
Integers

Number Representation

1

Representing Numbers

 We, people, have many ways to represent numbers

 They all express the same concept

o that some collection consists of seven things

7

VII

seven

sept

sjö

2

Decimal Numbers

 The decimal representation is succinct and systematic

o It uses ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

each represents a number between 0 and 9

 they are the digits

o “ten” is the base

 Any number is represented as a sequence of digits

o the position i of a digit d indicates its importance

 it contributes d×10 i to the value of the number

o the value of the number is the sum of the contribution of each

position

1209 = 1×103 + 2×102 + 0×101 + 9×100

7

10 is the base

1 is at position 3 9 is at position 02 is at position 2 0 is at position 1

10 is the base10 is the base10 is the base

This comes from us

having 10 fingers

3

Decimal Numbers

 It uses ten symbols:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

o each represents a number

between 0 and 9

 Different languages

use other symbols

4

Decimal Numbers

 Positional systems make it easy to do calculations

o addition is done position by position

omultiplication is done as iterated additions

1xx1x

1209

+ 9517

10726

We used our

10 fingers for that
carry

1209

× 402

2418

0x

+ 4836xx

486018

5

9+7 = 6

with a carry of 1

2 is the base

Binary Numbers

 Computers have one way to represent information: binary

o they use two symbols, 0 and 1

 In particular, they represent numbers in positional notation

using base 2

o that’s the binary representation

 Any number is represented as a sequence of bits

o the position i of a bit b indicates its importance

 it contributes b×2 i to the value of the number

o the value of the number is the sum of the contribution of each

position

100101 = 1×25 + 0×24 + 0×23 + 1×22 + 0×21 + 1×20

• 1 = on

• 0 = off

That’s what we call the

binary digits 0 and 1

1 is at position 5 1 is at position 0… 0 is at position 3 …

2 is the base2 is the base2 is the base2 is the base2 is the base

There are two voltages

in computer chips:

on and off
(in reality, it’s more complicated)

6

Binary Numbers

 Positional systems make it easy to do calculations

o addition is done position by position

omultiplication is done as iterated additions

1111xx

11011

+ 1110

101001

carry

1010

× 101

1010

0x

+ 1010xx

110010

Here, 1+1 = 0

with a carry of 1
This works

exactly as

with decimal

numbers

This works

exactly as

with decimal

numbers

7

Converting Binary Numbers to Decimal

 Simply use the positional formula and carry out the

calculation in decimal

100101[2] = 1×25 + 0×24 + 0×23 + 1×22 + 0×21 + 1×20

= 32 + 0 + 0 + 4 + 0 + 1

= 37[10]

 Alternatively, use Horner’s rule:

100101[2] = ((((1×2 + 0) ×2 + 0) ×2 + 1) ×2 + 0) ×2 + 1

= (((2 ×2 + 0) ×2 + 1) ×2 + 0) ×2 + 1

= ((4 ×2 + 1) ×2 + 0) ×2 + 1

= (9 ×2 + 0) ×2 + 1

= 18 ×2 + 1

= 37[10]

BaseBase

That’s because

1×25 + 0×24 + 0×23 + 1×22 + 0×21 + 1×20 = ((((1×2 + 0)×2 + 0)×2 + 1)×2 + 0)×2 + 1
8

Converting Decimal Numbers to Binary

 Repeatedly divide the number by 2, harvesting the

remainder, until we reach 0
 the remainder is either 0 or 1

o the binary representation comes out from right to left

… divided by 2 is … with remainder …

37 / 2 = 18 1

18 / 2 = 9 0

9 / 2 = 4 1

4 / 2 = 2 0

2 / 2 = 1 0

1 / 2 = 0 1 1 0 0 1 0 1

That’s 37 in binary

rightmost bitrightmost bit

leftmost bitleftmost bit

9

Hexadecimal Numbers

 Binary is fine for computers, but unwieldy for people

110000001111111111101110

hard to remember

hard to communicate

 The hexadecimal representation makes things simpler

o it uses 16 symbols: the numbers 0 to 9 and the letters A to F

each represents a number between 0 and 15

 they are the hex digits
0[16] 0000[2] 0[10]

1[16] 0001[2] 1[10]

2[16] 0010[2] 2[10]

3[16] 0011[2] 3[10]

4[16] 0100[2] 4[10]

5[16] 0101[2] 5[10]

6[16] 0110[2] 6[10]

7[16] 0111[2] 7[10]

8[16] 1000[2] 8[10]

9[16] 1001[2] 9[10]

A[16] 1010[2] 10[10]

B[16] 1011[2] 11[10]

C[16] 1100[2] 12[10]

D[16] 1101[2] 13[10]

E[16] 1110[2] 14[10]

F[16] 1111[2] 15[10]

The

decimal to binary to hexadecimal

conversion table

(0 to 15)

10

Hexadecimal Numbers

 1 hex digit corresponds to 4 bits
and vice versa

 This makes converting between

hex and binary very simple

o hex to binary: replace each hex digit with the corresponding 4 bits

o binary to hex: replace each group of 4 bits with the corresponding

hex digit

People find it a lot simpler to remember and

communicate binary information in hexadecimal

 and not just numbers

0[16] 0000[2] 0[10]

1[16] 0001[2] 1[10]

2[16] 0010[2] 2[10]

3[16] 0011[2] 3[10]

4[16] 0100[2] 4[10]

5[16] 0101[2] 5[10]

6[16] 0110[2] 6[10]

7[16] 0111[2] 7[10]

8[16] 1000[2] 8[10]

9[16] 1001[2] 9[10]

A[16] 1010[2] 10[10]

B[16] 1011[2] 11[10]

C[16] 1100[2] 12[10]

D[16] 1101[2] 13[10]

E[16] 1110[2] 14[10]

F[16] 1111[2] 15[10]

1100 0000 1111 1111 1110 1110

C 0 F F E E

Not all hex words are this cute,

though!

11

Hexadecimal Numbers

 Any number has a positional representation in hex

as a sequence of hex digits

o the position i of a hex digit h indicates its importance

 it contributes h×16 i to the value of the number

o the value of the number is the sum of the contribution of each

position

C0FFEE = C×165 + 0×164 + F×163 + F×162 + E×161 + E×160

 We can also do arithmetic in hex

o but hex is primarily used to represent two types of non-numerical

data

memory addresses

bit patterns

After plugging in 12 for C, etc,

that’s 12648430 in decimal

next lecture

later in this lecture

12

Numbers in C0

 All numbers in C0 have type int

 We can enter numbers in C0

o in decimal

o in hexadecimal

by prefixing them with 0x

 Internally, it stores

them in binary

o but there is no way to enter

numbers in binary

 C0 always prints numbers

back to us in decimal

coin

C0 interpreter (coin) …

…

--> 0xC0FFEE;

12648430 (int)

--> 0xC0FFEE == 12648430;

true (bool)

Linux Terminal
When we enter

C0FFEE in hex ..

… coin responds it’s

12648430 in decimal C0FFEE and 12648430 are

two different ways of entering

the same number

13

Numbers in C0

 C0 always prints numbers back in decimal

 Use the function int2hex in the

<util> library to display a number

in hexadecimal

o as a string, not an int

coin -l util

C0 interpreter (coin) …

…

--> int2hex(0xC0FFEE);

"00C0FFEE" (string)

--> int2hex(12648430);

"00C0FFEE" (string)

Linux Terminal

Loads the <util>

library when starting coin

There is no int2bin

You can write your own!

14

Fixed-size Number Representation

15

Machine Words

 Computers store and manipulate binary data

o everything is a bit in a computer

 Computer hardware processes batches of k bits in parallel

o a batch of k bits is called a machine word

o nowadays, a typical value of k is 32

 Computation is very efficient on whole words

o but less so on parts of words

 Most programming languages use a word to represent an int

o in C0, an int is always 32 bits long

 internally, 37 is not represented as 100101

but as 00000000000000000000000000100101

16

32 bits

Fixed-size Numbers

 A k-bit computer uses exactly k bits to represent an int

 In our discussion, we will assume that k = 4
but in C0, an int is always 32 bits long

 In a 4-bit computer, 6 is not represented as 110 but as 0110
Numbers have a fixed-size in a computer

17

This will simplify

our examples

4 bits

That’s a computer whose

words are k bits long

Numbers in Math vs. in a Computer

 In math, there are infinitely many numbers

owe visualize them as an infinite number line

 In a 4-bit computer, there are finitely many numbers

o exactly 16 = 24

o the line is finite

oOn a k-bit computer,

we can represent only

2k distinct numbers

C0 can represent only

232 distinct numbers

0

0

0

1

1

1

2

10

2

3

11

3

4

100

4

5

101

5

6

110

6

7

111

7

8

1000

8

9

1001

9

10

1010

A

11

1011

B

12

1100

C

13

1101

D

14

1110

E

15

1111

F

16

10000

10

17

10001

11

18

10010

12

19

10011

13

20

10100

14

21

10101

15

The beginning of the

number line with numbers

in decimal and binary and hex

0

0000

0

1

0001

1

2

0010

2

3

0011

3

4

0100

4

5

0101

5

6

0110

6

7

0111

7

8

1000

8

9

1001

9

10

1010

A

11

1011

B

12

1100

C

13

1101

D

14

1110

E

15

1111

F

4 bits

18

Numbers in a Computer

 In a 4-bit computer, we can represent only 24 distinct numbers

 We cannot represent numbers larger than what fits in 4 bits

o e.g., 21

 in binary it’s 10101, but that requires 5 bits

 Even if we avoid writing larger numbers in a program, they

may emerge during computation

o intermediate results need to be stored in a word in memory!

0

0000

0

1

0001

1

2

0010

2

3

0011

3

4

0100

4

5

0101

5

6

0110

6

7

0111

7

8

1000

8

9

1001

9

10

1010

A

11

1011

B

12

1100

C

13

1101

D

14

1110

E

15

1111

F

4 bits

19

Overflow

 The result of adding two int’s may not fit into a k bits word
 it may be a k+1 bit number!

 the result may be even longer when multiplying two int’s

12 + 9 = 21 6 * 9 = 54

 We have an overflow when the result of an operation

doesn’t fit in a machine word
 k bit operands, but the result has more than k bits

20

1 xxx

1100 (12)

+ 1001 (9)

10101 (21)

0110 (6)

× 1001 (9)

110

0

0

+ 110

110110 (54)

carry

4
-b

it
 e

x
a

m
p

le
s

This is evident when

carrying out these

operations in binary

This is evident when

carrying out these

operations in binary

overflow bitsoverflow bits

How to Deal with Overflow?

 The result of an operation does not fit into a k-bit word

 Two common approaches to handling overflow

1. Raise an error or an exception

an error aborts the program

an exception is an error that can be handled to continue computation

2. Continue execution in some meaningful way

21

0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010 10011 10100 10101

4 bits

These numbers

are not representable

with 4 bits

Handling Overflow as Error

 Signaling an error is not

always the right thing to do

o The Ariane 5 rocket exploded

on its first launch because an

unexpected overflow raised an

unhandled exception

22

L_M_BV_32 := TBD.T_ENTIER_32S ((1.0/C_M_LSB_BV) * G_M_INFO_DERIVE(T_ALG.E_BV));

if L_M_BV_32 > 32767 then

P_M_DERIVE(T_ALG.E_BV) := 16#7FFF#;

elsif L_M_BV_32 < -32768 then

P_M_DERIVE(T_ALG.E_BV) := 16#8000#;

else

P_M_DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(TDB.T_ENTIER_16S(L_M_BV_32));

end if;

P_M_DERIVE(T_ALG.E_BH) :=

UC_16S_EN_16NS (TDB.T_ENTIER_16S ((1.0/C_M_LSB_BH) * G_M_INFO_DERIVE(T_ALG.E_BH)));

Handling Overflow as Error

 Treating overflows as errors makes it hard to write

correct code involving ints

o hard to debug

o hard to reason about

 Example

o n + (n - n) and (n + n) - n are equal in math

o but with fixed size numbers, they may yield different outcomes

 n + (n - n) is always equal to n

 (n + n) - n may overflow

 People instinctively use math when writing code

owe want the laws of arithmetic to hold

whenever possible

23

Writing one or the

other is the same

Writing one or the

other is not the same;

although it feels like it is

Modular Arithmetic

24

Continuing Computation on Overflow

 Instead of aborting execution, just ignore the overflow bits

12 + 9 = … 6 * 9 = …

 The result of the operation is what fits in the word

… = 5 … = 6

o This is not the correct mathematical value

but does it relate to it in any way?

25

1 xxx

1100 (12)

+ 1001 (9)

10101 (21 5)

0110 (6)

× 1001 (9)

110

0

0

+ 110

110110 (54 6)

carry

4
-b

it
 e

x
a

m
p

le
s

overflow bitsoverflow bits

Ignoring the Overflow Bits

o Throwing out the overflow bit amounts to

subtracting 10000 from the result

 that’s 16 in decimal

oNote that 16 is 24

4 is how many bits our words have

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

4 bits

10000 10001 10010 10011 10100 10101

26

10101 – 10000 = 0101

1 xxx

1100 (12)

+ 1001 (9)

10101 (21 5)

Ignoring the Overflow Bits

o Throwing out the overflow bits amounts to

subtracting a multiple of 10000 from the result

 that’s 16 in decimal

 In general, we subtract as many multiples of 16 (= 24) as

necessary so that the result fits in 4 bits

 Ignoring the overflow bits computes the result modulo 16

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

4 bits

10000 10001 10010 10011 10100 10101

27

110110 – 11 * 10000 = 0110

0110 (6)

× 1001 (9)

110

0

0

+ 110

110110 (54 6)

Computing Modulo n

 Evaluate an expression normally but return the remainder

of dividing it by n
a number between 0 and n-1

o 12 + 9 =mod 16 5

o 9 * 6 =mod 16 6

 This is called modular arithmetic

 Modular arithmetic works just like traditional arithmetic

28

n > 1

Modular Arithmetic

 Modular arithmetic obeys the same laws as traditional

arithmetic
 for expressions

involving + and *

so far

 We use these laws implicitly every time we do arithmetic

o in particular when writing programs

29

x + y =mod n y + x Commutativity of addition

(x + y) + z =mod n x + (y + z) Associativity of addition

x + 0 =mod n x Additive unit

x * y =mod n y * x Commutativity of multiplication

(x * y) * z =mod n x * (y * z) Associativity of multiplication

x * 1 =mod n x Multiplicative unit

x * (y + z) =mod n x * y + x * z Distributivity

x * 0 =mod n 0 Annihilation

Handling Overflow in C0

 C0 discards overflow bits

oC0 handles overflow using modular arithmetic

o numerical expressions are computed modulo 232

because C0 assumes 32-bit words

 This makes it easy to reason about programs

omodular arithmetic works like traditional arithmetic

we apply it innately

o there is no need to consider special cases for overflow
 for expressions using + and * so far

Overflow does not abort computation in C0

30

Reasoning about int Code

 This function always returns "Good"

 We don’t need to worry about 1+x

or x+1 overflowing

o they may, but that doesn’t matter

overflow doesn’t abort computation

 the laws of (modular) arithmetic tell us they

always evaluate to the same value

string foo(int x) {

int z = 1+x;

if (x+1 == z)

return "Good";

else

return "Bad";

}

This is equivalent to

x+1 == 1+x

by substitution

x+1 == 1+x

is always true

by commutativity of addition

31

(modulo 232)(modulo 232)

What does Computing Modulo n Mean?

 Rather than viewing the numbers

as lying on an infinite line,

we think of them as

wrapping around

a circle with n

positions

o values that are

equal modulo n

share the same

position

32

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
01118

1000

9
1001

10
1010

11
1011

12
1100

13
1101

14
1110

15
1111

This position corresponds to

10, 26, 42, 58, 74, 90, 106, …

Example for

n = 16

What does Computing Modulo n Mean?

 We carry out computations

normally but return the

position of the result

on the circle

o 12 + 9 =mod 16 5

o 9 * 6 =mod 16 6

 Then, addition

corresponds to

moving clockwise

around the circle

o to compute 12 + 9

start from 12 and

step 9 times clockwise

33

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
01118

1000

9
1001

10
1010

11
1011

12
1100

13
1101

14
1110

15
1111

12 + 9 lands

here because

21 is 5 mod 16

and 9 * 6 lands

here because

54 is 6 mod 16

What about the Negatives?

 The negative numbers too

wrap around the circle

o -1 =mod 16 15

o -6 =mod 16 10

34

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
01118

1000

9
1001

10
1010

11
1011

12
1100

13
1101

14
1110

15
1111

-16
-15

-14

-13

-12

-11

-10

-9
-8

-7

-6

-5

-4

-3

-2

-1

This position corresponds to

…, -86, -70, -54, -38, -22, -6,

10, 26, 42, 58, 74, 90, 106, …

Example for

n = 16

Subtraction modulo n

 We can then do subtraction

modulo n

o 5 - 7 =mod 16 14

We evaluate it normally but

return the remainder of

dividing it by n

Equivalently, return

the position of the

result on the circle

 x - y is stepping y times

counter-clockwise

from x

o to compute 5 - 7 start

from 5 and step 7 times

counter-clockwise

35

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
01118

1000

9
1001

10
1010

11
1011

12
1100

13
1101

14
1110

15
1111

-16
-15

-14

-13

-12

-11

-10

-9
-8

-7

-6

-5

-4

-3

-2

-1

5 - 7 lands

here because

-2 is 14 mod 16

Subtraction modulo n

 With subtraction, we can define the additive inverse -x of

any number x
 the number that added to x yields 0

-x =mod n 0 - x

 Then, more laws of traditional

arithmetic are valid in modular

arithmetic

oMore programs behave as if we were using normal arithmetic

even in the presence of overflows

36

x + (-x) =mod n 0 Additive inverse

-(-x) =mod n x Cancelation

Reasoning about int Code

 This function always returns "Good"

o x + x - x = x in normal arithmetic

o so x + x - x == x in C0

 If the compiler understands x + x - x

o as x + (x - x), then

 x + (x - x) = x + 0 by additive inverse

= x by additive unit

o as (x + x) - x, then

 (x + x) - x = x + (x - x) by associativity of +

= x as above

string foo(int x) {

int z = x + x - x;

if (z == x)

return "Good";

else

return "Bad";

}

37

x + x may overflow

but it doesn’t matter

Two’s Complement

38

Printing Numbers

 Modular arithmetic tells us that

many numbers correspond

to the same bit sequence

 But what number

should the computer

print 1110 as?

o 14?

o -2?

o 78?

o…

39

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
01118

1000

9
1001

10
1010

11
1011

12
1100

13
1101

14
1110

15
1111

-16
-15

-14

-13

-12

-11

-10

-9
-8

-7

-6

-5

-4

-3

-2

-11110 could stand for

…, -82, -66, -50, -34, -18, -2,

14, 30, 46, 62, 78, 94, 110, …

Example for

n = 16

Say our program reaches

printint(x);

where x contains 1110
(on a hypothetical 4-bit computer)

int x

Comparing Numbers

 Modular arithmetic tells us that

many numbers correspond

to the same bit sequence

 But what should

x > y evaluate to?

o true?

o false?

40

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
01118

1000

9
1001

10
1010

11
1011

12
1100

13
1101

14
1110

15
1111

-16
-15

-14

-13

-12

-11

-10

-9
-8

-7

-6

-5

-4

-3

-2

-11110 could stand for

…, -82, -66, -50, -34, -18, -2,

14, 30, 46, 62, 78, 94, 110, …

int x

0011 could stand for

…, -77, -61, -45, -29, -13, 3,

19, 35, 51, 67, 83, 99, 115, …

int y

The Range of int’s

 In both case, the computer needs

to decide what number each

k-bit word corresponds to

 Common requirements

o successive bit values

should correspond to

successive numbers
 16, 1, -14, … won’t do

o 0 should be one of them

41

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
01118

1000

9
1001

10
1010

11
1011

12
1100

13
1101

14
1110

15
1111

-16
-15

-14

-13

-12

-11

-10

-9
-8

-7

-6

-5

-4

-3

-2

-1

Example for

2k = 16

This is the opposite

of the earlier problem:

what k-bit word does each

number correspond do

The Range of int’s

 What number does each k-bit

word correspond to?
 successive bit values should

correspond to successive

numbers

0 should be one of them

 Pick the first 2k

integers starting at 0

o here 0, 1, … 15

1110 is printed as 14

1110 > 0011 returns true

 int’s that behave this way

are called unsigned

o This is not how C0’s int’s work
42

Example for

2k = 16

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
01118

1000

9
1001

10
1010

11
1011

12
1100

13
1101

14
1110

15
1111

-16
-15

-14

-13

-12

-11

-10

-9
-8

-7

-6

-5

-4

-3

-2

-1

16

17

18

19

20

21

22

23

8

9

10

11

12

13

14

15

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
0111-8

1000

-7
1001

-6
1010

-5
1011

-4
1100

-3
1101

-2
1110

-1
1111

-16
-15

-14

-13

-12

-11

-10

-9
-24

-23

-22

-21

-20

-19

-18

-17

The Range of int’s

 What number does each k-bit

word correspond to?
 successive bit values should

correspond to successive

numbers

0 should be one of them

 We also want some

negative numbers

o about half

 One common option

o Pick the range -2k-1 to 2k-1 - 1

o This choice is called

two’s complement

43

Two’s Complement

 Each k-bit word corresponds to a

number between -2k-1 and 2k-1 - 1

o the negative numbers

go from -1 to -2k-1

o the positive numbers

go from 1 to 2k-1 - 1

o and there is 0

 The leftmost bit tells

the sign

o 1 for negative numbers

o 0 for positive numbers and 0

It is called the sign bit

44

16

17

18

19

20

21

22

23

8

9

10

11

12

13

14

15

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
0111-8

1000

-7
1001

-6
1010

-5
1011

-4
1100

-3
1101

-2
1110

-1
1111

-16
-15

-14

-13

-12

-11

-10

-9
-24

-23

-22

-21

-20

-19

-18

-17

Efficient way to determine

the sign of a number

Two’s Complement

 Each k-bit word corresponds to

a number in the range

-2k-1 to 2k-1 - 1

o The smallest number

is called int_min

 -2k-1

100…000 in binary

o The largest number

is called int_max

2k-1 - 1

011…111 in binary

oOther notable numbers:

0 is 000…000

 -1 is 111…111
45

16

17

18

19

20

21

22

23

8

9

10

11

12

13

14

15

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
0111-8

1000

-7
1001

-6
1010

-5
1011

-4
1100

-3
1101

-2
1110

-1
1111

-16
-15

-14

-13

-12

-11

-10

-9
-24

-23

-22

-21

-20

-19

-18

-17

0111

1000

int_max = 23 - 1
int_min = -23

16

17

18

19

20

21

22

23

8

9

10

11

12

13

14

15

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
0111-8

1000

-7
1001

-6
1010

-5
1011

-4
1100

-3
1101

-2
1110

-1
1111

-16
-15

-14

-13

-12

-11

-10

-9
-24

-23

-22

-21

-20

-19

-18

-17

Two’s Complement Overflow

 An operation overflows it its

mathematical result is

outside the range

-2k-1 to 2k-1 - 1

 E.g.,

o int_max + 1

o int_min - 3

o 2 * int_max

o 17 * int_min

46

int_max

int_min

If it is < -2k-1 , this is

sometimes called underflow

int’s in C0

 C0 represents integers as 32-bit words

 It handles overflow using modular arithmetic

 The range of int’s is based on two’s complement

o int_max = 231 - 1 = 2147483647

o int_min = -231 = -2147483648

o Their values are defined as

the functions int_max() and

int_min() in the <util> system

library

47

coin -l util

C0 interpreter (coin) …

…

--> int_max();

2147483647 (int)

--> int_min();

-2147483648 (int)

-->

Linux Terminal

Reasoning about int Code

 Comparing int values in C0 does not work like comparing

numbers in normal arithmetic

 This function does not always return

"Good"

o if x is int_max, it returns "Strange"!

but in math x+1 > x for any x!

 When reasoning about code that uses >, >=, < and <=, we

often need to account for overflow
by considering special cases

oCode that only uses +, * and - doesn’t need a special treatment

string bar(int x) {

if (x+1 > x)

return "Good";

else

return "Strange";

}

48

Also operators

dealing with sign

Division and Modulus

49

Operations on int’s

 So far, we learned how C0 handles

o +, -, *: using modular arithmetic

o >, >=, <, <=: using two’s complement

oDivision is missing!

 We are used to division on real numbers:

o x/y is the number z such that z*y = x

 if y ≠ 0

 But this definition doesn’t work with integers

o there is no integer z such that 2*z = 3

50

== and != too

Integer Division

 With integers, there is not always z such that z * y = x

o z is x/y in calculus

 We introduce a new operation, the modulus, to pick up

the slack

oWe want to define the operations x/y and x%y so that

(x/y) * y + (x%y) = x

 That’s not enough!

o defining x/y to always return 0 and x%y to return x would work

we don’t want that!

51

modulus of x by ymodulus of x by yinteger division of x by yinteger division of x by y

Integer Division and Modulus

(x/y) * y + (x%y) = x

 We also want the modulus to be between 0 and y-1

o Also require

0 ≤ |x % y| < |y|

 This is still not enough!

o defining 9/4 to be 3 and 9%4 to be -3 would work
 (9/4) * 4 + (9%4) = 3*4 - 3 = 9 and 0 ≤ |-3| < 4

We don’t want that!

 We want division to “round down”

o in a calculator, 9/4 = 2.25

o so with integer division, we want 9/4 = 2

and therefore 9%4 = 1

52

We take the absolute value

in case y is negative

Integer Division and Modulus

(x/y) * y + (x%y) = x

0 ≤ |x % y| < |y|

Division should “round down”

 But what does “rounding down” mean for negative

numbers?

o does -2.25 rounds down to -2?

o or does -2.25 round down to -3?

 In C0, integer division rounds toward 0
 so -9/4 == -2 in C0

o In other languages, it rounds towards -∞

53

“down” towards 0

“down” towards -∞

Python,

for example

Division by Zero

 In math, division by zero is undefined

 In a program, division by zero is an error

oC0 will abort execution

 Any time we have x/y in a program,

we must have a reason to believe

that y != 0

o 0 is not a valid value for the

denominator of a division

 In C0, we flag invalid values using preconditions

o some primitive operations come with preconditions

not just user-defined functions

54

coin

C0 interpreter (coin) …

--> 5/0;

Error: division by zero.

Last position: <stdio>:1.1-1.4

-->

Linux Terminal

Safety Requirements

 Integer division, x/y, has the precondition

//@requires y != 0;

 There is another invalid input:

int_min()/-1 also aborts the program
 this is because computer chips

raise errors on these values

 Integer division has a second precondition:

//@requires !(x == int_min() && y == -1);

 Code that uses / or % must be safe

oWe must prove that these preconditions are satisfied

55

x%y

has the same

preconditions

x%y

has the same

preconditions

Operations on int’s – Summary

 +, -, *: handled using modular arithmetic

 >, >=, <, <=: handled using two’s complement

 x/y rounds towards 0 – always

 x/y and x%y have preconditions

//@requires y != 0;

//@requires !(x == int_min() && y == -1);

56

== and != too

Bit Patterns

57

Using int Beyond Numbers

 So far, we used the type int to represent integers

o numbers!

 But in C0, an int is always 32 bits

 We can use an int to represent any data we can fit in 32 bits

o pixels, network packets, …

Then, an int does not represent a number but a bit pattern

 C0 has a special set of operations to manipulate bit patterns

o they are the bitwise operations and the shifts

o +, -, *, / and % are called the arithmetic operations

58

We could use the arithmetic operations to manipulate bit patterns

but that’s inefficient and error prone

Pixels as 32-bit int’s

 A pixel is a dot of color in an image

o The color of a pixel can be described by specifying

how much red, green and blue it contains

how opaque it is – this part is called the alpha component

 Pixels are efficiently represented as bit patterns

o bits 0-7 give the intensity of blue

o bits 8-15 give the intensity of green

o bits 16-23 give the intensity of red

o bits 24-31 specify the opacity

59

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

• A value of 0 means there is no blue

• A value of 255 means maximally blue

• 0 means fully transparent

• 255 means fully opaque

Similar

Similar

This is called the

ARGB representation

Background

Pixels as Bit Patterns

 To describe a pixel, we need to give all its 32 bits
E.g., 10110011011100110101101011111001

oWe are better off using hexadecimal

0xB3735AF9

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1011 0011 0111 0011 0101 1010 1111 1001

B 3 7 3 5 A F 9

60

This is mind numbing!

Here’s the color

of this pixel

We always use hex

with bit patterns

Bitwise Operations

61

Bitwise Operations

 The bitwise operations manipulate the bits of a bit

pattern independently of the other bits nearby

 They are

~ – pronounced “not”

& – pronounced “and”

| – pronounced “or”

^ – pronounced “xor”

 Let’s see how they work on an individual bit

62

Takes a single argument

Take two argumentsTake two argumentsTake two arguments

Bitwise Operations on One Bit

 Here are the tables

that give the output

for each input

63

& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

~ 0 1

1 0

and or

xor not

This says that:

• 0 & 0 is 0

• 0 & 1 is 0

• 1 & 0 is 0

• 1 & 1 is 1

Bitwise Operations

 C0’s bitwise operations take int’s as input and return an int

o there is no type for individual bits in C0

 They apply the tables on each bit of their inputs, position

by position

o so, if int’s were 6 bits,

 & and | are related to && and || but

o& and | take two int’s and return an int

o&& and || take two bool’s and return a bool

64

6
-b

it
 e

x
a

m
p

le
s

000111

& 010101

000101

000111

| 010101

010111

000111

^ 010101

010010

~ 010101

101010

But we know

they are 32 bit

Bitwise And – &

Let’s see how to use the bitwise operations to manipulate bit patterns

 If we “and” any bit b with

o 0, we always get 0
 b & 0 = 0

o 1, we always get b back
 b & 1 = b

 If the int x is a bit pattern, then x & m is an int that

o has the same bits as x where m is 1

o and has a zero where m is 0

 The int m is called a mask

o it allows us to retain specific bits of interest in x

65

& 0 1

0 0 0

1 0 1

b

b & 0 = 0

mask

b & 1 = b

&: Clearing Bits

 We want to write a function that returns a pixel identical to

p but with no red in it
 zero out red component of p – bits 16-23

preserve the all other bits

 We can use the mask 0xFF00FFFF
bits 16-23 are 0

all other bits are 1

 Here’s how it looks on our example

Background Backgroundclear_red

int clear_red(int p) {

return p & 0xFF00FFFF;

}

66

& 0 1

0 0 0

1 0 1

b

b & 0 = 0

mask

b & 1 = b

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mask

This is 0xB3735AF9 This is 0xB3005AF9

&: Isolating Red

 We want to return a pixel with just the red component of p
preserve the red component of p – bits 16-23

 zero out all other bits

o “and” p with the mask 0x00FF0000

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Background Backgroundmake_red

int make_red(int p) {

int red = p & 0x00FF0000;

return red;

}

67

& 0 1

0 0 0

1 0 1

b

b & 0 = 0

mask

b & 1 = b

Mask

This is 0xB3735AF9 This is 0x00730000

Where’s the red?

The alpha channel

is 00 so it is

totally transparent

Bitwise Or – |

 If we “or” any bit b with

o 0, we always get b back
 b | 0 = b

o 1, we always get 1
 b | 1 = 1

 Common uses of | are

o setting bits to 1

o constructing a bit pattern from parts

68

| 0 1

0 0 1

1 1 1

b

b | 0 = b b | 1 = 1

This is similar to clearing bits with &

|: Opacify

 We want to make a pixel fully opaque
 set the alpha bits to 1 – bits 24-31

preserve the other component of p

 We can “or” p with 0xFF000000
bits 24-31 become 1

all other bits stay as in p

Background Backgroundopacify

int opacify(int p) {

return p | 0xFF000000;

}

69

| 0 1

0 0 1

1 1 1

b

b | 0 = b b | 1 = 1

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This is 0xB3735AF9 This is 0xFF735AF9

Same color but

fully opaque

|: Constructing Pixels from Parts

 Return a pixel with the same green component as p

and the same alpha, red and blue components as q

o isolate the green component of p

using the mask 0x0000FF00

o isolate the other components of q

using the mask 0xFFFF00FF

o combine them with “or”

int franken_pixel(int p, int q) {

int p_green = p & 0x0000FF00;

int q_others = q & 0xFFFF00FF;

return p_green | q_others;

}

70

| 0 1

0 0 1

1 1 1

b

b | 0 = b b | 1 = 1

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Background Backgroundfranken_pixel

This is 0xB3735AF9 This is 0xCDA15A05

Background

This is 0xCDA1E805

if p is 0xB3735AF9, then

p_green is 0x00005A00

if q is 0xCDA1E805, then

q_others is 0xCDA10005

0x00005A00

| 0xCDA10005

= 0xCDA15A05

Bitwise Not – ~

 Bitwise negation flips bits

71

~ 0 1

1 0

~: Flipping bits

 Return the pixel with the same opacity but inverted colors
preserve the alpha channel

 change the value of all other channels to 255 minus their original value

 that’s the same as flipping the bits of all channels

Background Backgroundopacify

int invert(int p) {

return (p & 0xFF000000) | (~p & 0x00FFFFFF);

}

72

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This is 0xB3735AF9 This is 0xB38CA506

~ 0 1

1 0

Bitwise Xor – ^

 If we “xor” any bit b with

o 0, we always get b back
 b ^ 0 = b

o b itself, we always get 0
 b ^ b = 0

o furthermore, “xor” is associative

and commutative

 One consequence is that (m ^ k) ^ k = m

o if m is a message and k is a key

then x = (m ^ k) is the encryption of m with k

o to decrypt x, we do x ^ k, and m pops out

 “xor” is commonly used in cryptography

73

^ 0 1

0 0 1

1 1 0

b

b ^ 0 = b

Shifts

74

Moving Bits Around

 The bitwise operations manipulate each position

independently from all other positions in a bit pattern

oWe can’t use them to move bits to new positions

 The shift operations enable us to move bits around

o left shift: x << k moves the bits of x left by k positions

o right shift: x >> k moves the bits of x right by k positions

 Since an int has 32 bits, k must be between 0 and 31

//@requires 0 <= k && k < 32;

75

The int x is

understood as

a bit pattern

The int k is

understood as

a number

Unsafe otherwise

Left Shift

 x << k shifts the bits of x left by k positions

o the leftmost k bits of x are dropped

o the rightmost k bits of the result are set to 0

 So

o 0101 << 1 evaluates to 1010: 0101

1010

o 0101 << 3 evaluates to 1000: 0101

1000

76

4
-b

it
 e

x
a

m
p

le
s

Blue Everywhere

 Return a pixel whose red and green components have the

same intensity as p’s blue component

o isolate the blue component of p

o put it in the red, green and blue positions

Background Backgroundblue_everywhere

int blue_everywhere(int p) {

int alpha = p & 0xFF000000;

int blue = p & 0x000000FF;

return alpha | (blue << 16) | (blue << 8) | blue;

}

77

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This is 0xB3735AF9 This is 0xB3F9F9F9

Why is it gray?

Gray is when all

colors are the

same

Leave alpha

unchanged

Right Shift

 x >> k shifts the bits of x right by k positions

o the rightmost k bits of x are dropped

o the leftmost k bits of the result are a copy of the leftmost bit of x

This is called sign extension

 So

o 0101 >> 1 == 0010

o 0101 >> 3 == 0000

o 1010 >> 1 == 1101

o 1010 >> 3 == 1111

78

4
-b

it
 e

x
a

m
p

le
s

That’s because in two’s complement,

the leftmost bit is the sign bit

Sign bit

The sign bit is 0, so we add 0’s

The sign bit is 1, so we add 1’s

The sign bit is 0, so we add 0’s

The sign bit is 1, so we add 1’s

Swapping the Alpha and Red Channels

 Return a pixel identical to p, but where the red and alpha

channel are swapped

o isolate the channels of p

o shift alpha right by 8 bits

o shift red left by 8 bits

o combine the parts and return

Background Backgroundswap_alpha_red

If p is 0xB3735AF9 we want 0x73B34AF9

so that its bits are in the red position

so that its bits are in the alpha position

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Swapping the Alpha and Red Channels

o isolate the channels of p

o shift alpha right by 8 bits

o shift red left by 8 bits

o combine the parts and

return

 Let’s test it

Background Backgroundswap_alpha_red

int swap_alpha_red(int p) {

int new_alpha = (p & 0x00FF0000) << 8;

int new_red = (p & 0xFF000000) >> 8;

int old_green = p & 0x0000FF00;

int old_blue = p & 0x000000FF;

return new_alpha | new_red | old_green | old_blue;

}

80

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This is 0xB3735AF9 This is 0xFFB35AF9

This is

wrong!

Swapping the Alpha and Red Channels

 We have a bug! If p is 0xB3735AF9,

 (p & 0xFF000000) >> 8 extends p’s sign bit over the 8

leftmost bits

o Beware of sign extension!

int swap_alpha_red(int p) {

int new_alpha = (p & 0x00FF0000) << 8;

int new_red = (p & 0xFF000000) >> 8;

int old_green = p & 0x0000FF00;

int old_blue = p & 0x000000FF;

return new_alpha | new_red | old_green | old_blue;

}

81

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

this is 0x73000000

this is 0xFFB30000

this is 0x00005A00

this is 0x000000F9

Swapping the Alpha and Red Channels

 To fix the bug, get rid of the sign-extended bits

omask after shifting

82

Background Backgroundswap_alpha_red

int swap_alpha_red(int p) {

int new_alpha = (p << 8) & 0xFF000000;

int new_red = (p >> 8) & 0x00FF0000

int old_green = p & 0x0000FF00;

int old_blue = p & 0x000000FF;

return new_alpha | new_red | old_green | old_blue;

}

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This is 0xB3735AF9 This is 0x73B35AF9

This is equivalent to what we had,

but better be consistent

This solves the issue

int Summary

The type int is used to

 represent integers

o it uses modular arithmetic and two’s complement

o it manipulates them using the arithmetic operations

+, -, &, /, %, >, >=, <, <=

 encode bit patterns

o it manipulates them using the bitwise operations and the shifts

&, |, ~, ^

<<, >>

83

NEVER mix and match operations

o it does not make sense to multiply pixels

o nor to & two numbers

Arithmetic vs. Bitwise Operations

NEVER mix and match arithmetic and bitwise operations

 Exceptions

o -x = ~x + 1

o x << k = x * 2k

 in particular, 1 << k = 2k

o x >> k = x divided by 2k (Python division, not C0’s)

84

Inside a processor chip,

• this is an efficient way to compute -x

• it avoids the need for circuitry for subtraction

x << k is a very efficient way to computer x * 2k.

You are very likely to use it

x >> k is a very efficient too, but you are

unlikely to use it: it’s the “wrong” division

