
Amortized Analysis

1

The n-bit Counter

1

Problem of the Day

Rob has a startup. Each time he gets a new user, he

increments a giant stone counter his investors (VC)

erected in downtown San Francisco ― that's a sequence

of 6 stone tablets with 0 on one side and 1 on the other.

Every time a user signs up, he increments the counter. But

the power company charges him $1 each time he turns a

tablet. He is tight on funding, so he needs to pass that

cost to the users. He wants to charge users as little as

possible to cover his cost (the VC promised to erect new

tablets as his user base grows).

How much should he charge each new user?

101001

2

Understanding the Problem

 Each time a user signs up, increment the counter

o pay the power company $1 per bit flipped

o charge the user $x to cover the cost

make x as little as possible

 Cash flow:

 Implicit requirements

o Always have enough cash to pay the power bill

This is an expense

This is income

new user Rob power companyActual costSign-up fee

expenseincome

101001

3

Understanding the Problem

o cost = number of bits flipped

o Sign-up expense varies

many as low as $1

maximum gets higher and higher

 and further apart

Counter User # Cost

0 0 0 0 0 0

1 1

0 0 0 0 0 1

2 2

0 0 0 0 1 0

3 1

0 0 0 0 1 1

4 3

0 0 0 1 0 0

5 1

0 0 0 1 0 1

6 2

0 0 0 1 1 0

7 1

0 0 0 1 1 1

8 4

0 0 1 0 0 0

 What is the cost of signing up the first few users?

101001

4

Let costi be the cost

of signing up user i

Solution #1

 Charge each user the actual cost

oRob can’t charge different users different costs

 Implicit requirements

o Always have enough cash to pay the power bill

oCharge every user the same amount

101001

He’s not running an airline!

New

5

Solution #2

 Charge each user the maximum possible cost

oHow much would that be?

6 bits, so $6

 in general, for an n bit counter, cost is $n

o This is too much

Rob would be making a big profit

 Implicit requirements

o Always have enough cash to pay the power bill

oCharge every user the same amount

 Goal: Charge little

101001

Nobody would sign up

Recall

Frowned upon in the startup world

6

Understanding the Problem

o total_cost = sum of all cost up

to current sign-up

oObservation:

 total_cost < 2 * user#

 at most,

total_cost = 2 * user# - 1

for most expensive increments

 Let’s write down Rob’s total cost over time

101001

Counter User # Cost Total

cost

0 0 0 0 0 0

1 1 1

0 0 0 0 0 1

2 2 3

0 0 0 0 1 0

3 1 4

0 0 0 0 1 1

4 3 7

0 0 0 1 0 0

5 1 8

0 0 0 1 0 1

6 2 10

0 0 0 1 1 0

7 1 11

0 0 0 1 1 1

8 4 15

0 0 1 0 0 0

Idea:

charge users $2!

7

That’s

maxk (Σi<k costi)/k

total_costk = Σi<k costi

Solution #3

 Charge each user $2

o If the actual cost is less, put the difference in a savings account

o If the actual cost is more, pay the difference from these savings

oDoes this work?

Does he always have enough cash to pay the power bill?

 Implicit requirements

o Always have enough cash to pay the power bill

 savings ≥ 0, always

oCharge every user the same amount

 Goal: charge little

101001

This is reasonable for users

8

Understanding the Problem

o total_income

= 2 * user#

o savings =

total_income –

total_cost

o enough to pay bills

 savings + $2 ≥ next cost

o equivalently

 savings ≥ 0

 no need to borrow

 Let’s write down the total income and savings over time

101001

Counter User # Cost Total

cost

Total

income

Savings

0 0 0 0 0 0

1 1 1 2 1

0 0 0 0 0 1

2 2 3 4 1

0 0 0 0 1 0

3 1 4 6 2

0 0 0 0 1 1

4 3 7 8 1

0 0 0 1 0 0

5 1 8 10 2

0 0 0 1 0 1

6 2 10 12 2

0 0 0 1 1 0

7 1 11 14 3

0 0 0 1 1 1

8 4 15 16 1

0 0 1 0 0 0

$2 per

user

9

Problem Solved?

 Charging users $2 seems to work …
 it works for the first 8 users!

 … but how can we be sure?

o at some point,

Rob may not have enough cash to cover the costs

or he may run a big profit

o or both at different times

 Let’s turn this into a computer science problem

101001

10

Problem Solved?

of increments

C
o
s
t

Total income
($2 per increment)

Total cost

Never bigger than

total income …

… but what happens

for other sign-ups?

11

12

Analyzing the n-bit Counter

12

The n-bit Counter Revisited

 View the counter as a data structure

o n bits

 and a user sign-up as an operation

o The number of bit flips is the cost of performing the operation

oWorst-case cost is O(n)

 flip all n bits

 Then, “enough to pay bills” and “savings ≥ 0” are like

data structure invariants …

o… but about cost

oWait!

what are the savings in the data structure?

what does the $2 fee represent?

1 0 0 1 0 1

So far, data structure invariants have been about the

representation of the data structure, never about cost

13

What are the Savings?

o Visualize this by placing a token

on top of each 1-bit in the counter

o A token represents a unit of cost

 = $1 = cost of one bit flip

we earn tokens by charging for an increment

 2 tokens per call to the operation

 no matter how many bits actually get flipped

we spend tokens performing the increment

 1 token per actual bit flip

 variable number of bit flips per increment

 The savings are equal to the number of bits set to 1

Counter User # Savings

0 0 0 0 0 0

1 1

0 0 0 0 0 1

2 1

0 0 0 0 1 0

3 2

0 0 0 0 1 1

4 1

0 0 0 1 0 0

5 2

0 0 0 1 0 1

6 2

0 0 0 1 1 0

7 3

0 0 0 1 1 1

8 1

0 0 1 0 0 0

1 0 0 1 0 1

O(n) in worst case

14

The Token Invariant

 If we

o earn 2 tokens per increment and

o spend 1 token for each bit flipped to carry it out,

 we claim that

o the tokens in saving are always equal to the number of 1-bits

 This is our token invariant

tokens = # 1-bits

o if valid, then “saving ≥ 0” holds

because there can’t be a negative number of 1-bits

1 0 0 1 0 1

Well, this is a candidate invariant:

we still need to show it is valid

15

Proving the Token Invariant

 To prove it is valid, we need to show that it is preserved

by the operations

o if the invariant holds before the operation, it also holds after

 Preservation:

 i.e., if # tokens == # 1-bits before incrementing the counter,

then # tokens == # 1-bits also after

 if true, then “savings ≥ 0, always” holds

 because # 1-bits after can’t be negative

Just like loop invariants

while (i < n)

//@loop_invariant 0 <= i && i < \length(A);

In fact, just like data structure invariants!

void enq(queue* Q, string x)

//@requires is_queue(Q);

//@ensures is_queue(Q);

1 0 0 1 0 1

16

1-bits before + 2 - # bit flips = # 1-bits after

tokens from user cost of operation # tokens in savings# tokens in savings

Proving the Token Invariant

 To prove it is valid, we need to show that it is preserved

by the operations

o if the invariant holds before the operation, it also holds after

 Should we also prove that it is true initially?
 kind of …

o… we are missing an operation:

 creating a new counter initialized to 0

oDoes the token invariant hold for a new counter?

tokens == # 1-bits

no users yet, so no tokens

no 1-bits

 This is a special case of preservation (no “before”)

1 0 0 1 0 1

0 0 0 0 0 0

17

Proving the Token Invariant

 i.e., if # tokens == # 1-bits before incrementing the counter,

then # tokens == # 1-bits also after

 Let’s check it on an example

1 0 0 1 0 1

1 0 0 1 1 1

1 0 1 0 0 0

Earns 2 tokens

from user

Pays 4 tokens

for flipping bits

Savings before

Savings after

there is a token on

top of every 1-bit

The token invariant

is preserved in

this example

18

1-bits before + 2 - # bit flips = # 1-bits after

Proving the Token Invariant

 i.e., if # tokens == # 1-bits before incrementing the counter,

then # tokens == # 1-bits also after

 How are the tokens used?

1 0 0 1 0 1

1 0 0 1 1 1

1 0 1 0 0 0

o each 1-bit that is flipped

paid by associated token in savings

o 0-bit that is flipped

paid by 1 token from user

o token for the new 1-bit

paid by 1 token from user

These are all the

1-bits to the right of

the rightmost 0-bit

19

1-bits before + 2 - # bit flips = # 1-bits after

Proving the Token Invariant

 i.e., if # tokens == # 1-bits before incrementing the counter,

then # tokens == # 1-bits also after

 How are the tokens used?

o tokens associated to bits:

used to flip bit from 1 to 0

o 2 tokens from user

1 token to flip rightmost 0-bit to 1

1 token to place on top of new

rightmost 1-bit

1 0 0 1 0 1

1 0 0 1 1 1

1 0 1 0 0 0

20

1-bits before + 2 - # bit flips = # 1-bits after

Proving the Token Invariant

 General situation

1 0 0 1 0 1

b … b 0 1 … 1

b … b 1 0 … 0

Earns 2 tokens

from user

Pays r+1 tokens

for flipping bits

These bits

get flipped

Rightmost 0-bits

These bits

don’t change

r bits

o rightmost 1-bits are flipped

paid by associated token in savings

o rightmost 0-bit is flipped

paid by 1 token from user

o token for the new rightmost 1-bit

paid by 1 token from user

o other bits don’t change

21

1-bits before + 2 - # bit flips = # 1-bits after

Solution #3

 Charge each user $2

o If the actual cost is less, put the difference in a savings account

o If the actual cost is more, pay the difference from these savings

oDoes this work?

YES!

 Implicit requirements

o Always have enough cash to pay the power bill

 savings ≥ 0, always

oCharge every user the same amount

 Goal: charge little

101001

This is reasonable for users

22

What does the $2 fee Represent?

 We pretend that each increment costs 2 tokens

o even though it may cost as much as n, or as little as 1

 This is the amortized cost of an increment

o not the actual cost of an increment (which varies)

o but enough to cover the actual cost over a sequence of operations

 inexpensive increments pay for expensive ones

prepay future cost

o note that 2 is in O(1)

 Worst case cost of increment: O(n)

 Amortized cost of increment: O(1)

1 0 0 1 0 1

an increment can cost

as much as O(n) …

… but it is as if each increment

in the sequence cost O(1)

23

24

Amortized Complexity Analysis

24

Sequences of Operations

 We have a data structure on which

we perform a sequence of k operations

 Normal complexity analysis tells us that the

cost of the sequence is bounded by k times

the worst-case complexity of the operations

 The actual total cost of the sequence may

be much less

o total_cost = Σi<k cost_of_operation_i

 Define the amortized cost as the actual

total cost divided by the length of the sequence

o amortized_cost = total_cost / k

 rounded up

n-bit counter

k increments

k times O(n):

that’s O(kn)

O(k) divided by

k: that’s O(1)

O(k) for the

whole sequence

Our

example

In the table,

total_cost ≤ 2k-1

25

Amortized Cost

The actual total cost divided by the length of the sequence

 This is the average of the actual total cost of the operations

over the sequence

o amortized_cost = (Σi<k cost_of_operation_i) / k

 rounded up

 As if every operation in the sequence cost the same amount

o This amount is the amortized cost

 Just looking at the worst-case complexity is too pessimistic

o it tells us about the cost of an operation in isolation

o but here the operation is part of a sequence

a few operations may be expensive,

but on average they are pretty cheap
26

Amortized Cost

The actual total cost divided by the length of the sequence

o amortized_cost = (Σk
i=0 cost_of_operation_i) / k

 rounded up

Actual cost of operation Amortized cost

27

The Old Notion of “Average”

 Recall Quicksort

oWorst-case complexity: O(n2)

when we were really unlucky and systematically picked bad pivots

oAverage-case complexity: O(n log n)

what we expected for an average array

 very unlikely that all pivots are bad

 What were we averaging over?

o The likelihood of a series of bad pivots in all possible arrays

a probability distribution

 Average-case complexity has to do with chance

o There is a very low probability that the actual cost will be O(n2)

on any given input

but it may happen

 the actual cost depends on what array we are handed

28

A New Notion of “Average”

 Average-case complexity: average over input distribution

o The actual cost has to do with chance

 Amortized complexity: average over a sequence of

operations

oWe know the exact cost of every operation

 so we know the exact cost of the sequence overall

 this is an exact calculation

 no chance involved

 Difference

o average over time

vs.

o average over chance

Basically an

average over time

Amortized complexity

Average complexity
29

Amortization in Practice (I)

 A baker buys a $100 sack of flour every 100 loaves of

bread

o 1st loaf costs $100

o 2nd, 3rd, …, 100th costs nothing

 The baker charges $1 for each loaf

o average cost over all 100 loafs

Here, both worst case and amortized cost are O(1)

o not as dramatic as O(n) vs. O(1)

Actual cost to

the baker

The baker

charges you an

amortized cost

$100 $1

30

Amortization in Practice (II)

 Your smartphone use varies over time

o some days you barely go online

o other days you binge-watch movies for hours on end

 Your provider charges you a fixed monthly cost

o average cost over time and over all customers

(+ profit)

Actual cost to

your provider

Your provider

charges you an

amortized cost

31

When to Use Amortized Analysis?

 We have a sequence of k operations on a data structure

o the sequence starts from a well-defined state

o each operation changes the data structure

 We expect the actual cost of the whole sequence to be

much less than k times the worst-case complexity of the

operations

o a few operations are expensive

omany are cheap

Use the inexpensive operations to pay for the expensive operations

We prepay for future costs

32

How to do Amortized Analysis?

 Invent a notion of token

o represents a unit of cost

 Determine how many tokens to charge for each operation
 this is the candidate amortized cost

o (see next)

 Specify the token invariant

o for any instance of the data structure, how many tokens need to

be saved

 Prove that every operation preserves the token invariant

o if the invariant holds before, it also holds after

what we pretend the

operation costs

This is like

point-to

reasoning

This is like

point-to

reasoning

33

saved tokens before + amortized cost – actual cost = saved tokens after

How to Determine the Amortized Cost?

How many tokens to charge?

1. Draw a short sequence of operations

 make it long enough so that a pattern emerges

2. Write the cost of each operation

3. Flag the most expensive so far

4. For each operation, compute the total cost

up to it

5. Divide the total cost of the most expensive

operations by the operation number in the

sequence

6. Round up — that’s the candidate amortized

cost

candidate

Counter User

#

Cost Total

cost

Div

000000

1 1 1

000001

2 2 3 1.5

000010

3 1 4

000011

4 3 7 1.75

000100

5 1 8

000101

6 2 10

000110

7 1 11

000111

8 4 15 1.875

001000

2

1

2 4 5

3

3

3

6

This is called the accounting method
This is like operational reasoning:

forming a conjecture that we then

prove using point-to reasoning34

3

35

Unbounded Arrays

35

Another Problem

 We want to store all the words in a text file into an array-like

data structure so that we can access them fast

owe don’t know how many words there are ahead of time

we add them one at a time

 Use an array?

o access is O(1)

o but we don’t know how big to make it!

 too small and we run out of space

 too big and we waste lots of space

 Use a linked list?

owe can make it the exact right size!

o but access is O(n)

where n is the number of words in the file

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed

do eiusmod tempor incididunt

ut labore et dolore magna

aliqua. Ut enim ad minim

veniam, quis nostrud

exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat. Duis aute irure

36

Another Problem

 We want to store all the words in a text file into an array-like

data structure so that we can access them fast

owe don’t know how many words there are ahead of time

 We want an unbounded array
a data structure that combines the best properties of arrays and linked lists

o access is about O(1)

o and size is about right

 Same operations as regular arrays, plus

o a way to add a new element at the end

o a way to remove the end element

That’s what amortized

cost is all about!

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed

do eiusmod tempor incididunt

ut labore et dolore magna

aliqua. Ut enim ad minim

veniam, quis nostrud

exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat. Duis aute irure

Never too small, and

not extravagantly big

37

The Unbounded Array Interface

// typedef ______* uba_t;

int uba_len(uba_t A) // O(1)

/*@requires A != NULL; @*/

/*@ensures \result >= 0; @*/ ;

uba_t uba_new(int size)

/*@requires 0 <= size ; @*/

/*@ensures \result != NULL; @*/

/*@ensures uba_len(\result) == size; @*/ ;

string uba_get(uba_t A, int i) // O(1)

/*@requires A != NULL; @*/

/*@requires 0 <= i && i < uba_len(A);@*/ ;

void uba_set(uba_t A, int i, string x) // O(1)

/*@requires A != NULL; @*/

/*@requires 0 <= i && i < uba_len(A);@*/ ;

void uba_add(uba_t A, string x) // O(1) amt

/*@requires A != NULL; @*/ ;

string uba_rem(uba_t A) // O(1) amt

/*@requires A != NULL; @*/

/*@requires 0 < uba_len(A); @*/ ;

Unbounded Array Interface

This is exactly the

self-sorting array interface

with “ssa” renamed to “uba”

Add x as the last element of A
• A grows by 1 element

Remove and return the last

element of A
• A shrinks by 1 element

Constant amortized

complexity
(worst-case could

be a lot higher)

Doesn’t keep elements

sorted this time

38

Towards an Implementation

 Recall the SSA concrete type

 Can we reuse it for unbounded arrays?

o Let’s add “c” to it

// Implementation-side type

struct ssa_header { // Concrete type

int length; // 0 <= length

string[] data; // \length(data) == length

};

Client view

These are

representation invariants

"a" "b"

length 2

data "a" "b"

A

A

u
b
a
_
a
d
d
(A

,
"c

")

Implementation

view

39

Towards an Implementation

 Let’s add “c” to it

oCopying the old elements to the new array is expensive

O(n) for an n-element array

 Next, let’s remove the last element

"a" "b" "c"

length 3

data "a" "b"

A

A

"a" "b" "c"

u
b

a
_
a
d

d
(A

,
"
c
"
)

Create a new 3-element array,

copy “a” and “b” over,

write “c”

u
b

a
_

re
m

(A
)

40

Towards an Implementation

 Next, let’s remove the last element

oCopying the remaining elements to the new array is expensive

again, O(n)

 Can we do better?

"a" "b"

length 2

data

"a" "b"

A

A

"a" "b" "c"

u
b

a
_
re

m
(A

)

Create a new 2-element array,

copy “a” and “b” over,

return “c”

41

Towards an Implementation

 Can we do better?

oMaybe leave the array alone and just change the length!

oWe did not do any copying, just updated the length

O(1) for an n-element array

 Let’s continue by adding “d”

length 2

data

A

"a" "b"

No need to create a new array!

The last position is unused:

we can recycle it

Sneaky!

u
b

a
_
re

m
(A

)

u
b
a
_
a
d
d
(A

,
"d

")

"a" "b"A

42

Towards an Implementation

 Let’s continue by adding “d”

o All we did is one write!

O(1)

 But is it safe?

oWe have no way to know the true length of the array!
 it used to be that A->length == \length(A->data)

when executing

A->data[2] = “d”

we don’t know if we are writing out of bounds

 now, all we know is that A->length <= \length(A->data)

length 3

data

A

"a" "b" “d"

No need to create a new array:

just use the unused position!

STOP

u
b

a
_
a
d

d
(A

,
"
d

"
)

"a" "b" "d"A

43

Towards an Implementation

 Fix this by splitting length into two fields

o size is the size of the unbounded array reported to the user

o limit is the true length of the underlying array

// Implementation-side type

struct uba_header { // Concrete type

int size; // 0 <= size && size < limit

int limit; // 0 < limit

string[] data; // \length(data) == limit

};

Client view Implementation

view

"a" "b"

size 2

limit 4

data "a" "b"

A

A

It will be convenient

to have size < limit

rather than size <= limit

These are

representation invariants

44

Towards an Implementation

 Let’s do it all over again: we first add “c”

oNo need to copy old array elements

write new element in the first unused space

update size

oO(1) for an n-element array

 very cheap this time

 Next, let’s remove the last element

Write “c” in the first

unused spacesize 3

limit 4

data "a" "b" "c"

A

"a" "b" "c"A

u
b

a
_
a
d

d
(A

,
"
c
"
)

u
b

a
_

re
m

(A
)

45

Towards an Implementation

 Next, let’s remove the last element

o Simply decrement size and return element

oO(1)

 Let’s continue by adding “d”

size 2

limit 4

data "a" "b"

A

“c” is still here,

but we don’t care

u
b

a
_
re

m
(A

)

u
b
a
_
a
d
d
(A

,
"d

")

"a" "b"A

46

Towards an Implementation

 Let’s continue by adding “d”

o As before, just update size

oO(1)

 This is where we got stuck earlier

o Let’s carry on and add “e”

size 3

limit 4

data "a" "b" "d"

A

u
b

a
_
a
d

d
(A

,
"
d

"
)

"a" "b" "d"A

Write “d” where

“c” used to be

u
b
a
_
a
d
d
(A

,
"e

")

47

Towards an Implementation

 Let’s carry on and add “e”

 We need to resize the array to accommodate “e”

owhile satisfying the representation invariants

 How big should the new array be?

We can’t do that!

This violates the invariant that

size < limit

"a" "b" "d" "e"A

size 4

limit 4

data "a" "b" "d" "e"

A

u
b

a
_
a
d

d
(A

,
"
e
"
)

48

Resizing the Array

 How big should the new array be?

oOne longer: just enough to accommodate “e”

oO(n) for an n-element array

 The next uba_add will also be O(n)

o and the next after that, and the one after, and …

size 4

limit 5

data

"a" "b" "d" "e"

A

"a" "b" "d"

"a" "b" "d" "e"A

u
b

a
_
a
d

d
(A

,
"
e
"
)

We need to copy the

elements of the old

array into the new array

49

Resizing the Array

 How big should the new array be?

o one longer: just enough to accommodate “e”

oO(n) for an n-element array, but the next add will also be O(n), …

 A sequence of n uba_add starting from a limit-1 array costs

1 + 2 + 3 + … + (n-1) + n = n(n+1)/2

That’s O(n2)

o The amortized cost of each operation is O(n), like the worst-case

 Can we do better?

oObservation: if there is space in the array, uba_add costs just O(1)

o Idea: make the new array bigger than necessary

"a" "b" "d" "e"A

50

Resizing the Array

 How big should the new array be?

o Two longer: enough to accommodate “e” and a next element

oO(n) for an n-element array

 The next add will be O(1) but the one after that is O(n) again

o The cost of a sequence of n uba_add is still O(n2)

o The amortized cost stays at O(n)

 Same if we grow the array by any

fixed amount c

size 4

limit 6

data

"a" "b" "d" "e"

A

"a" "b" "d"

"a" "b" "d" "e"A

u
b

a
_
a
d

d
(A

,
"
e
"
)

1 + 1 + 3 + 1 + 5 + 1 + … + (2n+1) + 1

= 2 + 4 + 6 + … + (2n+2)

= 2(1 + 2 + 3 + … (n+1))

= (n+1)(n+2)51

Resizing the Array

 How big should the new array be?

oDouble the length!

oO(n) for an n-element array

 The next n uba_add will be O(1)

oWe get good amortized cost when

 the expensive operations are further and further apart

most operations are cheap

oDoes doubling the size of the array give us O(1) amortized cost?

size 4

limit 8

data

"a" "b" "d" "e"

A

"a" "b" "d"

"a" "b" "d" "e"A

u
b

a
_
a
d

d
(A

,
"
e
"
)

52

53

Analyzing Unbounded Arrays

53

Amortized Cost of uba_add

 Conjecture: doubling the size of the array on resize yields

O(1) amortized complexity

 Let’s follow our methodology

 Invent a notion of token

o represents a unit of cost

 Determine how many tokens to charge

o the candidate amortized cost

 Specify the token invariant

o for any instance of the data structure,

how many tokens need to be saved

 Prove that the operation preserves it

o if the invariant holds before, it also holds after
 saved tokens before + amortized cost – actual cost =

saved tokens after

1. Draw a short sequence of

operations

2. Write the cost of each operation

3. Flag the most expensive so far

4. For each operation, compute the

total cost up to it

5. Divide the total cost of the most

expensive operations by the

operation number in the sequence

6. Round up — that’s the candidate

amortized cost

54

Amortized Cost of uba_add

 Invent a notion of token

o represents a unit of cost

 For us, the unit of cost will be an array write

o 1 array write costs 1 token

o all other instructions are cost-free

we could also assign a cost to them

but let’s keep things simple

55

Amortized Cost of uba_add

 Determine how many tokens to charge

o that’s the candidate amortized cost

 When adding an element

owe first write it in the old array, and then

o if full, copy everything to the new array

o This costs 5 tokens

write “e” in the old array

 copy “a”, “b”, “d”, “e” to the new array

1. Draw a short sequence of

operations

2. Write the cost of each operation

3. Flag the most expensive so far

4. For each operation, compute the

total cost up to it

5. Divide the total cost of the most

expensive operations by the

operation number in the sequence

6. Round up — that’s the candidate

amortized costsize 4

limit 8

data

"a" "b" "d" "e"

A

"a" "b" "d" "e"

a bit silly, but it makes

the math simpler

u
b
a
_
a
d
d
(A

,
"e

")

56

“a” “b” “c” “d” “e” “f” “g” “h”

“a” “b” “c” “d” “e” “f” “g” “h” “I”

“a” “b” “c” “d” “e” “f” “g” “h”

“a” “b” “c” “d” “e” “f” “g”

“a” “b” “c” “d” “e” “f”

“a” “b” “c” “d” “e”

“a” “b” “c” “d”

“a” “b” “c” “d”

“a” “b” “c”

“a” “b”

“a” “b”

size limit data

1 2

3 3 3 1

4 1 2

3 9 5 3

10 1 4

11 1 5

12 1 6

3 21 9 7

22 1 8

“a”

size limit data

2 4

size limit data

3 4

size limit data

4 8

size limit data

5 8

size limit data

6 8

size limit data

7 8

size limit data

9 16

size limit data

8 16

2
1

3

3

3

4

5

36

Amortized Cost of uba_add

1. Draw a short sequence of operations

2. Write the cost of each operation

3. Flag the most expensive so far

4. For each operation, compute the total

cost up to it

5. Divide the total cost of the most

expensive operations by the

operation number in the sequence

6. Round up — that’s the candidate

amortized cost

Unit of cost:

1 array write

Candidate

amortized

cost

57

Amortized Cost of uba_add

It looks like we need to charge 3 tokens per uba_add

 Specify the token invariant

o for any instance of the data structure,

how many tokens need to be saved

 How are the 3 tokens charged for an uba_add used?

oWe always write the added element to the old array

1 token used to write the new element

o The remaining 2 tokens are saved

where do they go?

that’s our candidate

amortized cost

58

Amortized Cost of uba_add

 How are the 3 tokens charged for an uba_add used?

o 1 token used to write the new element

oWhere do the remaining 2 tokens go?

 Assume

owe have just resized the array and have no tokens left

“a” “b” “c” “d”

“a” “b” “c” “d”

“a” “b” “c”

“a” “b”

size limit data

2 4

size limit data

3 4

size limit data

4 8

We spent all saved tokens resizing

We spend 4 tokens

copying the elements

a
d
d

"c
"

a
d
d

"d
"

Each token is associated

with an element in the old array59

Amortized Cost of uba_add

 How are the 3 tokens charged for an uba_add used?

o 1 token used to write the new element

o Each of the remaining 2 tokens is associated with an element in

the old array

1 token to copy the element we just wrote

 always in the 2nd half of the array

1 token to copy the matching element in the first half of the array

 element that was copied on the last resize

“a” “b” “c” “d”

“a” “b” “c” “d”

“a” “b” “c”

“a” “b”

size limit data

2 4

size limit data

3 4

size limit data

4 8

a
d
d

"c
"

a
d
d

"d
"

1st half 2nd half

1st half: elements inherited from last resize

2nd half: elements added after last resize

60

Amortized Cost of uba_add

 The token invariant

o every element in the 2nd half of the array has a token

o and the corresponding element in the 1st half of the

array has a token

 Alternative formulation:

o an array with limit 2k and size k+r holds 2r tokens (for 0 ≤ r < k)

tokens == 2r

… … … …

size limit data

k+r 2k

1st half 2nd half

k k

r r

both assume a resize has happened previously
61

Amortized Cost of uba_add

 Prove that the operation preserves the token invariant

o if the invariant holds before, it also holds after

 saved tokens before + amortized cost – actual cost = saved tokens after

 We need to distinguish two cases

1. Adding the element does not trigger a resize

2. Adding the element does trigger a resize

… and we will need to see what happens before the first

resize

62

Amortized Cost of uba_add

1. Adding the element does not trigger a resize

We receive 3 tokens

 we spend 1 to write the new element

 we put 1 on top of the new element

 we put 1 on top of the matching element in the 1st half of the array

Alternatively,

 # tokens after = # tokens before + 3 – 1 = 2r + 2 = 2(r+1) = 2r’

… … … …

size limit data

k+r 2k

k k

r r

… … … …

size limit data

k+r+1 2k

k’ = k k ’ = k

r’ = r+1 r’ = r+1

u
b
a
_
a
d
d

63

saved tokens before + amortized cost – actual cost = saved tokens after

Amortized Cost of uba_add

2. Adding the element does trigger a resize

We receive 3 tokens

 we spend 1 to write the new element

 we put 1 on top of the new element

 we put 1 on top of the matching element in the 1st half of the array

We spend all tokens associated with array elements

… …

size limit data

2k-1 2k

k k

r = k-1 r = k-1

… … …

size limit data

2k 4k

k’ = 2k k ’ = 2k

r’ = 0 r’ = 0

u
b
a
_
a
d
d

… …

64

saved tokens before + amortized cost – actual cost = saved tokens after

Amortized Cost of uba_add

2. Adding the element does trigger a resize

Alternatively,

 # tokens after = # tokens before + 3 – 1 – (# tokens before + 2) = 2r + 2 – (2r+2) = 0 = 2r’

… …

size limit data

2k-1 2k

k k

r = k-1 r = k-1

… … …

size limit data

2k 4k

k’ = 2k k ’ = 2k

r’ = 0 r’ = 0

u
b
a
_
a
d
d

… …

65

saved tokens before + amortized cost – actual cost = saved tokens after

Amortized Cost of uba_add

 What happens before the first resize?

o there is no 1st half of the array where to put matching tokens

o put it in an extra savings account

 that will not be used when resizing

update the token invariant to: # tokens ≥ 2r

o It doesn’t matter if we have extra savings

we are charging 3 tokens for uba_add

amortized cost is still O(1)

… …

size limit data

r k

k

r

… …

size limit data

r+1 k

k’ = k

r’ = r+1

u
b
a
_
a
d
d

66

Amortized Cost of uba_add

 We followed our methodology

 and found that

owe can charge 3 tokens for uba_add

o the amortized complexity of uba_add is O(1)

o although its worst-case complexity is O(n)

 Invent a notion of token

o represents a unit of cost

 Determine how many tokens to charge

o the candidate amortized cost

 Specify the token invariant

o for any instance of the data structure,

how many tokens need to be saved

 Prove that the operation preserves it

o if the invariant holds before, it also holds after
 saved tokens before + amortized cost – actual cost =

saved tokens after

1. Draw a short sequence of

operations

2. Write the cost of each operation

3. Flag the most expensive so far

4. For each operation, compute the

total cost up to it

5. Divide the total cost of the most

expensive operations by the

operation number in the sequence

6. Round up — that’s the candidate

amortized cost

where n is the number

of elements in the array67

What about the Other Operations?

 uba_len and uba_get don’t write

to the array

o they cost 0 tokens

 uba_set does exactly 1 write to

the array

o it costs 1 token

 uba_new: doesn’t write to the array

o it costs 0 tokens

o but we need to account for alloc_array

 uba_rem is … interesting

o left as exercise!

Worst-case complexity is O(1)

By charging this number of tokens,

they trivially preserve the token

invariant

o our analysis of uba_add remains valid

even for sequences of operations that

make use of them

It turns out that Its

amortized complexity is also O(1)68

Worst-case complexity is O(size)

69

Implementing Unbounded Arrays

69

Let’s implement them!

 Things we need to do

oDefine the concrete type for uba_t

oDefine its representation invariants

owrite code for every interface function

make sure it’s safe and correct

// typedef ______* uba_t;

int uba_len(uba_t A) // O(1)

/*@requires A != NULL; @*/

/*@ensures \result >= 0; @*/ ;

uba_t uba_new(int size) // O(size)

/*@requires 0 <= size ; @*/

/*@ensures \result != NULL; @*/

/*@ensures uba_len(\result) == size; @*/ ;

string uba_get(uba_t A, int i) // O(1)

/*@requires A != NULL; @*/

/*@requires 0 <= i && i < uba_len(A);@*/ ;

void uba_set(uba_t A, int i, string x) // O(1)

/*@requires A != NULL; @*/

/*@requires 0 <= i && i < uba_len(A);@*/ ;

void uba_add(uba_t A, string x) // O(1) amt

/*@requires A != NULL; @*/ ;

string uba_rem(uba_t A) // O(1) amt

/*@requires A != NULL; @*/

/*@requires 0 < uba_len(A); @*/ ;

Unbounded Array Interface

Left as an exercise

70

Concrete Type

 We did this earlier!

// Implementation-side type

struct uba_header { // Concrete type

int size; // 0 <= size && size < limit

int limit; // 0 < limit

string[] data; // \length(data) == limit

};

typedef struct uba_header uba; // Internal name

// … rest of implementation …

// Client-side type (abstract)

typedef uba* uba_t;

Client view Implementation

view

"a" "b"

size 2

limit 4

data "a" "b"

A

A

71

Representation Invariants

 Internally, unbounded arrays are values of type uba*

o non-NULL

o satisfies the requirements in the type

bool is_array_expected_length(string[] A, int length) {

//@assert \length(A) == length;

return true;

}

bool is_uba(uba* A) {

return A != NULL

&& 0 <= A->size

&& A->size < A->limit

&& is_array_expected_length(A->data, A->limit);

}

struct uba_header {

int size; // 0 <= size && size < limit

int limit; // 0 < limit

string[] data; // \length(data) == limit

};

typedef struct uba_header uba;

size 2

limit 4

data "a" "b"

A

Our trick to check

that the length is Ok

72

Basic Array Operations

 The code is as expected

void uba_set(uba* A, int i, string x)

//@requires is_uba(A);

//@requires 0 <= i && i < uba_len(A);

//@ensures is_uba(A);

{

A->data[i] = x;

}

struct uba_header {

int size;

int limit;

string[] data;

};

typedef struct uba_header uba;

uba* uba_new(int size)

//@requires 0 <= size;

//@ensures is_uba(\result);

//@ensures uba_len(\result) == size;

{

uba* A = alloc(uba);

int limit = size == 0 ? 1 : size*2;

A->data = alloc_array(string, limit);

A->size = size;

A->limit = limit;

return A;

}

int uba_len(uba* A)

//@requires is_uba(A);

//@ensures 0 <= \result && \result < \length(A->data);

{

return A->size;

}

string uba_get(uba* A, int i)

//@requires is_uba(A);

//@requires 0 <= i && i < uba_len(A);

{

return A->data[i];

}

size 2

limit 4

data "a" "b"

A

• if size == 0, then limit = 1

• otherwise limit = size*2

This ensures that

size < limit
(and leaves room to grow)

We are not

considering

overflow

73

Adding an Element

 We write the new element,

 increment size,

 if array is full, we resize it

o but only if there can’t be overflow

void uba_add(uba* A, string x)

//@requires is_uba(A);

//@ensures is_uba(A);

{

A->data[A->size] = x;

(A->size)++;

if (A->size < A->limit) return;

assert(A->limit <= int_max() / 2);

uba_resize(A, A->limit * 2);

}

struct uba_header {

int size;

int limit;

string[] data;

};

typedef struct uba_header uba;

Fail if new limit would overflow

Resize A with the new limit

double the old limit

size 2

limit 4

data "a" "b"

A

74

Resizing the Array

 Create an array with the new limit,

 copy the elements over

 update the fields of the header

void uba_resize(uba* A, int new_limit)

//@requires A != NULL;

//@requires 0 <= A->size && A->size < new_limit;

//@requires \length(A->data) == A->limit;

//@ensures is_uba(A);

{

string[] B = alloc_array(string, new_limit);

for (int i = 0; i < A->size; i++)

//@loop_invariant 0 <= i && i <= A->size;

{

B[i] = A->data[i];

}

A->limit = new_limit;

A->data = B;

}

struct uba_header {

int size;

int limit;

string[] data;

};

typedef struct uba_header uba;

//@requires is_uba(A);

would be incorrect:

we may have size==limit

uba_resize may be passed an invalid UBA:

one that violates the representation invariant

Part of its job is to restore

the representation invariant

75

76

Unbounded Arrays in the Wild

76

Python “Lists”

 The Python programming language does not have arrays

 It has “lists” that can be indexed, extended and shrunk

o nothing to do with linked list

 Python lists work just like unbounded arrays

o append is what we called uba_add

data = ['A', 'B', 'C']

data.append('D')

data[2]

data = []

for i in range(100000):

data.append('A')

data[99888]

Create a 3-element list with ‘A’, ‘B’, and ‘C’

Extend it with ‘D’

Get the element at index 2 (that’s ‘C’)

Set data to the empty list

Extend it with a bunch of ‘A’

Access one of them

77

How are Python Lists Implemented?

 Source code available at

https://github.com/python/cpython/blob/master/Objects/listobject.c

o It is written in C

 Let’s look at the code for append

If all Ok, call app1

Otherwise,

raise an error

78

https://github.com/python/cpython/blob/master/Objects/listobject.c

How are Python Lists Implemented?

 Let’s look at the code of app1

This code writes the new

element after any resizing

Calls list_resize to

resize array if needed

79

How are Python Lists Implemented?

 Let’s look at the code of list_resize

… unimportant code

== newsize / 8

new_allocated

= 1.125 * newsize

+ change

doesn’t quite

double the

size, but grows

as a multiple of

newsizeExercise: check that the amortized cost is still O(1)
80

81

Wrap Up

81

What have we done?

 We introduced amortized complexity

o average cost over a sequence of operations

 We learned how to determine the amortized complexity

o amortized analysis using the accounting method

 We used it to analyze unbounded arrays

 We implemented unbounded arrays

Operation Worst-case complexity Amortized complexity

uba_len O(1)

(same)
uba_new O(n)

uba_get O(1)

uba_set O(1)

uba_add O(n) O(1)

uba_rem O(n) O(1) Exercise

82

