Integers

Number Representation

Representing Numbers

® \We, people, have many ways to represent numbers

HAA
[

VII

q:

I

seven

sept

SJ0

® They all express the same concept

O that some collection consists of seven things

o

Decimal Numbers

O,

® The decimal representation Is succinct and systematic

O It uses ten symbols: 0, 1, 2, 3,4, 5,6, 7,8, 9
» each represents a number between 0 and 9

» they are the digits
O “ten” is the base

This comes from us

ﬁ having 10 fingers

® Any number Is represented as a sequence of digits

O the position 1 of a digit d indicates Its Importance
> it contributes dx10'to the value of the number

O the value of the number Is the sum of the contribution of each

position

1 is at position 3

~
1209 = 1x103 + 2x102 + 0x10t + 9x109

2 Is at position 2

O is at position 1

9 is at position O

L

~pN L

10 is the base

e

Decimal Numbers

® |t uses ten symbols:
0,1,2,3,45,6,7,8,9

O each represents a number
between 0 and 9

® Different languages
use other symbols

0 1 2 3 4 5 6 7 8 9

Arabic .) Y ¥ ¢ o ! % A 9
Bengall O |l =R[V©W |8 ||V |9|F|s
ghiese 1O | —|Z| = |m|E|A LN R
ey | B (R | BB | B B R
ey (O X 0| | X8| £ | & &k
Devanagari o |2 R F|¥|W| % |w]|<]|R
Gujaratl (|3 | ¥ |U| & |9| |k
Garmukhl o[B|[8|U|E |2t X
Kannada O3] 48 | @ | & & |2 |0 | §&
Khmer o [| m | |&] @ | |a|&
Lao O|le|é|DV|E|E|d |N|g|w
Limbu O|L]|A]S X | C & € |V |7
Malayalam s—|lo|loa|ln|@|@|om]|e |a]|ad
Mongolian 0 N N 2 O A G) / ¢
Myanmar | 0 |9 | J|R |G |9| 6 lg|o]E
Oriya Q19219 | |&[2|®|T|d
Tamil O|ls|o|® |& | @6 |oT|Y|5w
Telugu o ||| 3 |e|”|e|e|lT|e
Thai ol | |lm|&|&| % || &«
Tibetan o |lolalz|el|luals|a|alr
Urdu T A T o R T IO BV B

Decimal Numbers

® Positional systems make it easy to do calculations
O addition is done position by position

9+7 =06

1 1 <carry
1209 %with acarry of 1

+ 9517
10726

O multiplication Is done as iterated additions

1209
x 402

2418

0
+ 4836

486018

h

We used our
10 fingers for that

Binary Numbers

There are two voltages
In computer chips:

on and off
(in reality, it's more complicated)

Van

® Computers have one way to represent information: binary

O they use two symbols, 0 and 1

_

1 =0n
e 0 = off

® |n particular, they represent numbers in positional notation
using base 2

O that’s the binary representation

That’s what we call the
binary digits O and 1

® Any number Is represented as a sequence of bits
O the position | of a bit b indicates its importance

> it contributes bx2!to the value of the number

O the value of the number is the sum of the contribution of each

position

1 is at position 5

L

... Ois at position 3 ...

1 is at position O

N

NN

100101 = 1x2° + Ox24 + Ox23 + 1x22 + Ox21 + 1x20

=0

2 1S the base

L

o

Binary Numbers

® Positional systems make it easy to do calculations
O addition is done position by position

1111 @ Here, 1+1=0 This works
11011 with a carry of 1 exactly as

with decimal
+ 1110 numbers
101001

O multiplication Is done as iterated additions

1010
x 101
1010

0

+ 1010
110010

Converting Binary Numbers to Decimal

® Simply use the positional formula and carry out the
calculation in decimal

100101, = 1x2° + 0x2% + 0x23 + 1x22 + 0x21 + 1x2°

/ 32 +0 + 0 + 4 + 0 + 1

Base 37[10]

® Alternatively, use Horner’s rule:.

100101, = (((1x2 +0) x2 + 0) x2 + 1) x2 + 0) x2+ 1
(2%x2+0)x2+1)x2+0) x2+1
(4%x2+1)x2+0)x2+1
(9%x2+0)x2+1

18 x2+ 1

37[10]

7\

That’s because
1%25 + 0x24 + 0x23 + 1x22 + 0x21 + 1x20 = ((((1x2 + 0)x2 + 0)x2 + 1)x2 + 0)x2 + 1

Converting Decimal Numbers to Binary

® Repeatedly divide the number by 2, harvesting the
remainder, until we reach O
> the remainder is either O or 1

O the binary representation comes out from right to left

.. divided by 2 is... with remainder ...
. (/2/: 18 - rightmost bit
18 /2= 9 0
4 /2= 2 0
/ leftmost bit
2(/2/:1 O / \
1 /2= 0 17 1JO{ 101

That’s 37 In binary

Hexadecimal Numbers

® Binary is fine for computers, but unwieldy for people

110000001111111111101110

> hard to remember
» hard to communicate

® The hexadecimal representation makes things simpler

O It uses 16 symbols: the numbers 0 to 9 and the letters Ato F
» each represents a number between 0 and 15

» they are the hex digits
Opey 0000;; Opg | 8ugy 1000y

The > 316]
decimal to blnaryto hexadecimal 416 0100y 4g | Cpe 1100y
conversion table
(0 to 15) Sugg 0101py Spg | Dpg 1101y

10 ey 011l 7po| Fue 111lp

S101

101

110
1200
1300
1400
1501

11

Hexadecimal Numbers " 0" 220 oo 2
26 0010p; 24q | Apg 1010y 10pug
® 1 hex digit corresponds to 4 bits | % %1% 4uo| Cue 1190 2uo
» and vice versa “ue 0100 Suop | Ppg M0 Lopa
6 0110 6 E 1110 14
" " [16] [2] [10] [16] [2] [10]

® This makes converting between
Iney 0111y 7pg | Fpe 1111y 15pg

hex and binary very simple

O
O

nex to binary: replace each hex digit with the corresponding 4 bits

ninary to hex: replace each group of 4 bits with the corresponding
nex digit

1100 0000 1111 1111 1110 1110
C 0 F F E E

» People find it a lot simpler to remember and X

communicate binary information in hexadecimal [S ————
O and not just numbers though!

Hexadecimal Numbers

® Any number has a positional representation in hex
as a sequence of hex digits
O the position 1 of a hex digit h indicates Iits importance
> it contributes hx16'to the value of the number

O the value of the number is the sum of the contribution of each
position

COFFEE = Cx16° + 0x16% + Fx16° + Fx162 + Ex161+ Ex169

After plugging in 12 for C, etc,

® \We can also do arithmetic in hex that's 12648430 in decimal
O but hex is primarily used to represent two types of non-numerical
data
» memory addresses — next lecture

> bit patterns —

later in this lecture

12

Numbers in CO

® All numbers in CO have type int

® \\We can enter numbers in CO
O In decimal

Linux Terminal
When we enter

O In hexadecimal COFEEE inhex | ERASYL
> by prefixing them with 0x CO interpreter (coin) ...
| ~-> OXCOFFEE;
® Internally, It stores 12648430 (int)

them In binary --> OXCOFFEE == 12648430;
true (bool)

O but there Is no way to enter
numbers in binary

... coin responds it's

12648430 in decimal COFFEE and 12648430 are
two different ways of entering
® CO always prints numbers the same number

back to us in decimal

14

Numbers in CO

® CO always prints numbers back in decimal

® Use the function int2Zhex In the

Loads the <util>
library when starting coin

iy

<util> library to display a number
In hexadecimal

O as a string, not an int

There is no int2bin

You can write your own!

Mnux Terminal

coiri -l util
CO interpreter (coin) ...

--> Int2hex(0OXCOFFEE);
"O0COFFEE" (string)
--> Int2hex(12648430);
"O0COFFEE" (string)

15

Fixed-size Number Representation

16

Machine Words

® Computers store and manipulate binary data
O everything Is a bit in a computer

® Computer hardware processes batches of k bits in parallel
O a batch of k bits is called a machine word
O howadays, a typical value of k is 32

® Computation Is very efficient on whole words
O but less so on parts of words

® Most programming languages use a word to represent an int

O In CO, an int 1s always 32 bits long

» Iinternally, 37 1s not represented as 100101
but as 00000000000000000000000000100101

132 bits

17

Fixed-size Numbers

® A k-bit computer uses exactly k bits to represent an int

This will simplify
our examples

That’s a computer whose
words are k bits long

® In our discussion, we wiII(ssume that k = 4
» but in CO, an int is always 32 bits long

® |In a 4-bit computer, 6 Is not represented as 110 but as 0110
» Numbers have a fixed-size in a computer t
4 bits

Numbers in Math vs. in a Computer

® In math, there are infinitely many numbers | _ [h¢Pedinmig otie

In decimal and binary and hex

O we visualize them as an infinite number line V

| | | | | | |
l l l l l l l l l | | | | 1
8 9 10 11 12 13 14 15 16 17 18 19 20 21

|

I

3
1

| | | | |
| | | | |
2 4 5 6 7

1 1 100 101 110 111
4 5 6 7

—
8 i 0 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010 10011 10100 10101
0 1 2 3 8 9 A B C D E F 10 11 12 13 14 15
® In a 4-bit computer, there are finitely many numbers
O exactly 16 = 24
O the line is finite
O On a k-bit computer,
I I I I I I I I I I I I I I I I
A Wke can represent only
1011 1100 1101 1110 1111 " "
00000 00101 00210 00311 01400 01501 01610 01711 10800 10901 1(;;[0 . - S . . 2 dIStlﬂCt numbers
‘ | » CO0 can represent only
: 32 Aicti
A bits 234 distinct numbers

18

19

Numbers in a Computer

® |n a 4-bit computer, we can represent only 24 distinct numbers

| | | | | | | | | | | | | |
| | | ! ! ! ! ! ! ! ! ! ! !

2 3 4 5 6 7 8 9 io 11 12 13 14 15

0

I I
I I
0 1

0

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
‘ 0 1 2 3 4 5 6 7 8 9 A B C D E F ,
4 bits

® \We cannot represent numbers larger than what fits in 4 bits

oe.g., 21
» in binary it's 10101, but that requires 5 bits

® Even if we avoid writing larger numbers in a program, they
may emerge during computation

O Intermediate results need to be stored in a word In memory!

Overflow

® The result of adding two int’'s may not fit into a k bits word

» It may be a k+1 bit number!
» the result may be even longer when multiplying two int’'s

12+9=21 6*9 =54

This is evident when \
carry > 1 carrying out these 0110 (6)
1100 (12) % operations in binary x 1001 (9

+ 1001 (9) 110
10101 (21) 0
0
\ + 110
overflow bits'— 110110 (54)

4-bit examples

® \We have an overflow when the result of an operation

doesn't fit in a machine word
» K bit operands, but the result has more than k bits

20

How to Deal with Overflow?

® The result of an operation does not fit into a k-bit word

| |
01007T6X0

21

4 bits

are

These numbers
not representable
with 4 bits

® Two common approaches to handling overflow

1. Raise an error or an exception
» an error aborts the program
» an exception is an error that can be handled to continue c

2. Continue execution in some meaningful way

omputation

22

Handling Overflow as Error

® Signaling an error is not
always the right thing to do

O The Ariane 5 rocket exploded
on its first launch because an
unexpected overflow raised an
unhandled exception

L M BV 32 :=TBD.T_ENTIER_32S ((1.0/C_M _LSB BV) *
if L M_BV_32 > 32767 then

P_M_DERIVE(T _ALG.E_BV) := 16#7FFF#;
elsif L M_BV_32 < -32768 then

P_M _DERIVE(T _ALG.E_BV) := 16#8000%#;
else

P_M DERIVE(T _ALG.E BV):=UC _16S EN 16NS(TDB
end if;
P M _DERIVE(T_ALG.E_BH) =

UC _16S EN 16NS (TDB.T_ENTIER_16S ((1.0/C_M_LS

23

Handling Overflow as Error

® Treating overflows as errors makes it hard to write
correct code involving ints

O hard to debug
O hard to reason about

Writing one or the
other is the same

® Example /

on+ (n-n)and (n+n)-nareequal in math
O but with fixed size numbers, they may yield different outcomes

> n+(n-n)isalwaysequalton ' Wiiting one or the

ther is not the same:
> (n +n) - n may overflow 0 | >ame,
() ay overtio although it feels like it is

® People instinctively use math when writing code

O we want the laws of arithmetic to hold
» whenever possible

24

Modular Arithmetic

Continuing Computation on Overflow

® [nstead of aborting execution, just ignore the overflow bits

12+9=_.. 6*9=...
@ 1 0110 (6)
1100 (12) x 1001 (9)
+ 1001 (9) 110
10101 (21 5) 0
0
\ + 110
overflow bits 110110 (54 6)

—

® The result of the operation is what fits in the word

...=D5 ...=06

O This Is not the correct mathematical value
» but does it relate to it in any way?

4-bit examples

Ignoring the Overflow Bits

1 O Throwing out the overflow bit amounts to
1100 (12) subtracting 10000 from the result
+ 1001 (9) » that’s 16 in decimal
10101 (21 5)

@ 10101 - 10000 = 0101 D

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 100001000110010100111010010101

l |
4 bits

O Note that 16 is 24
» 4 1s how many bits our words have

Ignoring the Overflow Bits

0110 (6) O Throwing out the overflow bits amounts to
x 1001 (9) subtracting a multiple of 10000 from the result
130 > that's 16 in decimal
0
+ 110
110110 (54 6) @

110110 - 11 * 10000 = 0110

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 100001000110010100111010010101

l |
4 bits

® |n general, we subtract as many multiples of 16 (= 24) as
necessary so that the result fits in 4 bits

® |gnoring the overflow bits computes the result modulo 16

28

Computing Modulo n

n>1

® Evaluate an expression normally but return the remainder
of dividing it by n
» a number between 0 and n-1
Ol12+9=_.416°
09*6 ~mod 16 6

® This is called modular arithmetic

® Modular arithmetic works just like traditional arithmetic

Modular Arithmetic

® Modular arithmetic obeys the same laws as traditional
arithmetic

: X+YV = + X Commutativity of addition
> for expressions Y Zmodn ¥
Involving + and * (X+y)+z=_4,X+(y+2z) Associatiity of addition
S0 far X+0=,4nX Additive unit
X*Y =oqn Y * X Commutativity of multiplication

(X*y)*z =, 4, X*(y*2z) Associativity of multiplication

X*1=_.4nX Multiplicative unit

X*(Y+2)= .4, X*y+x*z Distributivity

X*0=

0 Annihilation

mod n

® \We use these laws implicitly every time we do arithmetic
O In particular when writing programs

30

Handling Overflow in CO

® CO discards overflow bits
O CO handles overflow using modular arithmetic

O numerical expressions are computed modulo 232
» because CO assumes 32-bit words

® This makes it easy to reason about programs

O modular arithmetic works like traditional arithmetic
> we apply it innately

O there is no need to consider special cases for overflow
= for expressions using + and * so far

Overflow does not abort computation in CO

31

Reasoning about int Code

® This function always returns

string foo(int x) {

/1

This is equivalent to

X+1==1+x __

Nt z = 1+x;
f(x+1==2)
return
else
return ;

-

by substitution
y \‘ (modulo 232)
//‘

X+1 == 1+x
IS always true
by commutativity of addition

® \We don't need to worry about 1+x

or x+1 overflowing

O they may, but that doesn’t matter
» overflow doesn’t abort computation

» the laws of (modular) arithmetic tell us they
always evaluate to the same value

What does Computing Modulo n Mean?

® Rather than viewing the numbers 16
. 31 17
as lying on an infinite line, ;
. 15 0000 1
we think of them as 30 18
wrapping around o vino
a circle with n , L
. 13 3
positions
O values that are
Example for
equal modulo n 28 | 12 - 16 "
share the same n=
position » .
57 1011 0101 5
10 6

1010 0110
This position corresponds to %26 9 7)
10, 26, 42, 58, 74, 90, 1006, ... o 8 0111

1000

25 23
24

What does Computing Modulo n Mean?

® \We carry out computations 16
31 17
normally but return the 0
position of the result 30 e AN 18
on the circle 14 2
012+9=_ 15 . .
* A — 13 12 + 9 lands 3
O 9 6 mOd 16 6 1101 here because 0011
21is5mod 16
® Then, addition x| 12 4 5
corresponds to and 9 * 6 lands
: : here because
moving clockwise 11 54 is 6 mod 16 5
around the circle 7\) a
O to compute 12 + 9 10 6
start from 12 and
: : 26 9 4 22
step 9 times clockwise 1001 8 0111

1000

25 23
24

34

What about the Negatives?

® The negative numbers too
wrap around the circle

O -1 ~mod 16 15 30

O -6 ~mod 16 10
29
13
1101
12
28 1100
11
1011
27

This position corresponds to
..., -86,-70, -54, -38, -22, -6, 20
10, 26, 42, 58, 74, 90, 106, ...

14

1110

10

1010

16
31 17
0
15 0000 1
1111 0001 18
-16 2
-1 -15 0010
2 -14 19
3
0011
-13
Example for
-12 4 20
n — 16 0100
-11
5
0101
-6 -10 21
7 -9 6
-8 0110
9 4 22
1001 8 0111
1000
25 23
24

Subtraction modulo n

® \\Ve can then do subtraction y 16
17
modulo n 0
15 0000 1
Ob-7 —mod 16 14 30 1111 0001 18
» We evaluate it normally but 19 PR 2
return the remainder of
dividing it by n 29 [\ o RNEE
: 1101 5-7 lands 0011
> Equwal_e_ntly, return 3 S 13
the position of the 2is 14 mod 16
result on the circle 2w | 12| 2| A
® X -y IS stepping y times L\ S
counter-clockwise L, \(H 5 B ool f
from X 10 ;L s)
O to compute 5 - 7 start o ; ' i o
from 5 and step 7 times - 1001 g o1l ”
counter-clockwise o

25 23

36

Subtraction modulo n

® \\Vith subtraction, we can define the additive inverse -x of

any number X
» the number that added to x yields O

-X ~mod n 0-X

® Then, more laws of traditional
arithmetic are valid in modular
arithmetic

X+ ('X) ~mod n 0

'('X) ~mod n X

Additive inverse

Cancelation

O More programs behave as if we were using normal arithmetic

» even in the presence of overflows

37

Reasoning about int Code

string foo(int x) {
INtz=X+X-X;
If (z == X)
return
else
return ;

® This function always returns
O X + X - X = X In normal arithmetic
OSOX+Xx-xXx==x1InCO0

® |f the compiler understands x + X - X
o as x + (X -x), then
»X+(X-xX)=x+0 by additive inverse
= X by additive unit
O as (X + X) - x, then
» (X +X)-x=x+(x-X) byassociativity of +

% =X as above

X + X may overflow
but it doesn’t matter

38

Two’s Complement

39

Printing Numbers

® Modular arithmetic tells us that
many numbers correspond
to the same bit sequence

B 14
1110 could stand for 1110
ntx » | ..., -82, -66, -50, -34, -18, -2, _
14, 30, 46, 62, 78, 94, 110, ... 29 [13
1101 3
® But what number T
should the computer
print 1110 as? L\
O 147 5, 1011
O -27 10
o 787
Say our program reaches 26
O ... printint(x);

where x contains 1110
(on a hypothetical 4-bit computer)

16
17
0
0000 1
0001 18
-16 2
-1 -15 0010
-14 19
3
0011
-13
Example for
-12 4 20
n — 16 0100
-11
5
0101
-10 21
7 -9 6
-8 0110
/ 22
8 0111
1000
23
24

40

Comparing Numbers

® Modular arithmetic tells us that . 16 B
many numbers correspond 0
to the same bit sequence - A 18
1110 could stand for — 111fo -1 4 -15 00210

intx >

..., -82, -66, -50, -34, -18, -2,
14, 30, 46, 62, 78, 94, 110, ...

0011 could stand for

It ...,-((,-61, -45, -29, -13, 3, 0
19, 35, 51, 67, 83, 99, 115, ...
-5 -11
® But what should 11 5
1011 0101

X >y evaluate to? 77 6 10 21

10 _ } 6
O true? 1010 / -8 7 0110
O false? 26 9 7 22

1001 8 0111
1000
25 23

41

The Range of int's

® In both case, the computer needs

to decide what number each
K-bit word corresponds to

This Is the opposite
of the earlier problem: 29
what k-bit word does each 13
1101
number correspond do

12

28 1100

® Common requirements

O successive bit values 11
should correspondto ., " "

successive numbers
Q 16,1, -14, ... won’t do

O 0 should be one of them

26

14

1110

10

1010

31 17
0
15 0000 1
1111 0001 18
-16 2
-1 -15 0010
-2 -14 1o
3
0011
-13
Example for
-12 4 20
2k — 16 0100
-11
5
0101
-6 -10 21
7 -9 6
-8 0110
9 4 22
1001 8 0111
1000
25 23

The Range of int’s

® \What number does each k-bit
word correspond to?

» successive bit values should 30
correspond to successive
numbers

» 0 should be one of them 29 13

1101

® Pick the first 2%
integers starting at 0z | 2
o hereO,1,...15

» 1110 is printed as 14 ifl
» 1110 > 0011 returns true </

® Int's that behave this way
are called unsigned

26

<0 This is not how COQ’s int’s work >

16
17

0]
0000 1
0001 18
-16 2
-1 -15 0010
14 19
3
0011
-13
Example for
-12 4 20
2k — 16 0100
-11
5
0101
-10 21
7 9 6
8 0110
4 22

43

The Range of int’s

® \What number does each k-bit
word correspond to?

» successive bit values should 14
correspond to successive
numbers

» 0 should be one of them ;

1101

® \\Ve also want some
negative numbers = | ;7

O about half

1011

® One common option *
O Pick the range -2 to 2k1 -1

O This choice is called 10
two’s complement

1110

-19

-20

-21

1010

18

22

Two’s Complement

® Each k-bit word corresponds to a
number between -2¥1 and 2k1 - 1

O the negative numbers 14
go from -1 to -2%1 2

O the positive numbers .
go from 1 to 2k1 -1 -3

O and thereis O

18

-19

12 1100 -20

® The leftmost bit tells
the sign 21
o 1 for negative numbers ;; \
o 0 for positive numbers and O 6

ﬁlt IS called the sign bit .

Efficient way to determine
the sign of a number

22

44

Two’s Complement

® Each k-bit word corresponds to
a number in the range

17

2kl to 2k1 -1 14 18
2 2
1110 0010
O The smallest number »
is called int_min B/ 3 3\
> _2k-1 1101 19 13 0011
» 100...000 in binary
12 1-1210 -20 12 oio 20
O The largest number
IS called int_max 2)
> 2k'1 -1 1;11 0101
C 11 10 21
» 011...111 In binary
-6 6
1010 0110
O Other notable numbers: 10 22
» 01is 000...000
1 i . ' = 23 _
»-11s 111...111 int min =-23| INnt_max =2°-1

46

Two’s Complement Overflow

® An operation overflows it its

. . 17
mathematical result Is
- 1
outside the range 14 18
-2kl to 2% -1 -2 2
1110 0010
-14
/\— 13 P g 19
Ifitis < -2K1 . this is AT a3\
sometimes called underflow
12 1-1210 -20 12 oio 20
® E.0.,
oint_ max + 1 5\ “ /s
]] 1011 0101
O Int._min -3 “ 10 21
: 6 6
O 2 * Int_max o o
O 17 * Int_min 10 7 22
0111
) 23

47

nt's in CO

® CO represents integers as 32-bit words
® |t handles overflow using modular arithmetic

® The range of int’'s is based on two’'s complement
Oint._max =231 -1=2147483647
oint._min =-231 =-2147483648

O Their values are defined as Linux Terminal
the functions int_max() and # coin -| util
int_min() in the <util> system CO interpreter (coin) ...
library

--> Int_max();

2147483647 (int)
--> Int_min();
-2147483648 (int)
-->

Reasoning about int Code

® Comparing int values in CO does not work like comparing

numbers in normal arithmetic
. . ® This function does not always return
string bar(int x) {
I (x+1 > Xx) e .
_ o If X Is Int max, It returns |
return ; T
» but in math x+1 > x for any x!
else
return :
® \When reasoning about code that uses >, >=, < and <=, we
often need to account for overflow /N
Also operators
» by considering special cases dealing with sign

O Code that only uses +, * and - doesn’t need a special treatment

48

49

Division and Modulus

50

Operations on int’s

® So far, we learned how CO handles
o+, - * using modular arithmetic
O >, >=, <, <=. using two’'s complement
O Division is missing!

® \\We are used to division on real numbers:

O x/y Is the number z such that z*y = x
> ify # 0

== and !=too

/

® But this definition doesn’t work with integers

O there Is no integer z such that 2*z = 3

Integer Division

® With integers, there is not always z such that z * y = x
O z Is x/y In calculus

® \We introduce a new operation, the modulus, to pick up

the slack
O We want to define the operations x/y and x%y so that
integer division of x by y modulus of x by y
N /

(XIy) *y + (x%y) = X
® That's not enough!

O defining x/y to always return O and x%y to return x would work
» we don’t want that!

51

52

Integer Division and Modulus

(Xly) *y + (X%y) = X

® \We also want the modulus to be between 0 and y-1

O Also require We take the absolute value
In case y Is negative

O0=[x%vy|<ly|

® This is still not enough!

O defining 9/4 to be 3 and 9%4 to be -3 would work
0 (9/4)* 4+ (9%4)=3*4-3=9 and 0<|-3|<4
» We don’t want that!

® \\Ve want division to “round down”
O In a calculator, 9/4 = 2.25

O so with integer division, we want 9/4 = 2
» and therefore 9%4 =1

53

Integer Division and Modulus

(xly) *y + (x%y) =X
0=[x%vy|<ly|
Division should “round down”

® But what does “rounding down” mean for negative
numbers?

O does -2.25 rounds down to -2?) “down” towards 0
O Or dOeS '225 I’Ound dOWﬂ (0] '3? ‘J“down” towards -«

® In CO, integer division rounds toward O

O In other languages, it rounds towards -

> S0 -9/4==-21nCO

Python,
for example

54

Division by Zero

® |n math, division by zero is undefined

® |n a program, division by zero is an error

O CO will abort execution Linux Terminal
coin
: : CO interpreter (coin) ...
® Any time we have x/y Iin a program, ISy
we must have a reason to believe Error: division by zero.

that Yy 1= (0 l-_-iSt position: <stdio>:1.1-1.4

O 0 Is not a valid value for the
denominator of a division

® In CO, we flag invalid values using preconditions

O some primitive operations come with preconditions
» not just user-defined functions

55

Safety Requirements

® Integer division, x/y, has the precondition
[/@requires y != 0;

® There Is another invalid input:

int._min()/-1 also aborts the program

» this Is because computer chips
raise errors on these values

® Integer division has a second precondition:
[/@requires !(x == Int_min() && y == -1),

® Code that uses / or % must be safe
O We must prove that these preconditions are satisfied

X%y
has the same
preconditions

56

Operations on int's — Summary

® + - * handled using modular arithmetic

== and != too

® > >= < <= handled using two’s complement

® Xx/y rounds towards O — always

® x/y and x%y have preconditions
[/@requires y !=0;
[l@requires (X == Int_min() && y == -1);

57

Bit Patterns

58

Using int Beyond Numbers

® So far, we used the type int to represent integers
O humbers!

® But in CO, an int is always 32 bits

® \e can use an int to represent any data we can fit in 32 bits
O pixels, network packets, ...
Then, an int does not represent a number but a bit pattern

® CO has a special set of operations to manipulate bit patterns
O they are the bitwise operations and the shifts
o+, -, *, [and % are called the arithmetic operations

We could use the arithmetic operations to manipulate bit patterns
but that's inefficient and error prone

Pixels as 32-bit int’s

® A pixel IS a dot of color In an image This is called the
ARGB representation

O The color of a pixel can be described by specifying/
» how much red, green and blue it contains
» how opaque it is — this part is called the alpha component

® Pixels are efficiently represented as bit patterns

alpha red green blue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

) :) : * A value of 0 means there is no blue
Its 0-7 give the mtenS”:y of blue » A value of 255 means maximally blue

nits 8-15 give the intensity of green
its 16-23 give the intensity of red
nits 24-31 specify the opacity < 0 means fully transparent

« 255 means fully opaque

O O O O

59

Pixels as Bit Patterns

® To describe a pixel, we need to give all its 32 bits

—

» E.g.,10110011011100110101101011111001 This is mind numbing!
o We are better off using@xadecimal
> 0xB3735AF9 We always use hex
with bit patterns
alpha red green blue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 /7 6 5 4 3 2 1 O

1011 0011 0111 0011 0101 1010 1111 1001
B 3 7 3 5 A F 9

Back%round = Heres he color

60

61

Bitwise Operations

Bitwise Operations

® The bitwise operations manipulate the bits of a bit
pattern independently of the other bits nearby

® They are
~ — pronounced “not” — Takes a single argument
& —pronounced “and” —
| — pronounced “or” Take two arguments
A — pronounced “xor” —

® |et's see how they work on an individual bit

62

Bitwise Operations on One Bit

® Here are the tables This says that:
: *0&01s0
that give the output C0&1is0
' «1&0is0
for each input /4;ﬁi;-1&151
and & 0 1 or |
0 0 0 0 0
1 0 1 1 1
XOr A 0 1 not ~
0 0 1

64

Bitwise Operations

® CO’s bitwise operations take int’'s as input and return an int
O there is no type for individual bits in CO

® They apply the tables on each bit of their inputs, position

by pOSition | But we know
O so, if int’'s were 6 bits, they are 32 bit

000111 000111 000111
& 010101 | 010101 A 010101 ~ 010101
000101 010111 010010 101010

® & and | are related to && and || but
O & and | take two int’s and return an int
O && and || take two bool’s and return a bool

6-bit examples

65

Bitwise And — &

Let’s see how to use the bitwise operations to manipulate bit patterns

® |f we "and” any bit b with

o0 0, we always get O
0 b&0=0

O 1, we always get b back
QD b&l=b

B

<m ask

& 0 1
0 0 0
1 0 1

{T T?
b&0=0 b&1l=Db

® |f the Int X Is a bit pattern, then x & m Is an int that
O has the same bits as x where mis 1

O and has a zero where mis O

® The int miIs called a mask

O It allows us to retain specific bits of interest in X

&: Clearing Bits

alpha red green

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

& 0

1

< mask

0 0

0

1 0 1
blue
b&0=0 b&1=D

® \We want to write a function that returns a pixel identical to

0 but with no red In it
» zero out red component of p — bits 16-23
» preserve the all other bits

® \\We can use the mask OxFFOOFFFF

» bits 16-23 are O
> all other bits are 1

® Here's how it looks on our example

This is 0xB3735AF9
\/7

Mask

—

int clear_red(int p) {

}

return p & OXFFOOFFFF;

This is OxB3005AF9

\/7

Backaround clear_red> Back

66

67

&: Isolating Red

alpha red

green

&

0

1

< mask

0

0

0

1 0 1
blue
b&0=0 b&1=D

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

® \We want to return a pixel with just the red component of p
» preserve the red component of p — bits 16-23

> zero out all other bits

o “and” p with the mask 0xO0FF0000

iInt make_red(int p) {

return red:

}

int red = p & 0XOOFFOO0OO0;

N

Mask

This is 0xB3735AF9
\/7

Background

make red >

This is 0x00730000
\/_

Where’s the red?
The alpha channel
ISO00 soitis
totally transparent

Background

68

Bitwise Or — |

® [f we “or” any bit b with

o 0, we always get b back
QblO=b

O 1, we always get 1

R O |— (KT

R |O|O
SN

Qbj1=1 {T ﬁ
b|[0=bh b|1=1

® Common uses of | are

O setting bits to 1 ' This is similar to clearing bits with &
O constructing a bit pattern from parts

69

| Opacifty

| 0 1
0| o 1
1 1 1

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O b|O:b b|1:1

® \We want to make a pixel fully opagque

» set the alpha bits to 1 — bits 24-31
» preserve the other component of p

® \We can “or” p with OxFFO00000

> bits 24-31 become 1

> all other bits stay as in p int opacify(int p) {
return p | OXFFO00000;
}

Same color but
fully opaque

This is 0xB3735AF9 This is OXFF735AF9
\/7 \/7

Back

opacify > Back

7

70

: Constructing Pixels from Parts |

alpha

red green

blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O b|O:b b|l:1

® Return a pixel with the same green component as p
and the same alpha, red and blue components as g

O Isolate the green component of p
using the mask OxO0O00FFOO

O Isolate the other components of ¢

using the mask OXxFFFFOOFF

. . (11 7 } M
o combine them with % A = G

If p 1Is OXB3735AF9, then
0 greenis 0xO0005A00

int franken_pixel(int p, int q) {
Int p_green = p & 0xO000FFOO;
int g_others = g & OXFFFFOOFF,;
return p_green | q_others;

If 0 i1Is OXCDAL1ES805, then | OXCDA10005
g others is 0OXxCDA10005 = OXCDA15A05

This iIs 0xB3735AF9
\/7

This is OxCDA1E805

\/7

Background

Backg

This is OXxCDA15A05
\/7

franken_pixe> Bac k foun d

71

Bitwise Not — ~

® Bitwise negation flips bits

~: Flipping bits o

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

® Return the pixel with the same opacity but inverted colors

» preserve the alpha channel

» change the value of all other channels to 255 minus their original value
Q that’s the same as flipping the bits of all channels

Int invert(int p) {
return (p & OXFFO00000) | (~p & OXOOFFFFFF);

}

This is 0xB3735AF9 This is OxB38CA506
\/7 \/7

Background opacify > Background

72

73

Bitwise Xor — 2

® |f we “xor” any bit b with @
o 0, we always get b back

Qb”r0=Db 0

O b itself, we always get O

Q b”b=0 {

O furthermore, “xor” is associative brA0=b

and commutative

® One consequenceisthat(m ™ k) k=m

O If m is a message and k is a key
then x = (m ” k) Is the encryption of m with k

O to decrypt x, we do x * k, and m pops out

® “xor’ is commonly used in cryptography

74

Shifts

Moving Bits Around

® The bitwise operations manipulate each position
iIndependently from all other positions in a bit pattern

O We can’t use them to move bits to new positions

® The shift operations enable us to move bits around
O left shift: x << k moves the bits of x left by k positions
O right shift: x >> k moves the bits of x right by k positions

/L N\

The int X is The intkis
understood as| |understood as
a bit pattern a number

® Since an int has 32 bits, k must be between 0 and 31
/l@requires 0 <= k && k < 32; k

Unsafe otherwise

76

Left Shift

® X << k shifts the bits of x left by k positions

O the leftmost k bits of x are dropped

O the rightmost k bits of the result are set to 0

® SO
0 0101 << 1 evaluates to 1010:

O 0101 << 3 evaluates to 1000:

0101

Il

1010

0101

/

1000

4-bit examples

77

Blue Everywhere

alpha

red green

blue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

O Isolate the blue component of p
O put it in the red, green and blue positions

}

Int blue_everywhere(int p) {
Leave alpha—=— int alpha = p & OXFF000000;
unchanged int blue = p & 0XxO00000FF,;

return alpha | (blue << 16) | (blue << 8) | blue;

This is 0xB3735AF9
\/7

Background

blue_everywhere >

® Return a pixel whose red and green components have the
same Iintensity as p's blue component

This is OxB3F9F9F9
\/7

Why is it gray?
Gray is when all
colors are the
same

Backc

/8

Right Shift

® x >> k shifts the bits of x right by k positions
O the rightmost k bits of x are dropped
O the leftmost k bits of the result are a copy of the leftmost bit of x

» This is called sign extension
ﬁ That's because in two’s complement,
the leftmost bit is the sign bit
® SO

0 0101 >>1 ==0010
,EJ The sign bitis 0, so we add O’s
O 0101 >> 3 == 0000

0 1010>>1==1101
EThe sign bitis 1, so we add 1’s
01010 >>3==1111

‘Sign bit

4-bit examples

Swapping the Alpha and Red Channels

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

® Return a pixel identical to p, but where the red and alpha
channel are swapped

If p is OXB3735AF9 we want 0x73B34AF9
~/ —~/

Back%round swap_alpha_red> Back%round

O Isolate the channels of p

O shift alpha right by 8 bits — 50 that its bits are in the red position
O shift red left by 8 bits = so that its bits are in the alpha position
O combine the parts and return

80

Swapping the Alpha and Red Channels

alpha red

green

blue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Int swap_alpha_red(int p) {
int new alpha = (p & OXxOOFF0000) << 8;
intnew red = (p & OxFFOO0000) >> 8;
int old green =p & 0xO000FFQOO;
intold blue =p & 0xO00000FF;

return new_alpha | new_red | old_green | old_blue;

}

® |Let's testit

This is 0xB3735AF9
\/7

swap_alpha_red >

Back

O Isolate the channels of p
O shift alpha right by 8 bits
O shift red left by 8 bits

O combine the parts and
return

This is
wrong!

/\/
This is QxFFH35AF9

Back

Swapping the Alpha and Red Channels

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
® \We have a bug! If p Is OXB3735AF9,
Int swap_alpha_red(int p) {
int new alpha = (p & 0XOOFF0000) << 8: — this is 0x73000000 | /"
ntnew red = (p & OxFFO00000) >> 8; —— this is OXFFB30000 | ¢
iInt old green =p & O0XxO000FFOO; ~ this is 0x00005A00 v
int old blue =p & O0XxO00000FF; —
this is 0X000000F9 | /"

return new_alpha | new_red | old_green | old blue;

}

® (p & OxFFO00000) >> 8 extends pp’'s sign bit over the 8
leftmost bits

O Beware of sign extension!

82

Swapping the Alpha and Red Channels

alpha

red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

® To fix the bug, get rid of the sign-extended bits

O mask after shifting

}

Int swap_alpha_red(int p) {
int new alpha = (p << 8) & 0xFF000000;
intnew red = (p>>8) & OXxOOFFO000
iInt old green =p & 0XxO000FFOO;
intold blue = p & 0xO00000FF;

return new_alpha | new _red | old_green | old_blue;

This solves the issue

—

This is equivalent to what we had,
but better be consistent

This is 0xB3735AF9
\/7

Background

swap_alpha_red >

This is O0x73B35AF9
\/7

Background

83

INt Summary

The type int is used to

® represent integers
O It uses modular arithmetic and two's complement

O It manipulates them using the arithmetic operations
>+1 T &-1 /1 %1 >1 >:1 <1 <=

® encode bit patterns

O It manipulates them using the bitwise operations and the shifts
> &-1 |1 ~1 A
> <<, >>

NEVER mix and match operations

O It does not make sense to multiply pixels
O nor to & two numbers

84

Arithmetic vs. Bitwise Operations

NEVER mix and match arithmetic and bitwise operations

® EXxceptions

Inside a processor chip,
« this is an efficient way to compute -x

O-X=~X+1 * it avoids the need for circuitry for subtraction
2 x << k is a very efficient way to computer x * 2.
OX<< k=x*?2k — You are very likely to use it

> in particular, 1 << k = 2K

O x >> k = x divided by 2 (Python division, not CO’s)

x

X >> Kk Is a very efficient too, but you are
unlikely to use it: it's the “wrong” division

