n\end{cases}
$$

o What happens if y is negative?

 \triangleright we never reach the base case ...

• The power function x^y on integers is **undefined** if $y < 0$

$$
\begin{cases}\n x^0 = 1 \\
 x^y = x^{y-1} * x \\
 \text{if } y > 0\n\end{cases}
$$
\nThis defines x^y for $y \ge 0$ only

What does it mean to be the power function x ^y ?

$$
\begin{cases}\n x^0 = 1 \\
 x^y = x^{y-1} * x \quad \text{if } y > 0\n\end{cases}
$$

$$
\begin{array}{l}\n\text{int f(int x, int y) } \{ \\
\text{int r = 1;} \\
\text{while (y > 1) } \{ \\
\text{if (y % 2 == 1) } \{ \\
\text{r = x * r;} \\
\} \\
x = x * x; \\
y = y / 2; \\
\}\n\text{return r * x;} \\
\end{array}
$$

• To implement the power function, f must disallow negative exponents o It can raise an error We need to test y. This would slow f down a bit.

 \circ It can tell the caller that the exponent should be ≥ 0

Preconditions

- Disallow negative exponents \circ by telling the caller that the exponent should be ≥ 0
- A restriction on the admissible inputs to a function is called a **precondition**
	- o We need to impose a precondition on f
- In most languages, we are limited to writing a comment
	- \Box and hope the caller reads it

This is how we would write a precondition in C

y must be greater than or equal to 0 int f(int x, int y) { int $r = 1$; while $(y > 1)$ { if (y % 2 == 1) { $r = x * r$; } $X = X^* X;$ $y = y / 2$; } return r $*$ x; }

Preconditions in C0

- *We need to impose a precondition on f* o *to tell the caller that y should be ≥ 0*
- **•** In C0 we can write an **executable contract directive**

Using Contract

Running with contracts disabled Running with contracts enabled

Safety

 \bullet If we call $f(x,y)$ with a negative y o with **-d**, execution aborts o without **-d**, f can return an arbitrary result **Extra Fight value it could return ≥ there is no** right value it could return

• Calling a function with inputs that cause a precondition to fail is **unsafe**

o execution will never do the right thing

 \triangleright either abort

 \triangleright or compute a wrong result

 The caller must make sure that the call is **safe** \triangleright that y ≥ 0

Postconditions

Contracts about Function Outcomes

- **Preconditions are checked** *before* **the** function starts executing
- A contract that is checked *after* it is done executing could tell us if the function did the right thing
	- \triangleright check that the output is what we expect
	- o This is a **postcondition**

Postconditions in C0

- o <some_condition> can mention the contract-only variable \result
	- \triangleright what the function returns
	- \geq can only be used with //@ensures

```
//@ensures …;
 while (y > 1) {
  if (y % 2 = = 1) {
  X = X^* X;
  y = y / 2;
 }
 return r * x;
}
```
Writing a Postcondition

• The postcondition we want to write is

• What do we do?

o transcribe the mathematical definition into a C0 function

$$
\begin{cases}\n x^0 = 1 \\
 x^y = x^{y-1} * x \\
 \text{if } y > 0\n\end{cases}
$$
\n
$$
\begin{cases}\n \text{int } \text{POW(int x, int y)} \\
 \text{if } (y == 0) \text{ return 1;} \\
 \text{if } (y == 0) \text{ return 1;} \\
 \text{return } \text{POW(x, y-1)} * x;\n\end{cases}
$$

Writing a Postcondition

• Then our postcondition is

```
1/100 ensures \result == POW(x, y);
```

```
right? … almost
```

```
# coin -d mystery.c0
mystery.c0:18.5-18.6:error:cannot assign to 
  variable 'x' used in @ensures annotation
  X = X^* X;~ 
Unable to load files, exiting...
                  Linux Terminal
```

```
\circ The function modifies x (and y)
```
 \triangleright Which values of x and y should C0 evaluate the postcondition with?

```
int POW(int x, int y)
 \pi/2 requires y \ge 0;
 {
  if (y == 0) return 1;
  return POW(x, y-1) * x;
 }
 int f(int x, int y)
 \frac{1}{2} requires y = 0;
//@ensures \result == POW(x,y);
 {
 int r = 1;
  while (y > 1) {
   if (y % 2 == 1) {
     r = x * r;
    }
   X = X^* X;y = y / 2;
   }
```

```
return r * y;
}
```
 \Box We want the initial values, but it is checked when returning ...

o To avoid confusion, C0 disallows modified variables in postconditions

Writing a Postcondition

These are examples of **point-to reasoning**

o We justify something by pointing to lines of code that supports it

```
● But wait!
   o f was meant to implement the power function
   o … but POW is the power function!
 Let's use it!
   o There may be benefits to fixing f instead
      \triangleright it may be more efficient than POW
   o Keep reading …
                                                                   int POW(int x, int y)
                                                                   \mathcal{W} requires y >= 0;\mathcal{L}if (y == 0) return 1;
                                                                    return POW(x, y-1) * x;
                                                                    }
                                                                   int f(int x, int y)
                                                                   \mathcal{W}@requires y >= 0;
                                                                   \angle//@ensures \result == POW(x,y);
                                                                    {
                                                                    int b = x;
                                                                    int e = y;
                                                                    int r = 1;
```
while $(e > 1)$ {

 $r = b * r$;

 $b = b * b;$

 $e = e / 2;$

return r * b;

}

}

}

if (e % 2 == 1) {

```
25
```
Correctness

● If a call violates a function's postconditions (assuming its preconditions were met so it actually ran) the function is doing something wrong o the function has a **bug**

 The function is **incorrect** o Our mystery function f is incorrect

• When writing a function, we must make sure that it is **correct**

 \circ i.e., that its postconditions will be satisfied for any safe input

Blame

• If a function preconditions fail, it's the caller's fault

 \triangleright the caller passed invalid inputs

o the call is **unsafe**

 \bullet If its postconditions fail, it's the implementation's fault \triangleright the function code does the wrong thing o the function is **incorrect**

We will develop methods to make sure that the code we write is **safe** and **correct**

How to Use Contracts

● Contract-checking helps us write code that works as expected

o Use **-d** while writing our code

o At this stage, this is **development code**

 \triangleright bugs are likely

• Once we are confident our code works, compile it without **-d**

o The code can be used in its intended application

o At this stage, this is **production code**

 \triangleright there should be no bugs

 Why not use **-d** always? o it slows down execution

Specification Functions

• POW is used only in contracts o It is not executed when contract-checking is disabled without **-d**

• Functions used only in contracts are called **specification functions** o They help us state what the code should do

o They are critical to writing good code

```
int POW(int x, int y)
\sqrt{\omega} requires y \ge 0;
{
 if (y == 0) return 1;
 return POW(x, y-1) * x;
}
int f(int x, int y)
\pi/2 requires y \ge 0;
//@ensures \result =\sqrt{POW(x,y)}{
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
   if (e % 2 == 1) {
    r = b * r;
   }
   b = b * b;e = e / 2;}
 return r * b;
}
```
Function Contracts

Where are we?

- We have learned a lot about f o the preconditions describe what valid inputs are
	- o the postconditions describe what it is supposed to do
		- \triangleright on valid inputs
- We have a fully documented function
- We have not looked at all at its body \triangleright but we know there is a bug in there \triangleright it is incorrect

int f(int x, int y) \angle //@requires y >= 0; $//@$ ensures \result == $POW(x,y);$ { $\mathsf{imb} = x;$ int $e = y$; int $r = 1$; while $(e > 1)$ { if (e % 2 == 1) { $r = b * r$; } $b = b * b;$ $e = e / 2;$ } retum r * b; }

The Caller's Perspective

o The implementation details are **abstracted away**

Abstraction

 Split a complex system into **small** chunks that can be understood **independently**

Bother with as few details as possible at any time

● Computer science is all about abstraction

The Function's Perspective

Preconditions describe valid inputs Postconditions describe what it does

- That's what the implementation is to do o guidelines to write the body of the function
- How to write good code o **First write the contracts**
	- o and then the body
		- \triangleright in this way, you always know what you are aiming for

```
int f(int x, int y)
\angle//@requires y >= 0;
1/100 ensures \result == POW(x,y);
{
 imb = x;int e = y;
 int r = 1;
 while (e > 1) {
   if (e % 2 == 1) {
    r = b * r;
   }
   b = b * b;e = e / 2;
 }
 return r * b;
}
```
Now, we need to look at the body of f to find the bug

Loop Invariants
Diving In

- We need to look at the body of f
	- o The complicated part is the **loop**
		- \triangleright the values of the variables change at each iteration
		- \triangleright it's unclear how many iterations there are
	- o If we understand the loop, we understand the function
- How to go about that?

```
int f(int x, int y)
\angle//@requires y >= 0;
\angle//@ensures \result == POW(x,y);
{
 int b = x;
 int e = y;int r = 1;
 while (e > 1) {
  if (e % 2 == 1) {
    r = b * r;
   }
   b = b * b;e = e / 2;}
 return r * b;
}
```
Abstraction

- *If we understand the loop, we understand the function*
- How to go about that?
	- o Contracts summarize what a function does so we don't need to bother with the details of its implementation
		- \triangleright An abstraction over functions
	- o Come up with a summary of the loop so we don't need to bother with the details of its implementation
		- **An abstraction over loops!**

int f(int x, int y) \angle //@requires y >= 0; \angle //@ensures \result == POW(x,y); { int $b = x$; int $e = y$; int $r = 1$; while (e) \prec \rightarrow \rightarrow \mathbf{A} } return r * b; }

Loop Invariants

The values of the variables change at each iteration

• One valuable abstraction is what does **not** change

o This is called a **loop invariant**

- \triangleright a quantity that remains constant at each iteration of the loop
	- \Box a quantity may be an expression, not just a variable

We will see what makes some loop invariants **really valuable** shortly

```
int f(int x, int y)
//@requires y >= 0;
\angle//@ensures \result == POW(x,y);
\mathbf{I}int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
  if (e % 2 == 1) {
    r = b * r;
   }
   b = b * b;
   e = e / 2;}
 return r * b;
```
• How to find a **loop invariant**?

- *a quantity that remains constant at each iteration of the loop*
- Run the function on sample inputs
- Track the value of the variables that change

 \triangleright b, e, r

 \Box no need to bother with x and y since they don't change

o just before the loop guard is tested

 \triangleright That's e > 1

D Look for patterns

• Run the function on sample inputs and track the value of the variables \circ Let's try with $f(2,8)$

o Can we spot a quantity that doesn't change?

 \bullet Trying with $f(2,8)$

o *Can we spot a quantity that doesn't change?*

o **b^e** is always 256

int f(int x, int y) \angle //@requires y >= 0; $1/100$ ensures \result == POW(x,y); { int $b = x$; $int e = y$; int $r = 1$; while $(e > 1)$ { if (e % 2 == 1) { $r = b * r$; } $b = b * b;$ $e = e / 2;$ } return r * b; }

o This is a **candidate loop invariant**

- **≻ b^e** is constant on one set of inputs
- \triangleright a loop invariant must stay constant on all inputs

- **b^e** is a *candidate* loop invariant
- \bullet Let's try with $f(2,7)$ b e r **b^e** 2 7 1 **128** 4 3 2 **64** 16 1 8 **16** Not constant on these inputs

o **b^e** is **not** invariant on these inputs! \triangleright It was a candidate that didn't pan out

● Can we spot another quantity that doesn't change?

int f(int x, int y)

\n//@requires y >= 0;

\n//@ensures \n
$$
|V(0) = 0
$$
.\n $|V(0) = 0$.\n $|V(0) = 1$.\n $|V($

- *Trying with f(2,7)*
	- o *Can we spot a quantity that doesn't change?*
	- o **b^e * r** is always 128


```
int f(int x, int y)
\mathcal{U}\otimes requires y >= 0;//@ ensures \result == POW(x,y);{
 int b = x;
 int e = y;int r = 1;
 while (e > 1) {
  if (e % 2 == 1) {
    r = b * r;
   }
   b = b * b;e = e / 2;}
 return r * b;
}
```
 This is another candidate loop invariant \circ Let's test it on f(3,5)

o This seems to work

A Candidate Loop Invariant

- **b^e * r** is a promising candidate loop invariant o It works on *three* inputs!
- How do we know it works in general? o We can't test it on all inputs o We need to provide a **proof**

But first, let's add it to our code

```
int f(int x, int y)
\mathcal{U}@requires y >= 0;
\angle//@ensures \result == POW(x,y);
{
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
   if (e % 2 = 1) {
    r = b * r;
   }
   b = b * b:
   e = e / 2;
  }
 return r * b;
}
```
Loop Invariants in C0

o **true** means it was satisfied in the current iteration

o **false** means it wasn't

Loop Invariants in C0

- They are boolean expressions o **true** means satisfied
- What can we use?

- o As we enter the loop, b is x and e is y so **x y** is 128 too
	- \triangleright thus, **b**^e * **r** = **x**^y

• Then, we can write

//@loop_invariant POW(b, e) $*$ r == POW(x, y);

Safety We have two new calls to POW o **Are they safe?** \bullet POW(x, y) \triangleright To show: $y \ge 0$ \circ y \ge = 0 by line 2 (precondition of f) • POW(b, e) \triangleright To show: $e \ge 0$ $1.$ int f(int x, int y) 2. // $@$ requires $y >= 0$; \longrightarrow 3. //@ensures \result == $\text{POW}(x,y)$; 4. { $5.$ int $b = x$; 6. int $e = y$; 7. $int r = 1$; 8. while (e > 1) 9. //@loop_invarian $($ POW(b,e) \cdot r = POW(x, 10. { 11. **if (e % 2 == 1) {** 12. $r = b * r;$ 13. } 14. $b = b * b;$ 15. $e = e / 2$; 16. } 17. **return r * b**; 18. } **?** \checkmark

- o "e is *initially* equal to y which is >= 0 and it is halved at *each* iteration of the loop so e is *always* >= 0"
- o This is an example of **operational reasoning**
	- \triangleright The justification relies on what is happening in all the iterations of the loop
		- \Box This is error-prone
	- We will disallow safety proofs based on operational reasoning on loops X

Safety

POW(b, e)

- \triangleright To show: $e \ge 0$
- o We can sort of do it with operational reasoning
	- \triangleright error prone!
- o but we really want to prove it using point-to reasoning
- \bullet We do believe that $e \ge 0$ at every iteration of the loop

o Turn it into a candidate loop invariant!

$\pi/2$ loop_invariant e >= 0;

- \triangleright We will need to prove later that it is valid
- \circ Then we prove that POW(b, e) is safe by pointing to line 9

1. int f(int x, int y)
\n2. //@requires y >= 0;
\n3. //@ensures \t
$$
result == POW(x,y)
$$
;
\n4. {
\n5. int b = x;
\n6. int e = y;
\n7. int r = 1;
\n8. while (e > 1)
\n9. //@loop_invariant e >= 0;
\n10. //@loop_invariant POW(b,e) < r == POW(x,y);
\n11. {
\n12. if (e % 2 == 1) {
\n13. r = b * r;
\n14. }\n15. b = b * b;
\n16. e = e / 2;
\n17. }\n18. return r * b;
\n19. }

An operational hunch is often a good candidate loop invariant

 \checkmark

How Loop Invariants Work

- Loop invariants are checked **just before** the loop guard is tested
- If the loop body runs n times, o the loop invariant is checked n+1 times must be **true** all n+1 times o the loop guard is tested n+1 times too **true** the first n times and **false** the last time
- When we exit the loop o the loop invariant is **true** o the loop guard **false** Important!

Validating Loop Invariants

Where are we?

- We have learned even more about f
	- o The contracts tell us what it is meant to do
	- o The loop invariants give us useful information about how the loop works
		- but these are **candidate** loop invariants
		- \triangleright we need to prove that they are valid

```
1. int f(int x, int y)
2. \mathcal{U}@requires v \ge 0;
3. //@ensures \result == POW(x,y);
4. {
5. int b = x;
6. int e = v;
7. int r = 1;
8. while (e > 1)9. //@loop invariant e \ge 0;
10. //@loop_invariant POW(b,e) * r = POW(x,y);
11. {
12. if (e % 2 = 1) {
13. r = b * r;
14. }
15. b = b * b;
16. e = e / 2;
17. }
18. return r * b;
19. }
```
- We have started learning about proving things about code
	- \triangleright just safety so far
	- o point-to reasoning: good
	- o operational reasoning: error prone

Proving a Loop Invariant Valid

- We cannot show a loop invariant is valid by running it on all possible inputs
	- o We need to supply a proof
		- using point-to reasoning
- Two steps

INIT: show that the loop invariant is true *initially*

 \triangleright just before we test the loop guard the very first time

- **PRES:** show that the loop invariant is **preserved** by the loop
	- if it is true at the beginning of an **arbitrary iteration** of the loop,

 \triangleright then it is also true at the end of this iteration

But it may become

false temporarily

in the middle of

the loop body

o The value of e changes in the body of the loop

- o We need a way to distinguish the value at the start and end of the current iteration
	- e \leftarrow value of e at the **start** of the current iteration
	- e \rightarrow e^{\prime} value of e at the **end** of the current iteration

o This proves the first case

o This proves the second case too

Loop Invariants \bullet e \geq 0 is valid o it holds **INIT**ially o it is **PRES**erved by an arbitrary iteration of the loop \triangleright if $e \ge 0$, then $e' \ge 0$ \checkmark

 \bullet b^e r = x^y is valid

 \checkmark

o it holds **INIT**ially

o it is **PRES**erved by an arbitrary iteration of the loop \triangleright if b^e r = x^y, then b'^{e'} r' = x^y

- This shows that both are **genuine loop invariants** o not just candidates
	- o we can forget about the body of the loop when reasoning about this function

Proof-directed Debugging

Where are we?

• The contracts tell us what the function is *meant to* do

 \triangleright but we know there is a bug in there

• The loop invariants abstract away the details of the loop

> *But what to do with them is still a bit mysterious*

Let's find the bug!

After the Loop

- What do we know when execution exits the loop?
	- o the loop guard is **false**

 $\geq e \leq 1$

o the loop invariants are **true**

 $\geq e \geq 0$

 \triangleright b^e r = x^y

• Knowing this will o enable us to prove correctness o or expose a bug

> Since f is incorrect, this should happen

After the Loop

- What do we know when execution exits the loop?
	- o the loop guard is **false**

 $\ge e \le 1$

o the loop invariants are **true** $\geq e \geq 0$

 \triangleright b^e r = x^y

• From $e \le 1$ and $e \ge 0$, we have that \circ either $e = 0$ \circ or $e = 1$ as we exit the loop Recall that e has type int

Tracking the Bug

- The bug is when $e = 0$ as we exit the loop
- This can happen **only** if f is called with 0 as y
	- \circ if $e = 1$, the loop doesn't run and e stays 1
	- \circ if $e > 1$ at the start of an iteration, then $e' \ge 1$ as we end it

Idea #1: return 1 if $y = 0$

- **This works but it introduces a special case** in the code
- Special cases leads to contrived, unmaintainable code o sometimes unavoidable o but let's see if we can do better

```
int f(int x, int y)
\sqrt{\omega} requires y \ge 0;
\angle//@ensures \result == POW(x,y);
{
if (y == 0) return 1;
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1)//@loop_invariant e >= 0;//@loop_invariant POW(b,e) * r == POW(x,y);
 {
  if (e % 2 = 1) {
    r = b * r}
  b = b * b:
  e = e / 2;
 }
 return r * b;
}
```
Idea #2: change the precondition to $y > 0$

• This forces the caller to have special cases in their code!

o calls to f need to be **guarded**

int c = f(a, b) $\overrightarrow{ }$ int c = 1; if $(b > 0)$ $c = f(a, b)$;

```
int f(int x, int y)
\sqrt{2} requires y > 0;
\angle//@ensures \result == POW(x,y);
{
 int b = x;
 int e = y;
 int r = 1;
  while (e > 1)\mathcal{U}@loop_invariant e >= 0;
 //@loop_invariant POW(b,e) * r == POW(x,y);
  {
   if (e % 2 = = 1) {
    r = b * r;
   }
   b = b * b;
   e = e / 2;
  }
  return r * b;
}
```
• This also means that f is not the power function any more o undefined when exponent is 0

X

• Not a great solution

x y

2 8

2 7

2 6

2 5

2 4

2 3

2 2

2 1

2 0

Idea #3: forget about f and use POW instead

• Recall the trace of $f(2,8)$ o the loop ran 4 times

- \bullet Trace POW(2, 8) o 9 recursive calls
- **•** f is much more efficient

X

Correctness

Did we Really Fix the Bug?

• The loop invariants are still valid o we didn't change the body of the loop o we changed the loop guard \triangleright but we didn't use it in the validity proof Go back and check

■ Right after the loop, we know that \circ the loop guard is **false**: $e \le 0$ \circ the 1st loop invariant is **true**: $e \ge 0$ \circ the 2nd loop invariant is **true**: b^e r = x^y

so $e = 0$

 \triangleright so $x^y = b^e$ r = b^0 r = r

 \checkmark

This is what f returns now

Assertions

Right after the loop, we know that $e = 0$

• We can note this with the directive $\pi/2$ assert e == 0;

o checked only when running with **-d** o aborts execution if the test is **false**

• //@assert is a great way to note o intermediate steps of reasoning o expectations about execution

```
int f(int x, int y)\pi/2 requires y \ge 0;
\angle//@ensures \result == POW(x,y);
{
 int b = x;
 int e = y;
 int r = 1;
 while (e > 0)//@loop_invariant e >= 0;//@loop_invariant POW(b,e) * r == POW(x,y);
  {
   if (e % 2 = 1) {
    r = b * r;
   }
   b = b * b;
   e = e / 2;
  }
\sqrt{1/\omega} assert e == 0;
return r;
}
       //@assert can appear
       anywhere a statement 
              is expected
```
 These are all the run-time directives of C0 //@requires, //@ensures, //@loop_invariant, //@assert There are no others
Is the Function Correct?

Correctness: for any safe input, the postconditions are true

• We just proved that, as we exit the $loop, r = x^y$

 \triangleright just before return r;

 This tells us that f will **never return the wrong result**

```
int f(int x, int y)
\sqrt{\omega} requires y \ge 0;
\angle//@ensures \result == POW(x,y);
{
 int b = x;
 int e = v;
 int r = 1;
 while (e > 0)\mathcal{U}@loop_invariant e >= 0;
 //@loop_invariant POW(b,e) * r == POW(x,y);
  {
  if (e % 2 = = 1) {
    r = b * r;
   }
  b = b * b;
  e = e / 2;
  }
 \pi/2 assert e == 0;
 return r;
}
```
… but will it *always return the right result*?

Is the Function Correct?

Correctness: for any safe input, the postconditions are true

 Can a function **never return the wrong result** and yet not necessarily *always return the right result* ?

o Let's empty out the loop body in our example

Termination

• We need to have a reason to believe the loop terminates

 \triangleright it doesn't run for ever

• Here's a proof of termination

o *as the loop runs,*

e gets strictly smaller at each iteration

it can never become smaller than 0

 \triangleright the loop guard is false when $e = 0$

o so the loop must terminate

 \checkmark

```
int f(int x, int y)
\pi/2 requires y \ge 0;
//@ ensures \result == POW(x,y);{
 int b = x;
 int e = y;
 int r = 1;
 while (e > 0)//@loop_invariant e >= 0;//@loop_invariant POW(b,e) * r == POW(x,y);
 \{if (e % 2 = = 1) {
    r = b * r;
   }
  b = b * b;
  e = e / 2;
  }
\pi/2 assert e == 0;
return r;
}
```
This is an **operational** proof: we are not pointing to anything

Termination

• Operational proof

 as the loop runs, e gets strictly smaller, it can never become smaller than 0, and the loop guard is false when e = 0

- \triangleright so the loop must terminate
- Can we prove it using point-to reasoning?
	- o Yes! Here's what we need to show
	- o in an arbitrary iteration of the loop,


```
it gets strictly smaller and
can never becomes smaller than 0
```

```
int f(int x, int y)
\pi/2 requires y \ge 0;
\angle//@ensures \result == POW(x,y);
{
 int b = x;
 int e = y;
 int r = 1;
 while (e > 0)//@loop_invariant e >= 0;//@loop_invariant POW(b,e) * r == POW(x,y);
  {
  if (e % 2 = = 1) {
    r = b * r;
   }
   b = b * b;
  e = e / 2;
  }
\pi/2 assert e == 0;
return r;
}
```

```
\circ the loop guard is false when e = 00 > 0 is false
```
Termination

● Point-to proof

 \triangleright **To show:** if $e \ge 0$, then $e' < e$ and $e' \ge 0$

- A. $e > 0$ by line 8 (loop guard)
- B. $e' = e/2$ by line 16
- $C. e' < e$ by math

D. $e' \ge 0$ by math

 \checkmark

int f(int x , int y) 2. // $@$ requires $y \ge 0$; $3.$ //@ensures \result == POW(x,y); $\overline{4}$. $5.$ int $b = x$; 6. int $e = y$; 7. $int r = 1$; $8.$ while $(e > 0)$ 9. *//* $@$ *loop_invariant e >= 0;* 10. //@loop_invariant POW(b,e) $*$ r == POW(x,y); 11. { 12. if (e % 2 == 1) { 13. $r = b * r;$ 14. } 15. $b = b * b;$ 16. $e = e / 2$; 17. } 18. //@assert $e == 0$; 19. return r; 20. }

Reasoning about Code

Reasoning about C0

- C0 programs have a precise behavior o we can reason about them mathematically
- We used two types of reasoning
	- o **Operational reasoning:** drawing conclusions about how things change when certain lines of code are executed
	- o **Point-to reasoning:** drawing conclusions about what we know to be true by pointing to specific lines of code that justify them
		- \triangleright boolean expressions
		- \triangleright basic mathematical properties
		- \triangleright variable assignments \equiv

This is operational reasoning, but really simple

Operational Reasoning

• Examples

o Value of variables right after an assignment

o Things happening in the body of a loop from outside this loop

- o Things happening in the body of a function being called
- o Previously true statement after variables in it have changed

• Operational reasoning is hard to do right consistently

 \triangleright very error prone!

o We want to stay away from anything beyond simple assignments

 \triangleright except in termination proofs

If a proof about loops uses words like "always", "never", "each", you are doing operational reasoning

But operational intuitions are a good way to form conjectures that we can then prove using point-to reasoning X

×

×

 \checkmark

Point-to Reasoning

• Examples

o Boolean conditions

- \triangleright condition of an if statement in the "then" branch
- \triangleright negation of the condition of an if statement in the "else" branch
- \triangleright loop guard inside the body of a loop
- \triangleright negation of the loop guard after the loop
- o Contract annotations
	- \triangleright preconditions of the current function
	- \triangleright postconditions of a function just called
	- \triangleright loop invariant inside the loop body
	- \triangleright loop invariant after the loop
	- \triangleright earlier fully justified assertions
- o Math
	- \triangleright laws of logic
	- \triangleright some laws of arithmetic
- o Value of variables right after an assignment

Point-to Reasoning: Tips and Tricks

• When reasoning about an earlier loop, **pretend the body of the loop is not there** o Only rely on the **loop guard** and **loop invariants**

Point-to Reasoning: Tips and Tricks

• When reasoning about a function being called, **pretend the body of the function is not there**

unless it's a specification function

o Only rely on its **contracts**

Safety

- The inputs of a function call satisfy the function's preconditions
	- o we will generalize this definition in the future
- *We will exclusively use point-to reasoning to justify safety*

Correctness

- The postconditions of a function will be true on any call that satisfies the preconditions
	- o We will not need to generalize this definition

Straight Line Functions

A non-recursive function without loops

• Proving correctness amounts to combining assignments

 \triangleright **To show:** \result = x

- Proving correctness involves 3 steps
	- o Show that the loop invariants are *valid*
		- **INIT:** the LI are true initially
		- **PRES:** the LI are preserved by an arbitrary iteration of the loop
	- o **EXIT:** the LI and the negation of the loop guard imply the postcondition
	- o **TERM:** the loop terminates

INIT: the loop invariant is true initially

- proved by point-to reasoning typically using
	- o the preconditions
	- o simple assignments before the loop

PRES: the LI are preserved by an arbitrary iteration of the loop

- proved by point-to reasoning typically using
	- o the assumption that the LI is true at the beginning of the iteration
	- o the loop guard being true
		- \triangleright we are running an iteration
	- o simple assignments and conditionals in the loop body
	- o the preconditions (sometimes)

EXIT: the loop invariants and the negation of the loop guard imply the postcondition

- proved by point-to reasoning typically using
	- o the loop invariant
	- o the negation of the loop guard
	- o simple assignments and conditionals after the loop

TERM: the loop terminates

- **•** proved by operational reasoning typically using
	- o the assumption that the LI is true at the beginning of the iteration
	- o the loop guard
	- o simple assignments and conditionals in the loop body

TERM: the loop terminates

● Format of a termination proof using operational reasoning

> "*on an arbitrary iteration of the loop, the quantity _____ gets strictly smaller* but it can't ever get smaller than *on which the loop guard is false*

or

"*on an arbitrary iteration of the loop, the quantity _____ gets strictly bigger* but it can't ever get bigger than *on which the loop guard is false*

More Complex Functions

- These techniques can be extended o but we will rarely deal with functions with more than one loop
- We can also factor out nested loops and the like into helper functions

o and then use the technique we just saw

Seriously??

- *All these proofs and complicated reasoning seem overkill!* o *the mystery function wasn't all that hard after all* o *we could just spot what was going on*
- Yes, but it won't be that easy for more complex functions o the technique we saw is **systematic** and **scalable** o reasoning about code will pay off
- Point-to reasoning is what we do in our head all the time when programming
	- o writing it down as loop invariants and contracts makes it easier not to get confused
	- o and the **-d** flag will catch lingering issues at run time

Epilogue

Where are we?

- We fully documented f o function contracts o loop invariants o key assertions
- We fixed the bug
- We gave mathematical proofs that o all the calls it makes are safe o it is correct
- Let's enjoy the fruit of our labor with some more testing!

```
int f(int x, int y)
\pi/2 requires y \ge 0;
\angle//@ensures \result == POW(x,y);
{
 int b = x;
 int e = y;
 int r = 1;
 while (e > 0)//@loop_invariant e >= 0;//@loop_invariant POW(b,e) * r == POW(x,y);
 \{if (e % 2 = = 1) {
    r = b * r;
   }
  b = b * b;
  e = e / 2;
  }
\pi/2 assert e == 0;
return r;
}
```
