Function Pointers

Refined Memory Model

The CO Memory Model ... so far

TwWO memories

Local Memory

Allocated Memory

main
i . le”| 20
® Local memory = L
o one frame per function call H e /’ NBE P—
O frame contains hdict_lookup ' \ T
> its parameters ' i
_ _ H ' L o> & | o] ®
> its local variables | ,
“lime” I
ime I e e
® Allocated memory (1] : —
: banana”| 50
O arrays key hash |
O pointer targets K [time’] |

7

Sample memory snapshot
during the execution of an application
that uses a hash dictionary

A More Realistic Model

® Two distinct memories?
» local memory and allocated memory

® But a computer has one memory

O a large array of bytes indexed by
addresses

® CO addresses are 64 bit long
> 254 bytes

O the smallest byte has address
0x0000000000000000

O the largest byte has address

FFFFFEFFEFFFEFFE
Ox N~

This is 254-1

@FFFFFFFFFFFF%
—

—
@OOOOOOOOOOOOOO

Computer
memory

OxFF...FF

A More Realistic Model —

H | oxDo4 hdict_lookup L ocal
k | “lime
® | ocal and allocated memory are ¢ = memory
two segments in this memory & [wme] ey, hash
Local Memory || Allocated Memory -/\
main | O“XBBSH
Ale ! > “apple”| 20 e INERE apple” |20
| A \/ / “pumpkin” | 10
H|® i 0 ; ./ Allocated
H7 103 “oumpkin” i > memor
hdict_lookup /(Y 2 ~ y
H o’ , ’ T 4) “banana” |50
: Let> & | o> o
I 2
I e e
! 4 \
| “banana”| 50
' /
|

0x0

OxFF...FF

A More Realistic Model

® The segment where the allocated
memory lives Is called the heap

O It contains a pile of data structures

Allocated Memory

“apple”| 20
A

-®
ol
w

“pumpkin’

10

\‘ |

> 0 o> o

(

Local Memory

B w N - o

“pbanana”| 50
[

0xD04

The
HEAP

0x0

_/—

“apple” | 20
® 5 13
\/ / “‘pumpkin” | 10
0 . 7 Allocated
; i g ¢ memory
3 > |
4 \"“banana” 50

OxFF...FF

A More Realistic Model

® The segment where the
local memory lives is
called the stack

O

Local Memory

main

|
Ale : 3> 0xBBS >
H | ® 1> oxpos 8
H7 D
hdict_lookup /(4]
H el | =
3
k | “lime” \3

The
STACK

function calls
make it grow
and shrink
like a stack

0xD04

The
HEAP

0x0

A | 0xBB8 main
H | oxDo4
H | oxDo4 hdict_lookup L ocal
K- [time memory
I 1
'« [me | key_hash |
“apple” | 20
® 5 (3
\/ / “‘pumpkin” | 10
0 ; £ Allocated
- ¢ memory
3 > K
4 \"“banana” 50

OxFF...FF

A More Realistic Model

The

® The stack grows downward STACK

O toward smaller addresses

® The heap grows upward

O toward larger addresses

» unless garbage collection has given
back existing heap space

0xD04

® |f they grow so much that they The

run into each other, we have a HEAP

stack overflow
» very rare with modern hardware

O What about the rest of memory?

0x0

key hash

—

3
/ “‘pumpkin” | 10
A

“apple” | 20

> o

K4

A W N — O

1R

“banana” |50

Local
memory

Allocated
memory

OxFF...FF

A More Realistic Model

The

® The top and bottom segments STACK

belong to the operating system

® ACO program cannot use them
> It cannot read or write there

O This is restricted memory

O accessing It causes a
segmentation fault The
HEAP

® NULL Is address
Ox0000000000000000

O a valid address that doesn’t
belong to the program

» This is why dereferencing NULL
causes a segmentation fault

NULL !:

0x0

OS Restricted
A | 0xBB8 main
H 0xD04
H | oxDo4 hdict_lookup L ocal
k| time memory
I 1
'« e] key hash |
“apple” | 20
® 5 13
\/ / “‘pumpkin” | 10
0 ; £ Allocated
- ¢ memory
3 > K
4 \"“banana” 50
What about
| this area?
OS Restricted

OxFF...FF

A More Realistic Model

® The TEXT segment contains
the compiled code of the

program
AN

Well, it's got to

live somewhere!

O every function has an address
INn memory

» the beginning of its binary

® This segment is read-only

O writing to It causes a
segmentation fault

The

STACK

0xD04

The

HEAP

TEXT

0x0

OS

QS 3
Y /
A

“apple”

20

A | OxBBS8 main
H | oxDo4

i |—_| _O;D;4 _____ haic_t_l_oc: ka-
k | “lime’
| 1

K [me] key_hash |

—

“‘pumpkin”

10

@)‘

K4

1R

A W N — O

“banana”

50

Restricted

Local
memory

Allocated
memory

What about
| this area?

main ...

key hash

hdict_lookup ...

key equiv ...

OS

Read-only

Restricted

OxFF...FF

OS Restricted

A More Realistic Model =
H | oxDo4
- The _H 0xD04 hdict_lookup L ocal
® The DATA segment contains STACK | == memory
all the string literals present in e ey hash |

the program
O not the strings constructed by

functions like string_join ﬁ\

» those are hidden in the heap

0xBB8

o every string has an address in T Qo e
memory The 0 r——— | Allocated
o Hep{¢] el d memor
> the address of its first character HEAP | . y
> variables and fields of type string O
contain this address P
DATﬁOAC f;i?ﬁle? Read-only

main ...

® This segment is read-only hdict_lookup ...

TEXT key hash ... Read-only
key equiv ...
Writing to it causes
a segmentation fault 0S

Restricted

0x0

OxFF...FF

OS Restricted

Th e i |—_| _O;D;4 _____ haic_t_l_oc:kap- Local
STACK | * &< memory
i k_ _o;o;c ______ k_e;_kTa;h-
® This is not the end of the story! \(
® Actual memory iIs much more ﬁ\
complicated e
o This model will be significantly N o T
refined in future classes The | o, 4/, aq Alocated
HEAP | - y
3 > K

4/\ ~—fox088 |50
DATA [“apple’ ...
oxoAc| “lime” ... Read-only

Hint: no computer in existence main .
comes even close to having hdict_lookup ...
264 pytes of memory! TEXT key_hash ... Read-only
key equiv ...

OS Restricted

0x0

11

12

Function Pointers

13

Addresses a CO Program can Use

® The address of an array
O returned by alloc _array

® The address of a memory cell
O returned by alloc

® NULL
» that's just address 0x00000000

O but we can’t dereference it

® The address of a string
O but CO hides that they are even addresses

... and that’s it

14

Addresses a@ Program can Use

® Everything a CO program can use
O the address of an array
O the address of a memory cell
O NULL
O the address of a string

® The address of a function
O this Is called a function pointer

15

The language C1

® C1 is an extension of CO
O Every CO program is a C1 program

® C1 provides two additional mechanisms

O Generic pointers
O Function pointers <Rest of this unit

Both help with genericity

OxFF...FF

OS

The Address of a Function ez
Th e i |—_| _O;D;4 _____ haic_t_l_oc; ka'

® C1 provides the address-of operator ~ STACK | ==
to grab the address of a function « Toons] ey, hash

O written “&”, prefix

® If key hash starts at address Ox02A in ﬁ\

the TEXT segment, then e
® 5 (3
\/ 0x090 10
&key hash e | 19 / [
returns the address Ox02A HEAP | - .
O & can only be applied to the name of a 4 “—{o0ss |50
function in a C1 program DATA |'apoler...
Ox0AC ime ...
J\ main ...
C and other languages TEXT Edicthloohkurﬁ
have many more uses Qx02A kg_eZEIVD
for & -

OS

0x0

17

What to do with a Function Pointer?

® Eventually, we want to apply the function it points to
to some arguments

® But first, we generally store a function pointer
O In a variable

G = &key_hashD

> F Is a variable containing a function pointer

» what is its type?
Q all CO/C1 variables have a type

O but also In a data structure

_p->hash = &key_hash; >

» pP->hash is a field containing a function pointer

» what is its type?
Q struct fields, array elements, memory cells have a type in CO/C1

18

Function Types

® key hash is a function that takes
a string as input and returns an int

® To give the name string to Int fn

to the type of the functions that
take a string as input and return

an int, we write

typedef int string_to_int_fn(string s),

/

Return type

/A

[

Type of the parameter

Name chosen for
the function type

O thus, key hash has type string to int fn
O and so does the <string> library function string_length

19

Function Types

typedef int string_to_int_fn(string s),

Return type 4/\ Type of the parameter

Name chosen for
the function type

O by convention, function types end in _fn
> like types exported by a library interface end in t

O This is a different use of typedef from what we had in the past

® Function types are not functions
O we cannot write string_to_int_fn()

® \Ve can give a function type any name we want
typedef int string_hash_fn(string s);

20

Function Types

® Any function can be given a type
O the type of POW Is defined as
typedef int binop_fn(int x, int v);

O Steps to defining a function type

1. Write down the prototype of the function
iInt POW(int x, int v);

2. Write typedef in front of it
typedef int POW(int x, int v);

iInt POW(int x, int)
l/@requires y >=0;

3. Replace the function name with a type name of your choice

typedef int binop_fn(int x, int v);

O Contracts can be included in the function type definition

typedef int binop_with_pos2_fn(int x, Int)
[*@requires y >=0; @*/;

21

Storing Function Pointers

typedef int string_to _int_fn(string s);

string to_int fn* - = &key hash;

® | needs to be a pointer to a function that takes a string
and returns an int
string_to_int_@
» a pointer to a string_to_int_fn
O This Is because &key hash returns the address of key hash
O and this address Is stored In

® siring to int fn - = &key hash;
IS iInvalid C1 code

int key hash(string s) {
In =3¢1ng__

Using Function Pointers

typedef int string_to _int_fn(string s);
string_to_int_fn* - = &key hash,; }

O - contains the address of key hash

® To call - on an input, we first need to dereference It

int = (*F)();
&Applying a function pointer

O Writing *F() IS Incorrect

» C1 interprets it as *(F()
O which doesn’t type check

O Other languages have better syntax

22

23

Safety of Function Pointers

® A function pointer is a pointer!
int i = (*F)();
Is safe only If F I= NULL

® The address of the functions in a program are never NULL

O Thus
string _to int fn* = = &key hash;
inth = (*F)();

IS safe because - contains the address of key hash

O but
string to Iint fn* - = NULL,
int i = (*F)();

IS unsafe

24

Function Pointer Contracts

® The address of the functions in a program are never NULL

® Function pointer operators have their own contracts
O & always returns a non-NULL pointer

&f
[l@ensures \result '= NULL;

» where f is a function declared in the program

This Is a new way to justify that a pointer is non-NULL

