
Function Pointers

Refined Memory Model

1

The C0 Memory Model … so far

Two memories

 Local memory

o one frame per function call

o frame contains

 its parameters

 its local variables

 Allocated memory

o arrays

o pointer targets

0

1

2

3

4

“apple” 20

“pumpkin” 10

“banana” 50

Allocated MemoryLocal Memory

main

hdict_lookup

A

H

H

k “lime”

key_hash

k “lime”

5 3

Sample memory snapshot

during the execution of an application

that uses a hash dictionary

i 1

2

A More Realistic Model

 Two distinct memories?
 local memory and allocated memory

 But a computer has one memory

o a large array of bytes indexed by

addresses

 C0 addresses are 64 bit long
264 bytes

o the smallest byte has address

0x0000000000000000

o the largest byte has address

0xFFFFFFFFFFFFFFFF

0x0000000000000000

0xFFFFFFFFFFFFFFFF

Computer

memory

This is 264-1

3

A More Realistic Model

 Local and allocated memory are

two segments in this memory

A 0xBB8 main

hdict_lookup

H 0xD04

H 0xD04

k “lime”

i 1

key_hashk “lime”

0

1

2

3

4

“apple” 20

“pumpkin” 10

“banana” 50

5 3
0xD04

0xBB8

0x0

0xFF…FF

Allocated

memory

Local

memory

0

1

2

3

4

“apple” 20

“pumpkin” 10

“banana” 50

Allocated MemoryLocal Memory

main

hdict_lookup

A

H

H

k “lime”

key_hash

k “lime”

5 3

i 1

4

A More Realistic Model

 The segment where the allocated

memory lives is called the heap

o it contains a pile of data structures

0

1

2

3

4

“apple” 20

“pumpkin” 10

“banana” 50

5 3
0xD04

0xBB8

0x0

0xFF…FF

Allocated

memory

0

1

2

3

4

“apple” 20

“pumpkin” 10

“banana” 50

Allocated Memory

L
o

c
a
l
M

e
m

o
ry 5 3

The

HEAP

5

A More Realistic Model

 The segment where the

local memory lives is

called the stack

o function calls

make it grow

and shrink

like a stack

A 0xBB8 main

hdict_lookup

H 0xD04

H 0xD04

k “lime”

i 1

key_hashk “lime”

0x0

0xFF…FF

Local

memory

A
llo

c
a
te

d
 M

e
m

o
ry

Local Memory

main

hdict_lookup

A

H

H

k “lime”

key_hash

k “lime”

i 1

0

1

2

3

4

“apple” 20

“pumpkin” 10

“banana” 50

5 3
0xD04

0xBB8

Allocated

memory
The

HEAP
0xD08

0xBB8

The

STACK

6

A More Realistic Model

 The stack grows downward

o toward smaller addresses

 The heap grows upward

o toward larger addresses

unless garbage collection has given

back existing heap space

 If they grow so much that they

run into each other, we have a

stack overflow
 very rare with modern hardware

oWhat about the rest of memory?

0xD04

0x0

0xFF…FF

Allocated

memory

Local

memory

The

STACK

The

HEAP

A 0xBB8 main

hdict_lookup

H 0xD04

H 0xD04

k “lime”

i 1

key_hashk “lime”

0

1

2

3

4

“apple” 20

“pumpkin” 10

“banana” 50

5 3

0xBB8

7

A More Realistic Model

 The top and bottom segments

belong to the operating system

 A C0 program cannot use them
 it cannot read or write there

o This is restricted memory

o accessing it causes a

segmentation fault

 NULL is address

0x0000000000000000

o a valid address that doesn’t

belong to the program

This is why dereferencing NULL

causes a segmentation fault
OS

0xD04

0x0

0xFF…FF

Restricted

Restricted

Allocated

memory

Local

memory

The

STACK

The

HEAP

A 0xBB8 main

hdict_lookup

H 0xD04

H 0xD04

k “lime”

i 1

key_hashk “lime”

0

1

2

3

4

“apple” 20

“pumpkin” 10

“banana” 50

5 3

0xBB8

OS

NULL

What about

this area?

8

A More Realistic Model

 The TEXT segment contains

the compiled code of the

program

o every function has an address

in memory

 the beginning of its binary

 This segment is read-only

owriting to it causes a

segmentation fault

OS

OS

main …

hdict_lookup …

key_hash …

key_equiv …

…

0xD04

0x0

0xFF…FF

Restricted

Restricted

Read-only

Allocated

memory

Local

memory

The

STACK

The

HEAP

TEXT

A 0xBB8 main

hdict_lookup

H 0xD04

H 0xD04

k “lime”

i 1

key_hashk “lime”

0

1

2

3

4

“apple” 20

“pumpkin” 10

“banana” 50

5 3

0xBB8

Well, it’s got to

live somewhere!

What about

this area?

9

A More Realistic Model

 The DATA segment contains

all the string literals present in

the program

o not the strings constructed by

functions like string_join

 those are hidden in the heap

o every string has an address in

memory

 the address of its first character

 variables and fields of type string

contain this address

 This segment is read-only

OS

OS

main …

hdict_lookup …

key_hash …

key_equiv …

…

A 0xBB8

H 0xD04

H 0xD04

k 0x0AC

i 1

k 0x0AC

0x0AC

0

1

2

3

4

0x080 20

0x090 10

0x088 50

5 3
0xD04

0xBB8

0x0

0xFF…FF

Restricted

Restricted

Read-only

Read-only

Allocated

memory

Local

memory

The

STACK

The

HEAP

TEXT

DATA

main

hdict_lookup

key_hash

“apple” …

“lime” …

Writing to it causes

a segmentation fault

10

A More Realistic Model

 This is not the end of the story!

 Actual memory is much more

complicated

o This model will be significantly

refined in future classes

OS

OS

main …

hdict_lookup …

key_hash …

key_equiv …

…

“apple” …

“lime” …

A 0xBB8

H 0xD04

H 0xD04

k 0x0AC

i 1

k 0x0AC

0x0AC

0

1

2

3

4

0x080 20

0x090 10

0x088 50

5 3
0xD04

0xBB8

0x0

0xFF…FF

Restricted

Restricted

Read-only

Read-only

Allocated

memory

Local

memory

The

STACK

The

HEAP

TEXT

DATA

main

hdict_lookup

key_hash

Hint: no computer in existence

comes even close to having

264 bytes of memory!

11

Function Pointers

12

Addresses a C0 Program can Use

 The address of an array

o returned by alloc_array

 The address of a memory cell

o returned by alloc

 NULL
 that’s just address 0x00000000

o but we can’t dereference it

 The address of a string

o but C0 hides that they are even addresses

… and that’s it

13

Addresses a C1 Program can Use

 Everything a C0 program can use

o the address of an array

o the address of a memory cell

oNULL

o the address of a string

 The address of a function

o this is called a function pointer

14

The language C1

 C1 is an extension of C0

o Every C0 program is a C1 program

 C1 provides two additional mechanisms

oGeneric pointers

o Function pointers

Both help with genericity

Rest of this unit

15

The Address of a Function

 C1 provides the address-of operator

to grab the address of a function

owritten “&”, prefix

 If key_hash starts at address 0x02A in

the TEXT segment, then

&key_hash

returns the address 0x02A

o & can only be applied to the name of a

function in a C1 program

OS

OS

main …

hdict_lookup …

key_hash …

key_equiv …

…

“apple” …

“lime” …

A 0xBB8

H 0xD04

H 0xD04

k 0x0AC

i 1

k 0x0AC

0x0AC

0

1

2

3

4

0x080 20

0x090 10

0x088 50

5 3
0xD04

0xBB8

0x0

0xFF…FF

The

STACK

The

HEAP

TEXT

DATA

main

hdict_lookup

key_hash

0x02A
C and other languages

have many more uses

for &

16

What to do with a Function Pointer?

 Eventually, we want to apply the function it points to

to some arguments

 But first, we generally store a function pointer

o in a variable

F = &key_hash;

F is a variable containing a function pointer

what is its type?

 all C0/C1 variables have a type

o but also in a data structure

p->hash = &key_hash;

p->hash is a field containing a function pointer

what is its type?

 struct fields, array elements, memory cells have a type in C0/C1

17

Function Types

 key_hash is a function that takes

a string as input and returns an int

 To give the name string_to_int_fn

to the type of the functions that

take a string as input and return

an int, we write

typedef int string_to_int_fn(string s);

o thus, key_hash has type string_to_int_fn

o and so does the <string> library function string_length

int key_hash(string s) {

int len = string_length(s);

int h = 0;

for (int i = 0; i < len; i++) {

h = h + char_ord(string_charat(s, i));

h = 1664525 * h + 1013904223;

}

return h;

}

Return type Type of the parameter

Name chosen for

the function type

18

Function Types

typedef int string_to_int_fn(string s);

o by convention, function types end in _fn

 like types exported by a library interface end in _t

o This is a different use of typedef from what we had in the past

 Function types are not functions

owe cannot write string_to_int_fn("hello")

 We can give a function type any name we want

typedef int string_hash_fn(string s);

int key_hash(string s) {

int len = string_length(s);

int h = 0;

for (int i = 0; i < len; i++) {

h = h + char_ord(string_charat(s, i));

h = 1664525 * h + 1013904223;

}

return h;

}

Return type Type of the parameter

Name chosen for

the function type

19

Function Types

 Any function can be given a type

o the type of POW is defined as

typedef int binop_fn(int x, int y);

o Steps to defining a function type

1. Write down the prototype of the function

int POW(int x, int y);

2. Write typedef in front of it

typedef int POW(int x, int y);

3. Replace the function name with a type name of your choice

typedef int binop_fn(int x, int y);

oContracts can be included in the function type definition

typedef int binop_with_pos2_fn(int x, int y)

/*@requires y >= 0; @*/ ;

int POW(int x, int y)

//@requires y >= 0;

{

if (y == 0) return 1;

return x * POW(x, y-1);

}

20

Storing Function Pointers

typedef int string_to_int_fn(string s);

string_to_int_fn* F = &key_hash;

 F needs to be a pointer to a function that takes a string

and returns an int

string_to_int_fn* F

a pointer to a string_to_int_fn

o This is because &key_hash returns the address of key_hash

o and this address is stored in F

 string_to_int_fn F = &key_hash; // no *

is invalid C1 code

int key_hash(string s) {

int len = string_length(s);

int h = 0;

for (int i = 0; i < len; i++) {

h = h + char_ord(string_charat(s, i));

h = 1664525 * h + 1013904223;

}

return h;

}

21

Using Function Pointers

typedef int string_to_int_fn(string s);

string_to_int_fn* F = &key_hash;

o F contains the address of key_hash

 To call F on an input, we first need to dereference it

int h = (*F)("hello");

oWriting *F("hello") is incorrect

C1 interprets it as *(F("hello"))

 which doesn’t type check

oOther languages have better syntax

int key_hash(string s) {

int len = string_length(s);

int h = 0;

for (int i = 0; i < len; i++) {

h = h + char_ord(string_charat(s, i));

h = 1664525 * h + 1013904223;

}

return h;

}

Applying a function pointer

22

Safety of Function Pointers

 A function pointer is a pointer!

int h = (*F)("hello");

is safe only if F != NULL

 The address of the functions in a program are never NULL

o Thus

string_to_int_fn* F = &key_hash;

int h = (*F)("hello");

is safe because F contains the address of key_hash

o but

string_to_int_fn* F = NULL;

int h = (*F)("hello");

is unsafe

23

Function Pointer Contracts

 The address of the functions in a program are never NULL

 Function pointer operators have their own contracts

o & always returns a non-NULL pointer

&f

//@ensures \result != NULL;

where f is a function declared in the program

This is a new way to justify that a pointer is non-NULL

24

