Hashing

Sets and Dictionaries

What do we use arrays for?

To keep a *collection* of elements of the same type in one place o *E.g., all the words in the Collected Works of William Shakespeare* **1**

The array is used as a **set**

o the index where an element occurs doesn't matter much

• Main operations:

- o add an element
	- like uba_add for unbounded arrays
- o check if an element is in there
	- \triangleright this is what search does (linear if unsorted, binary if sorted)
- o go through all elements
	- \triangleright using a for-loop for example

What do we use arrays for?

2

As a *mapping* from indices to values

o *E.g., the monthly average high temperatures in Pittsburgh*

• Main operations:

o **insert**/update a value for a given index

E.g., High[10] = 63 -- the average high for October is 63°F

o **lookup** the value associated to an index

E.g., High[3] -- looks up the average high for March

Dictionaries, beyond Arrays

- Generalize index-to-value mapping of arrays so that o index does not need to be a contiguous number starting at 0 o in fact, index doesn't have to be a number at all
- A **dictionary** is a mapping from keys to values

Dictionaries

Contains **at most** one entry associated to each key

main operations:

o create a **new** dictionary

o **lookup** the entry associated with a key \triangleright or report that there is no entry for this key o **insert** (or update) an entry

 many other operations of interest o delete an entry given its key o number of entries in the dictionary o print all entries, …

Some keys may have **no** associated entry

(we will consider only these)

Dictionaries in the Wild

• Dictionaries are a primitive data structure in many languages

 They are not primitive in low level languages like C and C0 o We need to implement them and provide them as a library o This is also what we would do to write a Python interpreter

Implementing Dictionaries

● based on what we know so far …

o worst-case complexity assuming the dictionary contains *n* entries

o **Observation**: operations are fast when we know where to look

 Goal: efficient lookup and insert for large dictionaries \circ about $O(1)$

Dictionaries with Sparse Numerical Keys

Example

A dictionary that maps zip codes (keys) to neighborhood names (values) for the students in this room

● zip codes are 5-digit numbers -- e.g., 15213

o use a 100,000-element array with indices as keys?

o possibly, but most of the space will be wasted:

 \triangleright only about 200 students in the room

 \triangleright only some 43,000 zip codes are currently in use

Use a much smaller *m*-element array

 \triangleright here m=5

 \circ reduce a key to an index in the range $[0,m)$

 \triangleright here reduce a zip code to an index between 0 to 4

do zipcode % 5

This is the first step towards a **hash table**

Example

 We now perform a sequence of insertions and lookups

insert (15213, "CMU") insert (15122, "Kennywood") lookup 15213 lookup 15219 lookup 15217 insert (15217, "Squirrel Hill") lookup 15217 lookup 15219

4

This is **incorrect**!

o we never inserted an entry with key 15217 o it should signal there is no value

We need to store **both** the **key** and the **value** - the whole **entry**

• lookup now returns a whole entry

We have a **collision**

o different entries map to the same index

Dealing with Collisions

Two common approaches

\bullet **Open addressing**

- \circ if a table index is taken, store the new entry at a predictable index nearby
	- **linear probing**: use next free index (modulo m)
	- \triangleright **quadratic probing**: try table index $+$ 1, then $+4$, then $+9$, etc.

Separate chaining

o do not store the entries in the table itself but in **buckets**

- \triangleright bucket for a table index contains all the entries that map to that index
- buckets are commonly implemented as **chains**
	- □ a chain is a NULL-terminated linked list

Collisions are Unvoidable

\bullet If n > m

o **pigeonhole principle**

 "If we have n pigeons and m holes and n > m, one hole will have more than one pigeon"

o This is a certainty

\bullet If n > 1

o **birthday paradox**

 "Given 25 people picked at random, the probability that 2 of them share the same birthday is > 50%"

o This is a probabilistic result

Example, continued with separate chaining

- Each table position contains a chain
	- o a NULL-terminated linked list of entries
	- o the chain at index *i* contains all entries that map to *i*

insert (15213, "CMU") insert (15122, "Kennywood") lookup 15213 lookup 15219 lookup 15217 insert (15217, "Squirrel Hill") lookup 15217 lookup 15219

Cost Analysis

Setup

Assume

- o the dictionary contains *n* entries
- o the table has capacity *m*
- o collisions are resolved using separate chaining
	- \triangleright the analysis for open addressing requires more advanced math \Box but it yields similar findings
- What is the cost of **lookup** and **insert**?
	- o Observe that **insert** costs *at least* as much as **lookup**
		- \triangleright we need to check if an entry with that key is already in the dictionary
			- \Box if so, replace that entry (update)
			- \Box if not, add a new node to the chain (proper insert)

Worst Possible Layout

All entries are in the same bucket

o look for a key that belongs to this bucket but that is not in the dictionary

• Looking up a key has cost O(n) \circ find the bucket -- $O(1)$ o going through all n nodes in the chain

All buckets have the same number of entries

o all chains have the same length

 \triangleright n/m

- o n/m is called the **load factor** of the table
	- \triangleright in general, the load factor is a fractional number, e.g., 1.2347
- Looking up a key has **worst-case** cost O(n/m) \circ find the bucket -- $O(1)$

 \circ go through all n/m nodes in the chain

Cost is O(n/m)

- When inserting, **double** the size of the table when n/m reaches c
- The cost of insert becomes **O(1) amortized** \triangleright like with unbounded arrays

Why O(1) amortized?

Setup

o dictionary contains n entries

- o table has capacity m
- \circ n/m \lt c

- After inserting a new entry,
	- \circ either (n+1)/m \lt c
	- \circ or $(n+1)/m \geq c$ $\overline{\overline{\mathsf{R}}}$ Resize the table

Why O(1) amortized?

Why O(1) amortized?

o many cheap operations can pay for the rare expensive ones

 Thus, insert has **O(1) amortized cost** o because lookup depends on what was inserted in the table, it has cost O(1)

- Assuming chains always have the same length and the table is self-resizing
	- o **insert** costs **O(1) amortized**
		- *amortized* because some insertions trigger a table resize
	- o **lookup** costs **O(1)**
		- lookup never triggers a resize

Most insertions cost O(1), but a few cost O(n)

Lookups always cost O(1)

But is this a reasonable assumption to make?

• What does it take to be in this ideal case?

- o The indices associated with the keys in the table need to be **uniformly distributed** over [0,m)
- o This happens when the keys are chosen at **random** over the integers
- Is this typical?
	- o Keys are rarely random
		- \triangleright e.g., if we take first digit of zip code (instead of last)
			- □ many students from Pennsylvania: lots of 1
			- □ many students from the West Coast: lots of 9 (mapped to 4, modulo 5)

o We shouldn't count on it

• Making this assumption is not reasonable

Can we *arrange* so that we **always** end up in this ideal case?

- \triangleright unless we are really, really unlucky
- o We want the indices associated to keys to be scattered
	- be **uniformly distributed** over the table indices
	- \triangleright bear little relation to the key itself

Run the key through a **pseudo-random number generator**

- o *"random number generator":* result *appears* random
	- \Box uniformly distributed
	- \Box (apparently) unrelated to input
- o *"pseudo":* always returns the same result for a given key
	- \Box deterministic

Arrange so that we always end up in the ideal case

unless we are really, really unlucky

o by running the key through a pseudo-random number generator

Then, lookup has O(1) **average case complexity**

o because it will almost always be in the ideal case

 \triangleright but if we are really, really unlucky

 \Box all keys may end up in the same bucket

 \Box the worst-case complexity remains is $O(n)$

And insert has O(1) **average and amortized** complexity

Hash Tables

This is a **hash table**

- o a PRNG an example of a **hash function**
	- \triangleright a function that turns a key into a number on which to base the table index

o its result is a **hash value**

o it is then turned into a **hash index** in the range [0, m)

Hash Table Complexity

Output is

uniformly distributed

Complexity of **insert**, assuming

- o the dictionary contains *n* entries
- o the table has capacity *m*

Hash Table Complexity

Output is

uniformly distributed

Complexity of **lookup**, assuming

- o the dictionary contains *n* entries
- o the table has capacity *m*

 \circ and \dots

Pseudo-Random Number Generators

Linear Congruential Generators

• A common form of PRNG is

$$
f(x) = a * x + c \mod d
$$

for appropriate constants *a*, *c* an *d*

• With 32-bit ints and handling overflow via modular arithmetic, we choose $d = 2^{32}$

mod d is automatic

• To get uniform distribution, we pick

 \circ a \neq 0

o c and d to be relative primes

 This is called a **linear congruential generator** (LCG) \circ Cost is $O(1)$

Linear Congruential Generators

 $f(x) = a * x + c \mod d$

 a ≠ 0, and *c* and *d* relatively prime \triangleright *d* = 2³²

• Implemented in the C0 rand library

#use <rand>

 \circ a = 1664525

 \circ c = 1013904223

• Do it yourself?

int $lgc(int x)$ { return 1664525 * x + 1013904223 ; }

The rand library is a bit more general. It's interface is:

// typedef ___ rand_t; rand_t init_rand (int seed); int rand(rand_t gen):

Look it up!

Cryptographic Hash Functions

- Hash functions are used pervasively in cryptography
- Cryptographic hash functions have additional requirements
	- \circ practically impossible to find x given h(x)
	- o practically impossible to find x and a different y such that $h(x) = h(y)$
- Cryptographic hash functions are overkill for use in hash tables

Non-numerical Keys

Hashing Non-numerical Keys

Simply transform the key into a number first (*cheaply*)

 The whole transformation from key to hash value is called the hash function

o often implemented as a single function

$$
\text{key} \quad \boxed{\text{hash function}} \quad \text{hash value} \quad \boxed{\text{ % m}} \quad \text{hash index}
$$

Dictionaries Summary

• We can use hash tables to implement efficient dictionaries o type of keys can be anything we want o O(1) average cost for **lookup** o O(1) average and amortized cost for **insert**

$$
\text{key} \quad \boxed{\text{hash function}} \quad \text{hash value} \quad \boxed{\text{ \% m}} \quad \text{hash index}
$$

o Collision resolved via separate chaining or open addressing

- **≻ Open addressing is more common in practice**
	- \Box faster
	- \square uses less space
- They are called **hash dictionaries**

Dictionaries Summary

Complexity assuming

o the dictionary contains *n* entries

o the table has capacity *m*

**average = by using a good hash function **amortized = by resizing the table*

o *The same analysis applies for open addressing hash tables*

What about Sets?

A **set** can be understood as a special case of a dictionary

- \circ keys = entries
	- \triangleright These are the elements of the set
- o **lookup** can simply return true or false
	- \triangleright this now checks set membership
- A set implemented as a hash dictionary is called a **hash set**