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Number Representation
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Representing Numbers

 We, people, have many ways to represent numbers

 They all express the same concept

o that some collection consists of seven things

7

VII

seven 

sept

sjö
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Decimal Numbers

 The decimal representation is succinct and systematic

o It uses ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

each represents a number between 0 and 9

 they are the digits

o “ten” is the base

 Any number is represented as a sequence of digits

o the position i of a digit d indicates its importance

 it contributes d×10 i to the value of the number

o the value of the number is the sum of the contribution of each 

position

1209 = 1×103 + 2×102 + 0×101 + 9×100

7

10 is the base

1 is at position 3 9 is at position 02 is at position 2 0 is at position 1

10 is the base10 is the base10 is the base

This comes from us

having 10 fingers
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Decimal Numbers

 It uses ten symbols:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

o each represents a number

between 0 and 9

 Different languages 

use other symbols
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Decimal Numbers

 Positional systems make it easy to do calculations

o addition is done position by position

omultiplication is done as iterated additions

1xx1x

1209

+ 9517

10726

We used our

10 fingers for that
carry

1209

× 402

2418

0x

+ 4836xx

486018

5

9+7 = 6

with a carry of 1



2 is the base

Binary Numbers

 Computers have one way to represent information: binary

o they use two symbols, 0 and 1

 In particular, they represent numbers in positional notation 

using base 2

o that’s the binary representation

 Any number is represented as a sequence of bits

o the position i of a bit b indicates its importance

 it contributes b×2 i to the value of the number

o the value of the number is the sum of the contribution of each 

position

100101 = 1×25 + 0×24 + 0×23 + 1×22 + 0×21 + 1×20

• 1 = on

• 0 = off

That’s what we call the

binary digits 0 and 1

1 is at position 5 1 is at position 0…  0 is at position 3  …

2 is the base2 is the base2 is the base2 is the base2 is the base

There are two voltages

in computer chips:

on and off
(in reality, it’s more complicated)
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Binary Numbers

 Positional systems make it easy to do calculations

o addition is done position by position

omultiplication is done as iterated additions

1111xx

11011

+ 1110

101001

carry

1010

× 101

1010

0x

+ 1010xx

110010

Here, 1+1 = 0

with a carry of 1
This works

exactly as

with decimal

numbers

This works

exactly as

with decimal

numbers
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Converting Binary Numbers to Decimal

 Simply use the positional formula and carry out the 

calculation in decimal

100101[2] = 1×25 + 0×24 + 0×23 + 1×22 + 0×21 + 1×20

= 32 + 0 + 0 + 4 + 0 + 1

= 37[10]

 Alternatively, use Horner’s rule:

100101[2] = ((((1×2 + 0) ×2 + 0) ×2 + 1) ×2 + 0) ×2 + 1

= (((2 ×2 + 0) ×2 + 1) ×2 + 0) ×2 + 1

= ((4 ×2 + 1) ×2 + 0) ×2 + 1

= (9 ×2 + 0) ×2 + 1

= 18 ×2 + 1

= 37[10]

BaseBase

That’s because

1×25 + 0×24 + 0×23 + 1×22 + 0×21 + 1×20 = ((((1×2 + 0)×2 + 0)×2 + 1)×2 + 0)×2 + 1
8



Converting Decimal Numbers to Binary

 Repeatedly divide the number by 2, harvesting the 

remainder, until we reach 0
 the remainder is either 0 or 1

o the binary representation comes out from right to left

… divided by 2 is … with remainder …

37 / 2 = 18 1

18 / 2 = 9 0

9 / 2 = 4 1

4 / 2 = 2 0

2 / 2 = 1 0

1 / 2 = 0 1 1 0 0 1 0 1

That’s 37 in binary

rightmost bitrightmost bit

leftmost bitleftmost bit
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Hexadecimal Numbers

 Binary is fine for computers, but unwieldy for people

110000001111111111101110

hard to remember

hard to communicate

 The hexadecimal representation makes things simpler

o it uses 16 symbols: the numbers 0 to 9 and the letters A to F

each represents a number between 0 and 15

 they are the hex digits
0[16] 0000[2] 0[10]  

1[16] 0001[2] 1[10]

2[16] 0010[2] 2[10]

3[16] 0011[2] 3[10]

4[16] 0100[2] 4[10]

5[16] 0101[2] 5[10]

6[16] 0110[2] 6[10]

7[16] 0111[2] 7[10]

8[16] 1000[2] 8[10]

9[16] 1001[2] 9[10]

A[16] 1010[2] 10[10]

B[16] 1011[2] 11[10]

C[16] 1100[2] 12[10]

D[16] 1101[2] 13[10]

E[16] 1110[2] 14[10]

F[16] 1111[2] 15[10]

The

decimal to binary to hexadecimal

conversion table

(0 to 15)
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Hexadecimal Numbers

 1 hex digit corresponds to 4 bits
and vice versa

 This makes converting between

hex and binary very simple

o hex to binary: replace each hex digit with the corresponding 4 bits

o binary to hex: replace each group of 4 bits with the corresponding 

hex digit

People find it a lot simpler to remember and

communicate binary information in hexadecimal

 and not just numbers

0[16] 0000[2] 0[10]  

1[16] 0001[2] 1[10]

2[16] 0010[2] 2[10]

3[16] 0011[2] 3[10]

4[16] 0100[2] 4[10]

5[16] 0101[2] 5[10]

6[16] 0110[2] 6[10]

7[16] 0111[2] 7[10]

8[16] 1000[2] 8[10]

9[16] 1001[2] 9[10]

A[16] 1010[2] 10[10]

B[16] 1011[2] 11[10]

C[16] 1100[2] 12[10]

D[16] 1101[2] 13[10]

E[16] 1110[2] 14[10]

F[16] 1111[2] 15[10]

1100 0000 1111 1111 1110 1110 

C 0 F F E E

Not all hex words are this cute,

though!
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Hexadecimal Numbers

 Any number has a positional representation in hex

as a sequence of hex digits

o the position i of a hex digit h indicates its importance

 it contributes h×16 i to the value of the number

o the value of the number is the sum of the contribution of each 

position

C0FFEE = C×165 + 0×164 + F×163 + F×162 + E×161 + E×160

 We can also do arithmetic in hex

o but hex is primarily used to represent two types of non-numerical 

data

memory addresses

bit patterns

After plugging in 12 for C, etc,

that’s 12648430 in decimal

next lecture

later in this lecture
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Numbers in C0

 All numbers in C0 have type int

 We can enter numbers in C0

o in decimal

o in hexadecimal

by prefixing them with 0x

 Internally, it stores 

them in binary

o but there is no way to enter

numbers in binary

 C0 always prints numbers

back to us in decimal

# coin

C0 interpreter (coin) …

…

--> 0xC0FFEE;

12648430 (int)

--> 0xC0FFEE == 12648430;

true (bool)

Linux Terminal
When we enter

C0FFEE in hex ..

… coin responds it’s

12648430 in decimal C0FFEE and 12648430 are

two different ways of entering

the same number
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Numbers in C0

 C0 always prints numbers back in decimal

 Use the function int2hex in the

<util> library to display a number

in hexadecimal

o as a string, not an int

# coin -l util

C0 interpreter (coin) …

…

--> int2hex(0xC0FFEE);

"00C0FFEE" (string)

--> int2hex(12648430);

"00C0FFEE" (string)

Linux Terminal

Loads the <util>

library when starting coin

There is no int2bin

You can write your own!
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Fixed-size Number Representation
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Machine Words

 Computers store and manipulate binary data

o everything is a bit in a computer

 Computer hardware processes batches of k bits in parallel

o a batch of k bits is called a machine word

o nowadays, a typical value of k is 32

 Computation is very efficient on whole words

o but less so on parts of words

 Most programming languages use a word to represent an int

o in C0, an int is always 32 bits long

 internally, 37 is not represented as 100101

but as 00000000000000000000000000100101 

16

32 bits



Fixed-size Numbers

 A k-bit computer uses exactly k bits to represent an int

 In our discussion, we will  assume that k = 4
but in C0, an int is always 32 bits long

 In a 4-bit computer, 6 is not represented as 110 but as 0110 
Numbers have a fixed-size in a computer

17

This will simplify

our examples

4 bits

That’s a computer whose

words are k bits long



Numbers in Math vs. in a Computer

 In math, there are infinitely many numbers

owe visualize them as an infinite number line

 In a 4-bit computer, there are finitely many numbers

o exactly 16 = 24

o the line is finite

oOn a k-bit computer, 

we can represent only 

2k distinct numbers

C0 can represent only 

232 distinct numbers

0

0

0

1

1

1

2

10

2

3

11

3

4

100

4

5

101

5

6

110

6

7

111

7

8

1000

8

9

1001

9

10

1010

A

11

1011

B

12

1100

C

13

1101

D

14

1110

E

15

1111

F

16

10000

10

17

10001

11

18

10010

12

19

10011

13

20

10100

14

21

10101
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The beginning of the

number line with numbers

in decimal and binary and hex

0

0000

0

1

0001

1

2

0010

2

3

0011

3

4

0100

4

5

0101

5

6

0110

6

7

0111

7

8

1000

8

9

1001

9

10

1010

A

11

1011

B

12

1100

C

13

1101

D

14

1110

E

15

1111

F

4 bits
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Numbers in a Computer

 In a 4-bit computer, we can represent only 24 distinct numbers

 We cannot represent numbers larger than what fits in 4 bits

o e.g., 21

 in binary it’s 10101, but that requires 5 bits

 Even if we avoid writing larger numbers in a program, they 

may emerge during computation

o intermediate results need to be stored in a word in memory!

0

0000

0

1

0001

1

2

0010

2

3

0011

3

4

0100

4

5

0101

5

6

0110

6

7

0111

7

8

1000

8

9

1001

9

10
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A

11

1011

B

12

1100

C

13

1101

D

14

1110

E

15

1111

F

4 bits
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Overflow

 The result of adding two int’s may not fit into a k bits word
 it may be a k+1 bit number!

 the result may be even longer when multiplying two int’s

12 + 9 = 21 6 * 9 = 54

 We have an overflow when the result of an operation 

doesn’t fit in a machine word
 k bit operands, but the result has more than k bits

20

1 xxx

1100 (12)

+ 1001 (9)

10101 (21)

0110 (6)

× 1001 (9)

110

0

0

+ 110

110110 (54)

carry

4
-b

it
 e

x
a

m
p

le
s

This is evident when

carrying out these

operations in binary

This is evident when

carrying out these

operations in binary

overflow bitsoverflow bits



How to Deal with Overflow?

 The result of an operation does not fit into a k-bit word

 Two common approaches to handling overflow

1. Raise an error or an exception

an error aborts the program

an exception is an error that can be handled to continue computation

2. Continue execution in some meaningful way

21

0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010 10011 10100 10101

4 bits

These numbers

are not representable

with 4 bits



Handling Overflow as Error

 Signaling an error is not 

always the right thing to do

o The Ariane 5 rocket exploded 

on its first launch because an 

unexpected overflow raised an 

unhandled exception

22

L_M_BV_32 := TBD.T_ENTIER_32S ((1.0/C_M_LSB_BV) * G_M_INFO_DERIVE(T_ALG.E_BV));

if L_M_BV_32 > 32767 then

P_M_DERIVE(T_ALG.E_BV) := 16#7FFF#;

elsif L_M_BV_32 < -32768 then

P_M_DERIVE(T_ALG.E_BV) := 16#8000#;

else

P_M_DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(TDB.T_ENTIER_16S(L_M_BV_32));

end if;

P_M_DERIVE(T_ALG.E_BH) :=

UC_16S_EN_16NS (TDB.T_ENTIER_16S ((1.0/C_M_LSB_BH) * G_M_INFO_DERIVE(T_ALG.E_BH)));



Handling Overflow as Error

 Treating overflows as errors makes it hard to write 

correct code involving ints

o hard to debug

o hard to reason about

 Example

o n + (n - n) and (n + n) - n are equal in math

o but with fixed size numbers, they may yield different outcomes

 n + (n - n) is always equal to n

 (n + n) - n may overflow

 People instinctively use math when writing code

owe want the laws of arithmetic to hold

whenever possible

23

Writing one or the

other is the same

Writing one or the

other is not the same;

although it feels like it is



Modular Arithmetic

24



Continuing Computation on Overflow

 Instead of aborting execution, just ignore the overflow bits

12 + 9 = … 6 * 9 = …

 The result of the operation is what fits in the word

… = 5 … = 6

o This is not the correct mathematical value

but does it relate to it in any way?

25

1 xxx

1100 (12)

+ 1001 (9)

10101 (21 5)

0110 (6)

× 1001 (9)

110

0

0

+ 110

110110 (54 6)

carry

4
-b

it
 e

x
a

m
p

le
s

overflow bitsoverflow bits



Ignoring the Overflow Bits

o Throwing out the overflow bit amounts to 

subtracting 10000 from the result

 that’s 16 in decimal

oNote that 16 is 24

4 is how many bits our words have

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

4 bits

10000 10001 10010 10011 10100 10101

26

10101 – 10000 = 0101

1 xxx

1100 (12)

+ 1001 (9)

10101 (21 5)



Ignoring the Overflow Bits

o Throwing out the overflow bits amounts to 

subtracting a multiple of 10000 from the result

 that’s 16 in decimal

 In general, we subtract as many multiples of 16 (= 24) as 

necessary so that the result fits in 4 bits

 Ignoring the overflow bits computes the result modulo 16

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

4 bits

10000 10001 10010 10011 10100 10101

27

110110 – 11 * 10000 = 0110

0110 (6)

× 1001 (9)

110

0

0

+ 110

110110 (54 6)



Computing Modulo n

 Evaluate an expression normally but return the remainder 

of dividing it by n
a number between 0 and n-1

o 12 + 9 =mod 16 5

o 9 * 6 =mod 16 6

 This is called modular arithmetic

 Modular arithmetic works just like traditional arithmetic

28

n > 1



Modular Arithmetic

 Modular arithmetic obeys the same laws as traditional 

arithmetic
 for expressions

involving + and *

so far

 We use these laws implicitly every time we do arithmetic

o in particular when writing programs

29

x + y =mod n y + x Commutativity of addition

(x + y) + z =mod n x + (y + z) Associativity of addition

x + 0 =mod n x Additive unit

x * y =mod n y * x Commutativity of multiplication

(x * y) * z =mod n x * (y * z) Associativity of multiplication

x * 1 =mod n x Multiplicative unit

x * (y + z) =mod n x * y + x * z Distributivity

x * 0 =mod n 0 Annihilation



Handling Overflow in C0

 C0 discards overflow bits

oC0 handles overflow using modular arithmetic 

o numerical expressions are computed modulo 232

because C0 assumes 32-bit words

 This makes it easy to reason about programs

omodular arithmetic works like traditional arithmetic

we apply it innately

o there is no need to consider special cases for overflow
 for expressions using + and * so far

Overflow does not abort computation in C0
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Reasoning about int Code

 This function always returns "Good"

 We don’t need to worry about 1+x 

or x+1 overflowing

o they may, but that doesn’t matter

overflow doesn’t abort computation

 the laws of (modular) arithmetic tell us they 

always evaluate to the same value

string foo(int x) {

int z = 1+x;

if (x+1 == z) 

return "Good";

else

return "Bad";

}

This is equivalent to

x+1 == 1+x

by substitution

x+1 == 1+x

is always true

by commutativity of addition

31

(modulo 232)(modulo 232)



What does Computing Modulo n Mean?

 Rather than viewing the numbers 

as lying on an infinite line,

we think of them as

wrapping around

a circle with n

positions

o values that are

equal modulo n

share the same

position

32

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
01118

1000

9
1001

10
1010

11
1011

12
1100

13
1101

14
1110

15
1111

This position corresponds to

10, 26, 42, 58, 74, 90, 106, …

Example for

n = 16



What does Computing Modulo n Mean?

 We carry out computations

normally but return the

position of the result

on the circle

o 12 + 9 =mod 16 5

o 9 * 6 =mod 16 6

 Then, addition

corresponds to

moving clockwise

around the circle

o to compute 12 + 9

start from 12 and

step 9 times clockwise
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17

18
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27
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0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
01118

1000

9
1001

10
1010

11
1011

12
1100

13
1101

14
1110

15
1111

12 + 9 lands

here because

21 is 5 mod 16

and 9 * 6 lands

here because

54 is 6 mod 16



What about the Negatives?

 The negative numbers too

wrap around the circle

o -1 =mod 16 15

o -6 =mod 16 10

34
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0000 1
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2
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3
0011

4
0100

5
0101

6
0110

7
01118

1000

9
1001

10
1010

11
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12
1100

13
1101

14
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15
1111

-16
-15

-14

-13

-12

-11

-10

-9
-8

-7

-6

-5

-4

-3

-2

-1

This position corresponds to

…, -86, -70, -54, -38, -22, -6,

10, 26, 42, 58, 74, 90, 106, …

Example for

n = 16



Subtraction modulo n

 We can then do subtraction

modulo n

o 5 - 7 =mod 16 14

We evaluate it normally but

return the remainder of

dividing it by n

Equivalently, return

the position of the

result on the circle

 x - y is stepping y times

counter-clockwise

from x

o to compute 5 - 7 start

from 5 and step 7 times

counter-clockwise
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-3

-2

-1

5 - 7 lands

here because

-2 is 14 mod 16



Subtraction modulo n

 With subtraction, we can define the additive inverse -x of 

any number x
 the number that added to x yields 0

-x =mod n 0 - x

 Then, more laws of traditional

arithmetic are valid in modular

arithmetic

oMore programs behave as if we were using normal arithmetic

even in the presence of overflows

36

x + (-x) =mod n 0 Additive inverse

-(-x) =mod n x Cancelation



Reasoning about int Code

 This function always returns "Good"

o x + x - x = x in normal arithmetic

o so x + x - x == x in C0

 If the compiler understands x + x - x

o as x + (x - x),  then

 x + (x - x) = x + 0 by additive inverse

= x by additive unit

o as (x + x) - x, then

 (x + x) - x = x + (x - x) by associativity of +

= x as above

string foo(int x) {

int z = x + x - x;

if (z == x) 

return "Good";

else

return "Bad";

}

37

x + x may overflow

but it doesn’t matter



Two’s Complement

38



Printing Numbers

 Modular arithmetic tells us that

many numbers correspond

to the same bit sequence

 But what number

should the computer

print 1110 as?

o 14?

o -2?

o 78?

o…

39
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1111

-16
-15

-14

-13

-12

-11

-10

-9
-8

-7

-6

-5

-4

-3

-2

-11110 could stand for

…, -82, -66, -50, -34, -18, -2,

14, 30, 46, 62, 78, 94, 110, …

Example for

n = 16

Say our program reaches

printint(x);

where x contains 1110
(on a hypothetical 4-bit computer) 

int x



Comparing Numbers

 Modular arithmetic tells us that

many numbers correspond

to the same bit sequence

 But what should

x > y evaluate to?

o true?

o false?

40
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-12
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-9
-8
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-5

-4

-3

-2

-11110 could stand for

…, -82, -66, -50, -34, -18, -2,

14, 30, 46, 62, 78, 94, 110, …

int x

0011 could stand for

…, -77, -61, -45, -29, -13, 3,

19, 35, 51, 67, 83, 99, 115, …

int y



The Range of int’s

 In both case, the computer needs

to decide what number each

k-bit word corresponds to

 Common requirements

o successive bit values

should correspond to

successive numbers
 16, 1, -14, … won’t do

o 0 should be one of them

41

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
01118

1000

9
1001

10
1010

11
1011

12
1100

13
1101

14
1110

15
1111

-16
-15

-14

-13

-12

-11

-10

-9
-8

-7

-6

-5
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Example for

2k = 16

This is the opposite

of the earlier problem:

what k-bit word does each

number correspond do



The Range of int’s

 What number does each k-bit

word correspond to?
 successive bit values should

correspond to successive 

numbers

0 should be one of them

 Pick the first 2k

integers starting at 0

o here 0, 1, … 15

1110 is printed as 14

1110 > 0011 returns true

 int’s that behave this way

are called unsigned

o This is not how C0’s int’s work
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Example for

2k = 16

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
01118

1000

9
1001

10
1010

11
1011

12
1100

13
1101

14
1110

15
1111

-16
-15

-14

-13

-12

-11

-10

-9
-8

-7

-6

-5

-4

-3

-2

-1



16

17

18

19

20

21

22

23

8

9

10

11

12

13

14

15

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
0111-8

1000

-7
1001

-6
1010

-5
1011

-4
1100

-3
1101

-2
1110

-1
1111

-16
-15

-14

-13

-12

-11

-10

-9
-24

-23

-22

-21

-20

-19

-18

-17

The Range of int’s

 What number does each k-bit

word correspond to?
 successive bit values should

correspond to successive 

numbers

0 should be one of them

 We also want some

negative numbers

o about half

 One common option

o Pick the range -2k-1 to 2k-1 - 1

o This choice is called

two’s complement
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Two’s Complement

 Each k-bit word corresponds to a

number between -2k-1 and 2k-1 - 1

o the negative numbers

go from -1 to -2k-1

o the positive numbers

go from 1 to 2k-1 - 1

o and there is 0

 The leftmost bit tells

the sign

o 1 for negative numbers

o 0 for positive numbers and 0

It is called the sign bit
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16

17

18

19

20

21

22

23

8

9

10

11

12

13

14

15

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
0111-8

1000

-7
1001

-6
1010

-5
1011

-4
1100

-3
1101

-2
1110

-1
1111

-16
-15

-14

-13

-12

-11

-10

-9
-24

-23

-22

-21

-20

-19

-18

-17

Efficient way to determine

the sign of a number



Two’s Complement

 Each k-bit word corresponds to

a number in the range

-2k-1 to 2k-1 - 1

o The smallest number

is called int_min

 -2k-1

100…000 in binary

o The largest number

is called int_max

2k-1 - 1

011…111 in binary

oOther notable numbers:

0 is  000…000

 -1 is 111…111
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16

17

18

19

20

21

22

23

8

9

10

11

12

13

14

15

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
0111-8

1000

-7
1001

-6
1010

-5
1011

-4
1100

-3
1101

-2
1110

-1
1111

-16
-15

-14

-13

-12

-11

-10

-9
-24

-23

-22

-21

-20

-19

-18

-17

0111

1000

int_max = 23 - 1
int_min = -23



16

17

18

19

20

21

22

23

8

9

10

11

12

13

14

15

0
0000 1

0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
0111-8

1000

-7
1001

-6
1010

-5
1011

-4
1100

-3
1101

-2
1110

-1
1111

-16
-15

-14

-13

-12

-11

-10

-9
-24

-23

-22

-21

-20

-19

-18

-17

Two’s Complement Overflow

 An operation overflows it its

mathematical result is

outside the range

-2k-1 to 2k-1 - 1

 E.g.,

o int_max + 1

o int_min - 3

o 2 * int_max

o 17 * int_min

46

int_max

int_min

If it is < -2k-1 , this is

sometimes called underflow



int’s in C0

 C0 represents integers as 32-bit words

 It handles overflow using modular arithmetic

 The range of int’s is based on two’s complement

o int_max = 231 - 1 = 2147483647

o int_min = -231 = -2147483648

o Their values are defined as

the functions int_max() and

int_min() in the <util> system

library
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# coin -l util

C0 interpreter (coin) …

…

--> int_max();

2147483647 (int)

--> int_min();

-2147483648 (int)

--> 

Linux Terminal



Reasoning about int Code

 Comparing int values in C0 does not work like comparing 

numbers in normal arithmetic

 This function does not always return 

"Good"

o if x is int_max, it returns "Strange"!

but in math x+1 > x for any x!

 When reasoning about code that uses >, >=, < and <=, we 

often need to account for overflow
by considering special cases

oCode that only uses +, * and - doesn’t need a special treatment

string bar(int x) {

if (x+1 > x) 

return "Good";

else

return "Strange";

}
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Also operators

dealing with sign



Division and Modulus

49



Operations on int’s

 So far, we learned how C0 handles

o +, -, *: using modular arithmetic

o >, >=, <, <=: using two’s complement

oDivision is missing!

 We are used to division on real numbers:

o x/y is the number z such that z*y = x

 if y ≠ 0

 But this definition doesn’t work with integers

o there is no integer z such that 2*z = 3

50

== and != too



Integer Division

 With integers, there is not always z such that z * y = x

o z is x/y in calculus

 We introduce a new operation, the modulus, to pick up 

the slack

oWe want to define the operations x/y and x%y so that

(x/y) * y + (x%y) = x

 That’s not enough!

o defining x/y to always return 0 and x%y to return x would work

we don’t want that!
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modulus of x by ymodulus of x by yinteger division of x by yinteger division of x by y



Integer Division and Modulus

(x/y) * y + (x%y) = x

 We also want the modulus to be between 0 and y-1

o Also require 

0 ≤ |x % y| < |y|

 This is still not enough!

o defining 9/4 to be 3 and 9%4 to be -3 would work
 (9/4) * 4 + (9%4) = 3*4 - 3 = 9 and  0 ≤ |-3| < 4

We don’t want that!

 We want division to “round down”

o in a calculator, 9/4 = 2.25

o so with integer division, we want 9/4 = 2

and therefore 9%4 = 1

52

We take the absolute value

in case y is negative



Integer Division and Modulus

(x/y) * y + (x%y) = x

0 ≤ |x % y| < |y|

Division should “round down”

 But what does “rounding down” mean for negative 

numbers?

o does -2.25 rounds down to -2?

o or does -2.25 round down to -3?

 In C0, integer division rounds toward 0
 so -9/4 == -2 in C0

o In other languages, it rounds towards -∞
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“down” towards 0

“down” towards -∞

Python,

for example



Division by Zero

 In math, division by zero is undefined

 In a program, division by zero is an error

oC0 will abort execution

 Any time we have x/y in a program,

we must have a reason to believe

that y != 0

o 0 is not a valid value for the

denominator of a division

 In C0, we flag invalid values using preconditions

o some primitive operations come with preconditions

not just user-defined functions
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# coin

C0 interpreter (coin) …

--> 5/0;

Error: division by zero.

Last position: <stdio>:1.1-1.4

--> 

Linux Terminal



Safety Requirements

 Integer division, x/y, has the precondition

//@requires y != 0;

 There is another invalid input:

int_min()/-1 also aborts the program
 this is because computer chips

raise errors on these values

 Integer division has a second precondition:

//@requires !(x == int_min() && y == -1);

 Code that uses / or % must be safe

oWe must prove that these preconditions are satisfied
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x%y

has the same

preconditions

x%y

has the same

preconditions



Operations on int’s – Summary

 +, -, *: handled using modular arithmetic

 >, >=, <, <=: handled using two’s complement

 x/y rounds towards 0 – always

 x/y and x%y have preconditions

//@requires y != 0;

//@requires !(x == int_min() && y == -1);
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== and != too



Bit Patterns

57



Using int Beyond Numbers

 So far, we used the type int to represent integers

o numbers!

 But in C0, an int is always 32 bits

 We can use an int to represent any data we can fit in 32 bits

o pixels, network packets, …

Then, an int does not represent a number but a bit pattern

 C0 has a special set of operations to manipulate bit patterns

o they are the bitwise operations and the shifts

o +, -, *, / and % are called the arithmetic operations

58

We could use the arithmetic operations to manipulate bit patterns

but that’s inefficient and error prone



Pixels as 32-bit int’s

 A pixel is a dot of color in an image

o The color of a pixel can be described by specifying

how much red, green and blue it contains

how opaque it is – this part is called the alpha component

 Pixels are efficiently represented as bit patterns

o bits 0-7 give the intensity of blue

o bits 8-15 give the intensity of green

o bits 16-23 give the intensity of red

o bits 24-31 specify the opacity
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alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

• A value of 0 means there is no blue

• A value of 255 means maximally blue

• 0 means fully transparent

• 255 means fully opaque

Similar

Similar

This is called the

ARGB representation



Background

Pixels as Bit Patterns

 To describe a pixel, we need to give all its 32 bits
E.g., 10110011011100110101101011111001

oWe are better off using  hexadecimal

0xB3735AF9

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1011 0011 0111 0011 0101 1010 1111 1001

B    3    7    3    5    A    F    9
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This is mind numbing!

Here’s the color

of this pixel

We always use hex

with bit patterns



Bitwise Operations
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Bitwise Operations

 The bitwise operations manipulate the bits of a bit 

pattern independently of the other bits nearby

 They are

~ – pronounced “not”

& – pronounced “and”

| – pronounced “or”

^ – pronounced “xor”

 Let’s see how they work on an individual bit
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Takes a single argument

Take two argumentsTake two argumentsTake two arguments



Bitwise Operations on One Bit

 Here are the tables

that give the output

for each input
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& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

~ 0 1

1 0

and or

xor not

This says that:

• 0 & 0 is 0

• 0 & 1 is 0

• 1 & 0 is 0

• 1 & 1 is 1



Bitwise Operations

 C0’s bitwise operations take int’s as input and return an int

o there is no type for individual bits in C0

 They apply the tables on each bit of their inputs, position 

by position

o so, if int’s were 6 bits,

 & and | are related to && and || but

o& and | take two int’s and return an int

o&& and || take two bool’s and return a bool
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000111

& 010101

000101

000111

| 010101

010111

000111

^ 010101

010010

~ 010101

101010

But we know

they are 32 bit



Bitwise And – & 

Let’s see how to use the bitwise operations to manipulate bit patterns

 If we “and” any bit b with

o 0, we always get 0
 b & 0 = 0

o 1, we always get b back
 b & 1 = b

 If the int x is a bit pattern, then x & m is an int that

o has the same bits as x where m is 1

o and has a zero where m is 0

 The int m is called a mask

o it allows us to retain specific bits of interest in x
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& 0 1

0 0 0

1 0 1

b

b & 0 = 0

mask

b & 1 = b



&: Clearing Bits

 We want to write a function that returns a pixel identical to 

p but with no red in it
 zero out red component of p – bits 16-23

preserve the all other bits

 We can use the mask 0xFF00FFFF
bits 16-23 are 0

all other bits are 1

 Here’s how it looks on our example

Background Backgroundclear_red

int clear_red(int p) {

return p & 0xFF00FFFF;

}
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& 0 1

0 0 0

1 0 1

b

b & 0 = 0

mask

b & 1 = b

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mask

This is 0xB3735AF9 This is 0xB3005AF9



&: Isolating Red

 We want to return a pixel with just the red component of p
preserve the red component of p – bits 16-23

 zero out all other bits

o “and” p with the mask 0x00FF0000

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Background Backgroundmake_red

int make_red(int p) {

int red = p & 0x00FF0000;

return red;

}
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& 0 1

0 0 0

1 0 1

b

b & 0 = 0

mask

b & 1 = b

Mask

This is 0xB3735AF9 This is 0x00730000

Where’s the red?

The alpha channel

is 00 so it is

totally transparent



Bitwise Or – |

 If we “or” any bit b with

o 0, we always get b back
 b | 0 = b

o 1, we always get 1
 b | 1 = 1

 Common uses of | are

o setting bits to 1

o constructing a bit pattern from parts
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| 0 1

0 0 1

1 1 1

b

b | 0 = b b | 1 = 1

This is similar to clearing bits with &



|: Opacify

 We want to make a pixel fully opaque
 set the alpha bits to 1 – bits 24-31

preserve the other component of p

 We can “or” p with 0xFF000000
bits 24-31 become 1

all other bits stay as in p

Background Backgroundopacify

int opacify(int p) {

return p | 0xFF000000;

}
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| 0 1

0 0 1

1 1 1

b

b | 0 = b b | 1 = 1

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This is 0xB3735AF9 This is 0xFF735AF9

Same color but

fully opaque



|: Constructing Pixels from Parts

 Return a pixel with the same green component as p

and the same alpha, red and blue components as q

o isolate the green component of p

using the mask 0x0000FF00

o isolate the other components of q

using the mask 0xFFFF00FF

o combine them with “or”

int franken_pixel(int p, int q) {

int p_green = p & 0x0000FF00;

int q_others = q & 0xFFFF00FF;

return p_green | q_others;

}
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| 0 1

0 0 1

1 1 1

b

b | 0 = b b | 1 = 1

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Background Backgroundfranken_pixel

This is 0xB3735AF9 This is 0xCDA15A05

Background

This is 0xCDA1E805

if p is 0xB3735AF9, then 

p_green is 0x00005A00

if q is 0xCDA1E805, then

q_others is 0xCDA10005

0x00005A00

| 0xCDA10005

= 0xCDA15A05



Bitwise Not – ~

 Bitwise negation flips bits

71

~ 0 1

1 0



~: Flipping bits

 Return the pixel with the same opacity but inverted colors 
preserve the alpha channel

 change the value of all other channels to 255 minus their original value

 that’s the same as flipping the bits of all channels

Background Backgroundopacify

int invert(int p) {

return (p & 0xFF000000) | (~p & 0x00FFFFFF);

}
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alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This is 0xB3735AF9 This is 0xB38CA506

~ 0 1

1 0



Bitwise Xor – ^

 If we “xor” any bit b with

o 0, we always get b back
 b ^ 0 = b

o b itself, we always get 0
 b ^ b = 0

o furthermore, “xor” is associative

and commutative

 One consequence is that (m ^ k) ^ k = m

o if m is a message and k is a key

then x = (m ^ k) is the encryption of m with k

o to decrypt x, we do x ^ k, and m pops out

 “xor” is commonly used in cryptography
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^ 0 1

0 0 1

1 1 0

b

b ^ 0 = b



Shifts

74



Moving Bits Around

 The bitwise operations manipulate each position 

independently from all other positions in a bit pattern

oWe can’t use them to move bits to new positions

 The shift operations enable us to move bits around

o left shift: x << k moves the bits of x  left  by k positions

o right shift: x >> k moves the bits of x right by k positions

 Since an int has 32 bits, k must be between 0 and 31

//@requires 0 <= k && k < 32;
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The int x is

understood as

a bit pattern

The int k is

understood as

a number

Unsafe otherwise



Left Shift

 x << k shifts the bits of x left by k positions

o the leftmost k bits of x are dropped

o the rightmost k bits of the result are set to 0

 So

o 0101 << 1  evaluates to 1010: 0101

1010

o 0101 << 3  evaluates to 1000: 0101

1000

76
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Blue Everywhere

 Return a pixel whose red and green components have the 

same intensity as p’s blue component

o isolate the blue component of p

o put it in the red, green and blue positions

Background Backgroundblue_everywhere

int blue_everywhere(int p) {

int alpha = p & 0xFF000000;

int blue = p & 0x000000FF;

return alpha | (blue << 16) | (blue << 8) | blue;

}
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alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This is 0xB3735AF9 This is 0xB3F9F9F9

Why is it gray?

Gray is when all

colors are the

same

Leave alpha

unchanged



Right Shift

 x >> k shifts the bits of x right by k positions

o the rightmost k bits of x are dropped

o the leftmost k bits of the result are a copy of the leftmost bit of x

This is called sign extension

 So

o 0101 >> 1 == 0010

o 0101 >> 3 == 0000

o 1010 >> 1 == 1101

o 1010 >> 3 == 1111
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That’s because in two’s complement,

the leftmost bit is the sign bit

Sign bit

The sign bit is 0, so we add 0’s

The sign bit is 1, so we add 1’s

The sign bit is 0, so we add 0’s

The sign bit is 1, so we add 1’s



Swapping the Alpha and Red Channels

 Return a pixel identical to p, but where the red and alpha 

channel are swapped

o isolate the channels of p

o shift alpha right by 8 bits

o shift red left by 8 bits

o combine the parts and return

Background Backgroundswap_alpha_red

If p is 0xB3735AF9 we want 0x73B34AF9

so that its bits are in the red position

so that its bits are in the alpha position

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



Swapping the Alpha and Red Channels

o isolate the channels of p

o shift alpha right by 8 bits

o shift red left by 8 bits

o combine the parts and 

return

 Let’s test it

Background Backgroundswap_alpha_red

int swap_alpha_red(int p) {

int new_alpha = (p & 0x00FF0000) << 8;

int new_red = (p & 0xFF000000) >> 8;

int old_green = p & 0x0000FF00;

int old_blue = p & 0x000000FF;

return new_alpha | new_red | old_green | old_blue;

}
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alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This is 0xB3735AF9 This is 0xFFB35AF9

This is

wrong!



Swapping the Alpha and Red Channels

 We have a bug! If p is 0xB3735AF9,

 (p & 0xFF000000) >> 8 extends p’s sign bit over the 8 

leftmost bits

o Beware of sign extension!

int swap_alpha_red(int p) {

int new_alpha = (p & 0x00FF0000) << 8;

int new_red = (p & 0xFF000000) >> 8;

int old_green = p & 0x0000FF00;

int old_blue = p & 0x000000FF;

return new_alpha | new_red | old_green | old_blue;

}
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alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

this is 0x73000000

this is 0xFFB30000

this is 0x00005A00

this is 0x000000F9











Swapping the Alpha and Red Channels

 To fix the bug, get rid of the sign-extended bits

omask after shifting
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Background Backgroundswap_alpha_red

int swap_alpha_red(int p) {

int new_alpha = (p << 8) & 0xFF000000;

int new_red = (p >> 8) & 0x00FF0000

int old_green = p & 0x0000FF00;

int old_blue = p & 0x000000FF;

return new_alpha | new_red | old_green | old_blue;

}

alpha red green blue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This is 0xB3735AF9 This is 0x73B35AF9

This is equivalent to what we had,

but better be consistent

This solves the issue



int Summary

The type int is used to

 represent integers

o it uses modular arithmetic and two’s complement

o it manipulates them using the arithmetic operations

+, -, &, /, %, >, >=, <, <=

 encode bit patterns

o it manipulates them using the bitwise operations and the shifts

&, |, ~, ^

<<, >>
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NEVER mix and match operations

o it does not make sense to multiply pixels

o nor to & two numbers



Arithmetic vs. Bitwise Operations

NEVER mix and match arithmetic and bitwise operations

 Exceptions

o -x = ~x + 1

o x << k = x * 2k

 in particular, 1 << k = 2k

o x >> k = x divided by 2k (Python division, not C0’s)

84

Inside a processor chip,

• this is an efficient way to compute -x

• it avoids the need for circuitry for subtraction

x << k is a very efficient way to computer x * 2k.

You are very likely to use it

x >> k is a very efficient too, but you are

unlikely to use it: it’s the “wrong” division


