Integers

Number Representation

1

Representing Numbers

• We, people, have many ways to represent numbers

They all express the same concept
 that some collection consists of seven things

Decimal Numbers

• The decimal representation is succinct and systematic

- It uses ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - each represents a number between 0 and 9
 - > they are the **digits**
- \circ "ten" is the **base**

This comes from us having 10 fingers

- Any number is represented as a sequence of digits
 the **position** *i* of a digit *d* indicates its importance
 - > it contributes $d \times 10^i$ to the value of the number
 - the value of the number is the sum of the contribution of each position

Decimal Numbers

It uses ten symbols:
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 each represents a number between 0 and 9

• Different languages use other symbols

	0	1	2	3	4	5	6	7	8	9
Arabic	•	١	۲	٣	٤	٥	٦	٧	٨	٩
Bengali	0	5	R	৩	8	3	৬	٩	Ь	る
Chinese (simple)	0	31 52		Ē	四	五	六	七	八	九
Chinese (complex)	零	壹	貢	參	肆	伍	陸	柒	捌	玫
Chinese 花舊 (huā mă)	0	I	н	Ш	X	8	<u> </u>	ᆂ	Ŧ	夂
Devanagari	0	8	२	n	४	ષ	υ¥	છ	6	3
Ethiopic		፩	Ê	Ĩ	ĝ	ኟ	ĩ	ĩ	Ĩ	Ħ
Gujarati	0	૧	ર	3	8	ղ	Ś	٩	6	C
Gurmukhi	0	٩	ર	ą	8	ч	é	2	t	ť
Kannada	0	0	٩	a	မွ	ж	٤	٤	೮	୍
Khmer	0	ഉ	թ	៣	C ²	ដ	6	៧	ផ	દ્ધ
Lao	0	໑	6	໓	لع	گ	ඛ	໗	୍ଷ	ຎ
Limbu	0	ե	۸	S	X	G	Ģ	8	٧	7
Malayalam	6	مے	പ	സ	ർ	6	൬	୭	പ്പ	ൻ
Mongolian	0	0	Q	3	ú	Л	С	ລ	L	C
Myanmar	0	С	J	5	9	୭	ତ	2	၈	ଡ
Oriya	0	6	9	୩	8	8	ッ	୭	Г	Q
Tamil	0	க	ഉ	க	சு	দ্র	சூ	ज	अ	க
Telugu	0	C	್	З	ပ္	ጽ	٤	г	σ	٤
Thai	0	໑	ല	តា	હ	ď	ъ	ബ	୍ଦ୍ଧ	ญ
Tibetan	0	2	٦	3	E	ų	ى	പ	4	R
Urdu	•	١	۲	٣	۴	۵	9	٧	٨	٩

Decimal Numbers

Positional systems make it easy to do calculations
 o addition is done position by position

multiplication is done as iterated additions

	1	.209
	×	402
	2	2418
		0
+	483	86
	486	5018

Binary Numbers

• $\mathbf{0} = \text{off}$

- In particular, they represent numbers in positional notation using base 2

o that's the binary representation

That's what we call the binary digits 0 and 1

- Any number is represented as a sequence of bits
 the position *i* of a bit *b* indicates its importance
 - \succ it contributes $b \times 2^{i}$ to the value of the number
 - \odot the value of the number is the sum of the contribution of each

Binary Numbers

Positional systems make it easy to do calculations
 addition is done position by position

multiplication is done as iterated additions

	1010	
	× 101	
_	1010	
	0	
+	1010	
	110010	

Converting Binary Numbers to Decimal

 Simply use the positional formula and carry out the calculation in decimal

 $100101_{[2]} = 1 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$ = 32 + 0 + 0 + 4 + 0 + 1 Base = 37_[10]

• Alternatively, use *Horner's rule*:

 $100101_{[2]} = ((((1 \times 2 + 0) \times 2 + 0) \times 2 + 1) \times 2 + 0) \times 2 + 1)$ = (((2 \times 2 + 0) \times 2 + 1) \times 2 + 0) \times 2 + 1 = ((4 \times 2 + 1) \times 2 + 0) \times 2 + 1 = (9 \times 2 + 0) \times 2 + 1 = 37_{[10]} That's because 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = ((((1 \times 2 + 0) \times 2 + 0) \times 2 + 1) \times 2 + 0) \times 2 + 1)

Converting Decimal Numbers to Binary

Repeatedly divide the number by 2, harvesting the remainder, until we reach 0

> the remainder is either 0 or 1

○ the binary representation comes out from right to left

Hexadecimal Numbers

Binary is fine for computers, but unwieldy for people 110000001111111111101110

hard to remember

hard to communicate

The hexadecimal representation makes things simpler

 \odot it uses 16 symbols: the numbers 0 to 9 and the letters A to F

each represents a number between 0 and 15

> they are the **hex digits**

they are the nex algits		0 _[16]	0000 _[2]	0 _[10]	8 _[16]	1000 _[2]	8 _[10]
		1 _[16]	0001 _[2]	1 _[10]	9 _[16]	1001 _[2]	9 _[10]
		2 _[16]	0010 _[2]	2 _[10]	A _[16]	1010 _[2]	10 _[10]
The		3 _[16]	0011 _[2]	3 _[10]	B _[16]	1011 _[2]	11 _[10]
decimal to binary to hexadecimal		4 _[16]	0100 _[2]	4 _[10]	C _[16]	1100 _[2]	12 _[10]
(0 to 15)		5 _[16]	0101 _[2]	5 _[10]	D _[16]	1101 _[2]	13 _[10]
		6 _[16]	0110 _[2]	6 _[10]	E _[16]	1110 _[2]	14 _[10]
		7 _[16]	0111 _[2]	7 _[10]	F _[16]	1111 _[2]	15 _[10]

Hexadecimal Numbers

- 1 hex digit corresponds to 4 bits
 > and vice versa
- This makes converting between hex and binary very simple

0 _[16]	0000 _[2]	0 _[10]	8 _[16]	1000 _[2]	8 _[10]
1 _[16]	0001 _[2]	1 _[10]	9 _[16]	1001 _[2]	9 _[10]
2 _[16]	0010 _[2]	2 _[10]	A _[16]	1010 _[2]	10 _[10]
<mark>3</mark> [16]	0011 _[2]	3 _[10]	B _[16]	1011 _[2]	11 _[10]
4 _[16]	0100 _[2]	4 _[10]	C _[16]	1100 _[2]	12 _[10]
4 _[16] 5 _[16]	0100 _[2] 0101 _[2]	4 _[10] 5 _[10]	C _[16] D _[16]	1100 _[2] 1101 _[2]	12 _[10] 13 _[10]
4 _[16] 5 _[16] 6 _[16]	0100 _[2] 0101 _[2] 0110 _[2]	4 _[10] 5 _[10] 6 _[10]	C _[16] D _[16] E _[16]	1100 _[2] 1101 _[2] 1110 _[2]	12 _[10] 13 _[10] 14 _[10]

o hex to binary: replace each hex digit with the corresponding 4 bits

 binary to hex: replace each group of 4 bits with the corresponding hex digit

> 1100 0000 1111 1111 1110 1110 C 0 F F E E

People find it a lot simpler to remember and communicate binary information in hexadecimal
 and not just numbers

Hexadecimal Numbers

 Any number has a positional representation in hex as a sequence of hex digits

• the **position** *i* of a hex digit *h* indicates its importance

- > it contributes $h \times 16^{i}$ to the value of the number
- the value of the number is the sum of the contribution of each position

$COFFEE = C \times 16^5 + 0 \times 16^4 + F \times 16^3 + F \times 16^2 + E \times 16^1 + E \times 16^0$

• We can also do arithmetic in hex

After plugging in 12 for C, etc, that's 12648430 in decimal

 but hex is primarily used to represent two types of non-numerical data

later in this lecture

> memory addresses ______ next lecture

12

Numbers in C0

• All numbers in C0 have type int

We can enter numbers in C0

- \circ in decimal **Linux Terminal** When we enter \circ in hexadecimal # coin **COFFEE** in hex ... C0 interpreter (coin) > by prefixing them with **0x** --> 0xC0FFEE; Internally, it stores 12648430 (int) --> 0xC0FFEE == 12648430; them in binary true (bool) \circ but there is no way to enter numbers in binary ... coin responds it's COFFEE and 12648430 are 12648430 in decimal two different ways of entering the same number
- C0 always prints numbers back to us in decimal

Numbers in C0

C0 always prints numbers back in decimal

 Use the function int2hex in the <util> library to display a number in hexadecimal

o as a string, not an int

Fixed-size Number Representation

Machine Words

- Computers store and manipulate binary data
 o everything is a bit in a computer
- Computer hardware processes batches of k bits in parallel
 a batch of k bits is called a machine word
 nowadays, a typical value of k is 32
- Computation is very efficient on whole words
 but less so on parts of words

32 bits

Fixed-size Numbers

• A k-bit computer uses **exactly k bits** to represent an int

That's a computer whose words are k bits long

In our discussion, we will assume that k = 4
 > but in C0, an int is always 32 bits long

This will simplify

In a 4-bit computer, 6 is not represented as 110 but as 0110
 Numbers have a *fixed-size* in a computer
 4 bits

Numbers in Math vs. in a Computer

- In math, there are infinitely many numbers
 o we visualize them as an infinite number line
- 1 8 B С Ε F Α D
 - In a 4-bit computer, there are finitely many numbers
 o exactly 16 = 2⁴
 - the line is finite

- On a k-bit computer,
 we can represent only
 2^k distinct numbers
 - C0 can represent only 2³² distinct numbers

Numbers in a Computer

• In a 4-bit computer, we can represent only 2⁴ distinct numbers

4 bits

We cannot represent numbers larger than what fits in 4 bits
 o e.g., 21

 \succ in binary it's 10101, but that requires 5 bits

 Even if we avoid writing larger numbers in a program, they may emerge during computation

 intermediate results need to be stored in a word in memory!

Overflow

• The result of adding two int's may not fit into a k bits word

 \succ it may be a k+1 bit number!

> the result may be even longer when multiplying two int's

4-bit examples

 We have an overflow when the result of an operation doesn't fit in a machine word

> k bit operands, but the result has more than k bits

How to Deal with Overflow?

• The result of an operation does not fit into a k-bit word

- Two common approaches to handling overflow
 - 1. Raise an error or an exception
 - > an *error* aborts the program
 - > an *exception* is an error that can be handled to continue computation
 - 2. Continue execution in some meaningful way

Handling Overflow as Error

- Signaling an error is not always the right thing to do
 - The Ariane 5 rocket exploded on its first launch because an unexpected overflow raised an unhandled exception

L_M_BV_32 := TBD.T_ENTIER_32S ((1.0/C_M_LSB_BV) * if L_M_BV_32 > 32767 then

 $\label{eq:p_M_DERIVE(T_ALG.E_BV) := 16\#7FFF\#;} \\ elsif L_M_BV_32 < -32768 \ then \\ \end{tabular}$

 $P_M_DERIVE(T_ALG.E_BV) := 16#8000#;$ else

P_M_DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(TDB end if;

P_M_DERIVE(T_ALG.E_BH) :=

UC_16S_EN_16NS (TDB.T_ENTIER_16S ((1.0/C_M_LS

Handling Overflow as Error

- Treating overflows as errors makes it hard to write correct code involving ints
 - hard to debug
 - hard to reason about

• Example

 \circ *n* + (*n* - *n*) and (*n* + *n*) - *n* are equal in math

- Writing one or the other is the same
- \odot but with fixed size numbers, they may yield different outcomes
 - > *n* + (*n n*) is **always** equal to *n*
 - (n + n) n may overflow

- Writing one or the other is **not** the same; although it feels like it is
- People instinctively use math when writing code
 - o we want the laws of arithmetic to hold
 - ➤ whenever possible

Modular Arithmetic

Continuing Computation on Overflow

• Instead of aborting execution, just **ignore the overflow bits**

• The result of the operation is what fits in the word

... = 5

... = 6

This is not the correct mathematical value

> but does it relate to it in any way?

Ignoring the Overflow Bits

○ Note that 16 is 2⁴ ▶ 4 is how many bits our words have

Ignoring the Overflow Bits

4 bits

- In general, we subtract as many multiples of 16 (= 2⁴) as necessary so that the result fits in 4 bits
- Ignoring the overflow bits computes the result modulo 16

Computing Modulo n

n > 1

- Evaluate an expression normally but return the remainder of dividing it by n
 - > a number between 0 and *n*-1
 - $012 + 9 =_{mod 16} 5$ $09 * 6 =_{mod 16} 6$
- This is called **modular arithmetic**
- Modular arithmetic works just like traditional arithmetic

Modular Arithmetic

Modular arithmetic obeys the same laws as traditional arithmetic

for expressions involving + and * so far

$x + y =_{\text{mod } n} y + x$	Commutativity of addition
$(x + y) + z =_{mod n} x + (y + z)$	Associativity of addition
$x + 0 =_{\text{mod } n} x$	Additive unit
$x * y =_{\text{mod } n} y * x$	Commutativity of multiplication
$(x * y) * z =_{mod n} x * (y * z)$	Associativity of multiplication
$x * 1 =_{\text{mod } n} x$	Multiplicative unit
$x * (y + z) =_{mod n} x * y + x * z$	Distributivity
$x * 0 =_{\text{mod } n} 0$	Annihilation

We use these laws *implicitly* every time we do arithmetic
 o in particular when writing programs

Handling Overflow in C0

• C0 discards overflow bits

- O CO handles overflow using modular arithmetic
- numerical expressions are computed modulo 2³²
 - because C0 assumes 32-bit words
- This makes it easy to reason about programs

 modular arithmetic works like traditional arithmetic
 we apply it innately
 there is no need to consider special cases for overflow
 - for expressions using + and * so far

Overflow does <u>not</u> abort computation in C0

Reasoning about int Code

This function always returns "Good"

- We don't need to worry about 1+x or x+1 overflowing
 - o they may, but that doesn't matter
 - > overflow doesn't abort computation
 - the laws of (modular) arithmetic tell us they always evaluate to the same value

What does Computing Modulo n Mean?

What does Computing Modulo n Mean?

28

 We carry out computations normally but return the position of the result on the circle

 $012 + 9 =_{mod 16} 5$ $09 * 6 =_{mod 16} 6$

- Then, addition corresponds to moving clockwise around the circle
 - to compute 12 + 9
 start from 12 and
 step 9 times clockwise

What about the Negatives?

Subtraction modulo n

28

- We can then do subtraction modulo *n*
 - **5 7** =_{mod 16} **14**
 - We evaluate it normally but return the remainder of dividing it by n
 - Equivalently, return the position of the result on the circle
- x y is stepping y times counter-clockwise from x
 - to compute 5 7 start
 from 5 and step 7 times
 counter-clockwise

Subtraction modulo n

• With subtraction, we can define the *additive inverse -x* of any number x

 \succ the number that added to x yields 0

 $-\mathbf{x} =_{\text{mod } n} \mathbf{0} - \mathbf{x}$

 Then, more laws of traditional arithmetic are valid in modular arithmetic $x + (-x) =_{mod n} 0$ Additive inverse $-(-x) =_{mod n} x$ Cancelation

- More programs behave as if we were using normal arithmetic
 - \succ even in the presence of overflows

Reasoning about int Code

but it doesn't matter

```
string foo(int x) {
    int z = x + x - x;
    if (z == x)
        return "Good";
    else
        return "Bad";
}
```

- This function always returns "Good"
 x + x x = x in normal arithmetic
 so x + x x == x in C0
- If the compiler understands x + x x \circ as x + (x - x), then ightarrow x + (x - x) = x + 0 by additive inverse = x by additive unit \circ as (x + x) - x, then ightarrow (x + x) - x = x + (x - x) by associativity of + = x as above x + x may overflow

Two's Complement

Printing Numbers

Comparing Numbers

The Range of int's

28

 In both case, the computer needs to decide what number each k-bit word corresponds to 30

> This is the opposite of the earlier problem: what k-bit word does each number correspond do

- Common requirements
 - successive bit values should correspond to successive numbers

 16, 1, -14, ... won't do
 Should be one of them

The Range of int's

What number does each k-bit word correspond to? successive bit values should 30 correspond to successive numbers \geq 0 should be one of them 29 13 1101 • Pick the first 2^k 12 integers starting at 0 28 1100 ○ here 0, 1, … 15 > **1110** is printed as 14 11 1011 > 1110 > 0011 returns true 27 Int's that behave this way 26 are called **unsigned**

This is not how C0's int's work

The Range of int's

12

- What number does each k-bit word correspond to?
 - successive bit values should correspond to successive numbers
 - ➤ 0 should be one of them
- We also want some negative numbers
 about half
- One common option ¹¹
 O Pick the range -2^{k-1} to 2^{k-1} 1
 O This choice is called two's complement

Two's Complement

 Each k-bit word corresponds to a 16 15 17 number between -2^{k-1} and $2^{k-1} - 1$ 0 -1 1 0000 ○ the negative numbers 14 **1**111 0001 18 go from -1 to -2^{k-1} -2 2 -16 -15 -17 **1**110 0010 ○ the positive numbers -18 -14 13 ative go from 1 to 2^{k-1} - 1 -3 3 1101 0011 -19 -13 \circ and there is 0 -4 4 -20 -12 12 1100 0100 The leftmost bit tells 59 Z the sign -21 -11 -5 5 0101 1011 ○ 1 for negative numbers 11 -22 -10 \circ 0 for positive numbers and 0 -6 6 -9 -23 -24 0110 1010 It is called the sign bit -7 7 10 22 -8 1001 0111 Efficient way to determine 1000 the sign of a number 9 23

8

19

21

20

Two's Complement

12

- Each k-bit word corresponds to a number in the range
 -2^{k-1} to 2^{k-1} - 1
 - The *smallest number* is called int_min
 - **≻ -2**^{k-1}
 - ➤ 100...000 in binary
 - The *largest number* is called int_max
 > 2^{k-1} - 1
 - ▶ 011...111 in binary
 - O Other notable numbers:
 ➢ 0 is 000...000
 ➢ -1 is 111...111

Two's Complement Overflow

int's in C0

- C0 represents integers as 32-bit words
- It handles overflow using modular arithmetic
- The range of int's is based on two's complement
 o int_max = 2³¹ 1 = 2147483647
 o int_min = -2³¹ = -2147483648
 - Their values are defined as the functions int_max() and int_min() in the <util> system library

Reasoning about int Code

 Comparing int values in C0 does not work like comparing numbers in normal arithmetic

```
string bar(int x) {
 if (x+1 > x)
   return "Good";
 else
   return "Strange";
```

- This function does not always return "Good"
 - if x is int_max, it returns "Strange"! \succ but in math x+1 > x for **any** x!

- When reasoning about code that uses >, >=, < and <=, we often need to account for overflow Also operators
 - by considering special cases
 - dealing with sign O Code that only uses +, * and - doesn't need a special treatment

Division and Modulus

Operations on int's

== and != too

- So far, we learned how C0 handles

 +, -, *: using modular arithmetic
 >, >=, <, <=: using two's complement
 Division is missing!
- We are used to division on real numbers:
 x/y is the number z such that z*y = x
 > if y ≠ 0
- But this definition doesn't work with integers \circ there is no *integer z* such that $2^*z = 3$

Integer Division

- With *integers*, there is not always *z* such that *z* * *y* = *x z* is *x/y* in calculus
- We introduce a new operation, the modulus, to pick up the slack

 \odot We want to define the operations x/y and x%y so that

• That's not enough!

defining x/y to always return 0 and x%y to return x would work
 > we don't want that!

Integer Division and Modulus

(x/y) * y + (x% y) = x

We also want the modulus to be between 0 and y-1
 Also require

 $0 \le |x \% y| < |y|$

We take the absolute value in case y is negative

- This is still not enough!
 defining 9/4 to be 3 and 9%4 to be -3 would work
 □ (9/4) * 4 + (9%4) = 3*4 3 = 9 and 0 ≤ |-3| < 4
 > We don't want that!
- We want division to "round down"
 - \odot in a calculator, 9/4 = 2.25
 - \odot so with integer division, we want 9/4 = 2
 - > and therefore 9%4 = 1

Integer Division and Modulus

(x/y) * y + (x% y) = x $0 \le |x \% y| < |y|$ Division should "round down"

Python,

for example

But what does "rounding down" mean for negative numbers?
 o does -2.25 rounds down to -2? ______ "down" towards 0
 o r does -2.25 round down to -3? ______ "down" towards -∞

• In C0, integer division rounds toward 0

> so -9/4 == -2 in C0

 \odot In other languages, it rounds towards - ∞

Division by Zero

- In math, division by zero is undefined
- In a program, division by zero is an error
 C0 will abort execution
- Any time we have x/y in a program, we must have a reason to believe that y != 0
 - 0 is not a valid value for the denominator of a division

```
Linux Terminal
# coin
C0 interpreter (coin) ...
--> 5/0;
Error: division by zero.
Last position: <stdio>:1.1-1.4
-->
```

In C0, we flag invalid values using preconditions
 o some primitive operations come with preconditions
 > not just user-defined functions

Safety Requirements

Integer division, x/y, has the precondition
 //@requires y != 0;

 There is another *invalid* input: int_min()/-1 also aborts the program
 > this is because computer chips raise errors on these values

x%y has the same preconditions

Integer division has a second precondition:
 //@requires !(x == int_min() && y == -1);

Code that uses / or % must be safe
 We must prove that these preconditions are satisfied

Operations on int's – Summary

== and != too

- +, -, *: handled using modular arithmetic.
- >, >=, <, <=: handled using two's complement</p>
- x/y rounds towards 0 always
- x/y and x%y have preconditions
 //@requires y != 0;
 //@requires !(x == int_min() && y == -1);

Bit Patterns

Using int Beyond Numbers

- So far, we used the type int to represent integers
 o numbers!
- But in C0, an int is always 32 bits
- We can use an int to represent any data we can fit in 32 bits
 o pixels, network packets, ...

Then, an int does not represent a number but a bit pattern

C0 has a special set of operations to manipulate bit patterns
 they are the bitwise operations and the shifts
 +, -, *, / and % are called the arithmetic operations

We *could* use the arithmetic operations to manipulate bit patterns but that's inefficient and error prone

Pixels as 32-bit int's

• A **pixel** is a dot of color in an image

The color of a pixel can be described by specifying

- how much red, green and blue it contains
- how opaque it is this part is called the alpha component

• Pixels are efficiently represented as bit patterns

bits 0-7 give the intensity of blue
bits 8-15 give the intensity of green
bits 16-23 give the intensity of red
bits 24-31 specify the opacity

A value of 0 means there is no blue
A value of 255 means maximally blue
Similar
Similar

This is called the

ARGB representation

- 0 means fully transparent
- 255 means fully opaque

Pixels as Bit Patterns

 To describe a pixel, we need to give all its 32 bits E.g., 10110011011100110101101011111001 This is mind numbing! • We are better off using (hexadecimal) We always use hex ➢ 0xB3735AF9 with bit patterns alpha blue red green 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 2 31 30 29 28 27 26 10 9 8 6 3 0 1011 0011 0111 0011 0101 1010 1111 1001 7 B 3 3 5 Α F 9 Here's the color Background of this pixel

Bitwise Operations

Bitwise Operations

• The **bitwise operations** manipulate the bits of a bit pattern independently of the other bits nearby

• Let's see how they work on an individual bit

Bitwise Operations on One Bit

 Here are the tables that give the output for each input

This says that: • 0 & 0 is 0 • 0 & 1 is 0 • 1 & 0 is 0 • 1 & 1 is 1

and	&	0	1
	0	0	0
	1	0	1

or		0	1
	0	0	1
	1	1	1

xor	۸	0	1
	0	0	1
	1	1	0

not	~	0	1
		1	0

Bitwise Operations

- C0's bitwise operations take int's as input and return an int
 there is no type for individual bits in C0
- They apply the tables on each bit of their inputs, **position** by position
 But we know
 by are 32 bit

000111	000111	000111	
& 010101	010101	^ 010101	~ 010101
000101	010111	010010	101010

- & and | are related to && and || but
 & and | take two int's and return an int
 - O && and || take two bool's and return a bool

Bitwise And – &

Let's see how to use the bitwise operations to manipulate bit patterns

- If we "and" any bit b with
 0, we always get 0
 b & 0 = 0
 1 we always get b back
 - 1, we always get b back
 b & 1 = b

- If the int x is a bit pattern, then x & m is an int that
 has the same bits as x where m is 1
 and has a zero where m is 0
- The int m is called a mask
 it allows us to retain specific bits of interest in x

- We want to write a function that returns a pixel identical to p but with no red in it
 - \succ zero out red component of p bits 16-23
 - preserve the all other bits
- We can use the **mask** 0xFF00FFFF
 - ➢ bits 16-23 are 0
 - ➤ all other bits are 1

Here's how it looks on our example

- We want to return a pixel with just the red component of p
 - \geq preserve the red component of p bits 16-23
 - > zero out all other bits
 - o "and" p with the mask 0x00FF0000

Bitwise Or – |

If we "or" any bit b with
 0, we always get b back
 b | 0 = b
 1, we always get 1

□ b | 1 = 1

• Common uses of | are

O setting bits to 1 _____ This is similar to clearing bits with & _____

 \odot constructing a bit pattern from parts

- We want to make a pixel fully opaque
 - ➤ set the alpha bits to 1 bits 24-31
 - preserve the other component of p

• We can "or" p with 0xFF000000

Bitwise Not – ~

• Bitwise negation flips bits

~	0	1
	1	0

- Return the pixel with the same opacity but inverted colors
 - preserve the alpha channel
 - > change the value of all other channels to 255 minus their original value
 - □ that's the same as flipping the bits of all channels

```
int invert(int p) {
    return (p & 0xFF000000) | (~p & 0x00FFFFFF);
}
```


Bitwise Xor – ^

- If we "xor" any bit b with
 0, we always get b back
 b^0=b
 - **b** itself, we always get **0** □ $b^{b} = 0$
 - furthermore, "xor" is associative and commutative

• "xor" is commonly used in cryptography

Shifts

Moving Bits Around

- The bitwise operations manipulate each position independently from all other positions in a bit pattern
 We can't use them to move bits to new positions
- The shift operations enable us to move bits around

 left shift: x << k moves the bits of x left by k positions
 right shift: x >> k moves the bits of x right by k positions

 The int x is

 understood as a bit pattern
- Since an int has 32 bits, k must be between 0 and 31
 //@requires 0 <= k && k < 32;

Unsafe otherwise

Left Shift

1010

1000

x << k shifts the bits of x left by k positions
 the leftmost k bits of x are dropped
 the rightmost k bits of the result are set to 0

• So

O 0101 << 1 evaluates to 1010: 0101</p>

0101 << 3 evaluates to 1000: 0101
 //
</p>

Blue Everywhere

 Return a pixel whose red and green components have the same intensity as p's blue component

```
\odot isolate the blue component of \ensuremath{\mathsf{p}}
```

o put it in the red, green and blue positions

Right Shift

• x >> k shifts the bits of x right by k positions the rightmost k bits of x are dropped o the leftmost k bits of the result are a copy of the leftmost bit of x This is called sign extension That's because in two's complement, the leftmost bit is the sign bit So 00101 >> 1 == 0010The sign bit is 0, so we add 0's ○ 0101 >> 3 == 0000 ○ 1010 >> 1 == 1101 The sign bit is 1, so we add 1's ○ 1010 >> 3 == 1111 Sign bit

 Return a pixel identical to p, but where the red and alpha channel are swapped

isolate the channels of p
shift alpha right by 8 bits _______so that its bits are in the red position
shift red left by 8 bits _______so that its bits are in the alpha position
combine the parts and return

• We have a bug!

 (p & 0xFF000000) >> 8 extends p's sign bit over the 8 leftmost bits

○ Beware of sign extension!

To fix the bug, get rid of the sign-extended bits
 mask after shifting

int Summary

The type int is used to

represent integers

○ it uses modular arithmetic and two's complement

o it manipulates them using the arithmetic operations

>+, -, &, /, %, >, >=, <, <=</p>

encode bit patterns

○ it manipulates them using the **bitwise operations** and the **shifts** \geq &, |, ~, ^

> <<, >>

NEVER mix and match operations o it does not make sense to multiply pixels o nor to & two numbers

Arithmetic vs. Bitwise Operations

NEVER mix and match arithmetic and bitwise operations

 $\bigcirc x >> k = x \text{ divided by } 2^k (Python \text{ division, not C0's})$

x >> k is a very efficient too, but you are unlikely to use it: it's the "wrong" division