
Transition to C

Review

 C0, C1

cc0 -d simple.c0 test.c0

./a.out

x coord: -15

y coord: 30

0

Linux Terminal

#use <conio>

int main() {

struct point2d* P = alloc(struct point2d);

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

print("x coord: "); printint(P->x); print("\n");

print("y coord: "); printint(P->y); print("\n");

return 0;

}

#use <util>

/*** Interface ***/

int absval(int x)

/*@requires x > int_min(); @*/

/*@ensures \result >= 0; @*/ ;

struct point2d {

int x;

int y;

};

/*** Implementation ***/

int absval(int x)

//@requires x > int_min();

//@ensures \result >= 0;

{

return x < 0 ? -x : x;

}

A simple library

A sample application that uses it

How we

compile

and run

them

File simple.c0

File test.c0

1

The C Language

2

C

 C was designed in 1972 to implement Unix

o People didn’t know how to design good languages

back then

oC is a terrible language

 C is pervasively used for system-level programming

oC is very fast

 C0/C1 is a safe subset of C with contract annotations

 C is much more powerful than C0/C1

owith great powers come great responsibilities

o and a lot dangers

Dennis Ritchie

Preempts many pitfalls of C Teaches good programming practices

3

4

C0 C

The C Preprocessor

5

The C Preprocessor Language

 A typical C program consists of statements written in two

languages

o the C preprocessor language

 these directives all start with #

oC proper

 The first thing the C compiler does is to call the

C preprocessor

o a program that processes all the C preprocessor directives

o and produces code that is entirely in C proper

C compiler

C

preprocessor

Rest of the C

Compiler
a.outsome_file.c

6

The C Preprocessor

 The C compiler first calls the C preprocessor

 This happens behind the scenes when compiling a C

program

o but the C preprocessor can also be run independently as the

Unix command cpp

C compiler

C

preprocessor

Rest of the C

Compiler
a.outsome_file.c

C proper +

preprocessor directives Executable
C proper only

You won’t need this7

Useful C Preprocessor Directives

 File inclusion

 Macro definitions

 Conditional compilation

 Macro functions

There are many

many more …

… but this is

all we’ll need

8

File Inclusion

 Used to dump the contents of a file in the current program

o similar to C0’s #use directive

but not exactly

#include <stdio.h>

o includes system file stdio.h in the current program

#include "lib/xalloc.h"

o includes local file lib/xalloc.h in the current program

More on this later

This is akin to C0’s

#use <conio>

We never had a need

for this in C0

9

Header Files

 The only thing we #include in a C file is a header file

o by convention they end in .h

e.g., stdio.h

 A header file contains

o a library’s interface

 function prototypes

 type definitions

o other preprocessor directives

 Nothing prevents including other types

of files

o but it’s rarely a good idea

Never

#include

a .c file
An endless source of bugs

10

Macro Definitions

 A way to give a name to a constant

o Example

#define INT_MIN 0x80000000

 The program can then use the macro symbol INT_MIN

 The preprocessor replaces every occurrence of INT_MIN

with 0x80000000

C compiler

C

preprocessor

Rest of the C

Compiler
a.outsome_file.c

May contain INT_MIN
INT_MIN has been

replaced with its definition
11

Macro Definitions

 A way to give a name to a constant

#define INT_MIN 0x80000000

 By convention, macro symbols are written in ALL CAPS

 This is a convenient way to give names to constants

o like INT_MIN, the smallest value of type int

A (macro) symbol its definition

In C0, int_min() had to be a function

because only types and functions

can be defined at the top level

A macro

12

Macro Definitions

 Macros definitions can be any expression

o not just constants

#define INT_MAX INT_MIN - 1

o Then, the preprocessor will expand

INT_MAX / 2

to

0x80000000 - 1 / 2

which C understands as

0x80000000 - (1 / 2)

that is not what we meant

 The C preprocessor does not understand operator

precedence

Not the most obvious

definition of INT_MAX,

but bear with us

13

Macro Definitions

 The C preprocessor does not understand precedences

o Add parentheses to communicate intention

#define INT_MAX (INT_MIN - 1)

oNow, the preprocessor will expand

INT_MAX / 2

to

(0x80000000 - 1) / 2

which is what we meant

 Use macro definitions with care

o You will not need to define any macro in this course

but you will need to know what they do

Danger

14

Conditional Compilation

 Allows compiling (or not) a program segment depending

on whether a symbol is defined

o Example

#ifdef DEBUG

printf("Reached this point\n");

#endif

 If the symbol DEBUG has been defined

printf("Reached this point\n");

will be compiled as part of the program

otherwise, it is cut out and never reaches the compiler proper

oDEBUG can be defined with

#define DEBUG

or on the compilation command

No need to define it as anything

More on this later

15

Conditional Compilation

 We can provide an #else clause

o Example

#ifdef X86_ARCH

#include "arch/x86_optimizations.h"

x86_optimize(code);

#else

generic_optimize(code);

#endif

 We can also test if a symbol is not defined

o Example

#ifndef INT_MIN

#define INT_MIN 0x80000000

#endif

If INT_MIN is not defined,

define it

16

Macro Function Definitions

 We can define macros with arguments

o Example

#define MULT(x, y) x * y

o Then, the preprocessor will expand

MULT(1 + 2, 3 - 5) / 2

to

1 + 2 * 3 - 5 / 2

which is not what we meant

oWe need to add lots of parentheses

#define MULT(x, y) ((x) * (y))

 Use macro function definitions with extreme care

o You will not need to define any macro function in this course

but we will use exactly 3 of them

Danger

The C preprocessor

does not understand

operator precedence

17

Contracts Emulation

 C does not have contracts

o this means you are on your own when code doesn’t work

 Some C0 contracts can be emulated

 The header file contracts.h provides the macro functions

oREQUIRES(condition)

o ENSURES(condition)

o ASSERT(condition)

They serve the same

purposes as //@requires,

//@ensures and //@assert

//@loop_invariant can be

emulated through judicious

uses of ASSERT

18

Contracts Emulation

 The header file contracts.h

provides the macro functions

oREQUIRES(condition)

o ENSURES(condition)

o ASSERT(condition)

Undefine ASSERT

were it to already

have been defined

#include <assert.h>

#ifdef ASSERT

#undef ASSERT

#endif

#ifdef REQUIRES

#undef REQUIRES

#endif

#ifdef ENSURES

#undef ENSURES

#endif

#ifndef DEBUG

#define ASSERT(COND) ((void)0)

#define REQUIRES(COND) ((void)0)

#define ENSURES(COND) ((void)0)

#else

#define ASSERT(COND) assert(COND)

#define REQUIRES(COND) assert(COND)

#define ENSURES(COND) assert(COND)

#endif

If we are not in DEBUG mode,

define ASSERT to do nothing

Declares assert

Do nothing

File lib/contracts.h

Otherwise, define it as assert

Same thing for

REQUIRES and ENSURES19

DEBUG-only Code

 contracts.h also defines the macro function

IF_DEBUG(cmd)

o it executes the command cmd only if the symbol DEBUG is

defined

 This is useful to debug code with print statements

IF_DEBUG(printf("Reached this point\n"));

o The command can be arbitrary

IF_DEBUG(printf("T = "); bst_print(T); printf("\n"));

 C does not check for purity

20

Translating a C0 Program to C – I

21

High-level Approach

 We translate each file separately

o test.c0 test.c

 The library interface becomes a header file

o simple.c0 simple.h, simple.c

22

Translating a Library to C

#use <util>

/*** Interface ***/

int absval(int x)

/*@requires x > int_min(); @*/

/*@ensures \result >= 0; @*/ ;

struct point2d {

int x;

int y;

};

/*** Implementation ***/

int absval(int x)

//@requires x > int_min();

//@ensures \result >= 0;

{

return x < 0 ? -x : x;

}

File simple.c0

/*** Interface ***/

int absval(int x)

/*@requires x > int_min(); @*/

/*@ensures \result >= 0; @*/ ;

struct point2d {

int x;

int y;

};

File simple.h

/*** Implementation ***/

int absval(int x)

//@requires x > int_min();

//@ensures \result >= 0;

{

return x < 0 ? -x : x;

}

File simple.c

We are not done

translating this code23

Translating a Library Interface to C

/*** Interface ***/

int absval(int x)

/*@requires x > int_min(); @*/

/*@ensures \result >= 0; @*/ ;

struct point2d {

int x;

int y;

};

File simple.h

Interface

This is valid C code

already

We will need to update

this header file slightly

later

Prototype contracts

are comments in C

//@ …; and /*@ …; @*/

do not have special meaning

24

Translating a Library to C

 Translating the implementation, line by line

o This is valid C up to here

o absval is mentioned in the header file

simple.h

we need to #include it

/*** Implementation ***/

int absval(int x)

//@requires x > int_min();

//@ensures \result >= 0;

{

return x < 0 ? -x : x;

}

File simple.c

25

Translating a Library to C

 Translating the implementation, line by line

oNext we need to translate the

precondition

 //@requires becomes REQUIRES

in the body of the function

 for this, we want to #include contracts.h

/*** Implementation ***/

#include "simple.h"

int absval(int x)

//@requires x > int_min();

//@ensures \result >= 0;

{

return x < 0 ? -x : x;

}

File simple.c

We keep it in local

directory lib/

26

Translating a Library to C

 Translating the implementation, line by line

o int_min() is not predefined in C

o but the symbol INT_MIN

 is defined in the system header file

<limits.h>

 to represents the smallest integer

/*** Implementation ***/

#include "simple.h"

#include "lib/contracts.h"

int absval(int x)

//@requires x > int_min();

//@ensures \result >= 0;

{

REQUIRES(x > int_min());

return x < 0 ? -x : x;

}

File simple.c

This is now a comment

27

Translating a Library to C

 Translating the implementation, line by line

oNext is the postcondition

 //@ensures becomes ENSURES

before every return statement

 in general, every place the function may return

because we are returning a complex

expression, we need to save it in a

temporary variable

 call it result since it contains the value of \result

/*** Implementation ***/

#include "simple.h"

#include "lib/contracts.h"

#include <limits.h>

int absval(int x)

//@requires x > int_min();

//@ensures \result >= 0;

{

REQUIRES(x > INT_MIN);

return x < 0 ? -x : x;

}

File simple.c

28

Translating a Library to C

 Translating the implementation, line by line

o All remaining code

either was added during the translation

or was valid C already

oWe are done

/*** Implementation ***/

#include "simple.h"

#include "lib/contracts.h"

#include <limits.h>

int absval(int x)

//@requires x > int_min();

//@ensures \result >= 0;

{

REQUIRES(x > INT_MIN);

int result = x < 0 ? -x : x;

ENSURES(result >= 0);

return result;

}

File simple.c

29

Translating a C0 Program to C – II

30

Translating a Program File to C

 We now translate the client of the library

#use <conio>

int main() {

struct point2d* P = alloc(struct point2d);

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

print("x coord: "); printint(P->x); print("\n");

print("y coord: "); printint(P->y); print("\n");

return 0;

}

#use <conio>

int main() {

struct point2d* P = alloc(struct point2d);

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

print("x coord: "); printint(P->x); print("\n");

print("y coord: "); printint(P->y); print("\n");

return 0;

}

File test.c0 File test.c

We are not done

translating this code

31

Translating a Program File to C

 Let’s proceed again line by line

o The input/ouput system

functions of C are declared in

header file <stdio.h>

#use <conio>

int main() {

struct point2d* P = alloc(struct point2d);

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

print("x coord: "); printint(P->x); print("\n");

print("y coord: "); printint(P->y); print("\n");

return 0;

}

File test.c

32

Translating a Program File to C

 Let’s proceed again line by line

o The function header is valid C

o The way allocated memory is

appropriated is different in C

 this is done by calling malloc

omalloc takes a size

 the number of bytes to allocate

 in C0, alloc took a type

 the function sizeof computes the

number of bytes a type takes up

in memory

malloc is defined in <stdlib.h>

 sizeof is predefined

#include <stdio.h>

int main() {

struct point2d* P = alloc(struct point2d);

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

print("x coord: "); printint(P->x); print("\n");

print("y coord: "); printint(P->y); print("\n");

return 0;

}

File test.c

33

Translating a Program File to C

 Let’s proceed again line by line

omalloc returns NULL when

there isn’t enough memory

 the next dereference will be

unsafe

 and be really hard to debug

A better approach is to abort

o The library xalloc.h defines

xmalloc

which fails if there is

not enough memory

better use that

#include <stdio.h>

#include <stdlib.h>

int main() {

struct point2d* P = malloc(sizeof(struct point2d));

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

print("x coord: "); printint(P->x); print("\n");

print("y coord: "); printint(P->y); print("\n");

return 0;

}

File test.c

We keep it in local

directory lib/

34

Translating a Program File to C

 Let’s proceed again line by line

o assert is defined in system

header file <assert.h>

#include <stdio.h>

#include <stdlib.h>

#include "lib/xalloc.h"

int main() {

struct point2d* P = xmalloc(sizeof(struct point2d));

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

print("x coord: "); printint(P->x); print("\n");

print("y coord: "); printint(P->y); print("\n");

return 0;

}

File test.c

35

Translating a Program File to C

 Let’s proceed again line by line

oC has no dedicated print

functions for the primitive types

o Printing in C is done using the

function printf defined in

<stdio.h>

o printf takes a format string

with

placeholders for the values to print

and these values as additional

arguments

#include <stdio.h>

#include <stdlib.h>

#include "lib/xalloc.h"

#include <assert.h>

int main() {

struct point2d* P = xmalloc(sizeof(struct point2d));

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

print("x coord: "); printint(P->x); print("\n");

print("y coord: "); printint(P->y); print("\n");

return 0;

}

File test.c

printf takes a

variable number of arguments

36

Translating a Program File to C

 Let’s proceed again line by line

o At this point, we have C code

we can compile

#include <stdio.h>

#include <stdlib.h>

#include "lib/xalloc.h"

#include <assert.h>

int main() {

struct point2d* P = xmalloc(sizeof(struct point2d));

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

printf("x coord: %d\n", P->x);

printf("y coord: %d\n", P->y);

return 0;

}

File test.c

%d means print the argument

as a decimal number

There are lots of

different placeholders

37

Compiling a C Program

38

Compiling a C Program

 Here’s how to compile our translated example

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c

Linux Terminal

This is the name

of the C compiler

Local libraries

Compiler flags Our code

Display all warnings

Display extra warnings

Display one more warning

Abort compilation

when there are

warnings

Use the

C99 standard

Follow it

pedantically

Keep extra

information

Define the

DEBUG

symbol

39

Compiling a C Program

 Here’s how to compile our translated example

oNotice that we only compile .c files

not header file

 Let’s do it!

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c

Linux Terminal

Local libraries

Our code

40

Compiling Our Program

 Lots of errors!

o These three are about struct point2d and absval

o gcc does not know about these names when compiling test.c

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c

test.c: In function ‘main’:

test.c:6:38: error: invalid application of ‘sizeof’ to incomplete type ‘struct point2d’

struct point2d* P = xmalloc(sizeof(struct point2d));

^~~~~~

test.c:7:4: error: dereferencing pointer to incomplete type ‘struct point2d’

P->x = -15;

^~

test.c:8:17: error: implicit declaration of function ‘absval’; did you mean ‘abs’? [-

Werror=implicit-function-declaration]

P->y = P->y + absval(P->x * 2);

^~~~~~

…

Linux Terminal

41

Separate Compilation

 When compiling multiple files in C0, they are combined in

a single file that gets compiled

 In C, each file is compiled separately

o then the compiled files are combined into a.out by the linker

o Each file needs to know about all the names it uses

#include the header files containing those names

C compiler

C

preprocessor

Rest of the

C Compiler
a.out

file1.c

file2.c

file3.c

Linker

42

Including Header Files

 #include simple.h to provides the missing names to test.c

#include <stdio.h>

#include <stdlib.h>

#include "lib/xalloc.h"

#include <assert.h>

#include "simple.h"

int main() {

struct point2d* P = xmalloc(sizeof(struct point2d));

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

printf("x coord: %d\n", P->x);

printf("y coord: %d\n", P->y);

return 0;

}

File test.c

43

Including Header Files

 Before we compile again …

o A header file can end up

included multiple times

often via other header files

o Let’s see what happens if

we #include simple.h twice

#include <stdio.h>

#include <stdlib.h>

#include "lib/xalloc.h"

#include <assert.h>

#include "simple.h"

#include "simple.h"

int main() {

struct point2d* P = xmalloc(sizeof(struct point2d));

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

printf("x coord: %d\n", P->x);

printf("y coord: %d\n", P->y);

return 0;

}

File test.0

44

Compiling Our Program

 struct point2d is defined twice

o once each time we #include simple.h

 This is an error

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c

In file included from test.c:5:0:

simple.h:10:8: error: redefinition of ‘struct point2d’

struct point2d {

^~~~~~~

In file included from test.c:4:0:

simple.h:10:8: note: originally defined here

struct point2d {

^~~~~~~

…

Linux Terminal

C0 notices this and skips

#uses beyond the first one

45

Header Guards

 Use conditional compilation to make sure the definitions in

a header file are included just once

o If SIMPLE_H is not defined

define it

provide the interface definitions

o If SIMPLE_H is defined

do nothing

o The first time we #include simple.h

SIMPLE_H is not defined

 the interface definitions are #included

o Any time after that

SIMPLE_H is defined

 the interface definitions are not #included

/*** Interface ***/

#ifndef SIMPLE_H

#define SIMPLE_H

int absval(int x)

/*@requires x > int_min(); @*/

/*@ensures \result >= 0; @*/ ;

struct point2d {

int x;

int y;

};

#endif

File simple.h

Interface

SIMPLE_H is

some unique symbol

46

Compiling Our Program

 One error only!

o true?

 bool is not a primitive type in C

o To use the booleans, we need to #include <stdbool.h>

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c

test.c: In function ‘main’:

test.c:12:25: error: ‘true’ undeclared (first use in this function); did you mean ‘free’?

assert(P->y > P->x && true);

^

Linux Terminal

47

Booleans

 bool is not a primitive type in C

o To use booleans, we need

to #include <stdbool.h>
#include <stdio.h>

#include <stdlib.h>

#include "lib/xalloc.h"

#include <assert.h>

#include "simple.h"

#include "simple.h"

#include <stdbool.h>

int main() {

struct point2d* P = xmalloc(sizeof(struct point2d));

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

printf("x coord: %d\n", P->x);

printf("y coord: %d\n", P->y);

return 0;

}

File test.c

48

Compiling Our Program

 Success!

 Let’s run it

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c

Linux Terminal

49

Translating a C0 Program to C – III

50

Running Our Program

 Let’s run it

 1073741854 does not look right

oC0 gave us back 30

 C does not initialize allocated memory to default value

o it uses whatever is at that location

 Let’s run it again

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c

./a.out

x coord : -15

y coord: 1073741854

Linux Terminal

#include …

int main() {

struct point2d* P = xmalloc(sizeof(struct point2d));

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

printf("x coord: %d\n", P->x);

printf("y coord: %d\n", P->y);

return 0;

}

Danger

51

Running Our Program

 Let’s run it again

oC does not initialize allocated memory to default value

 Different executions produce different values

o This is an endless source of bugs

./a.out

x coord : -15

y coord: 1073741854

./a.out

Assertion failed: (P->y > P->x && true), function main, file test.c, line 13.

Abort trap: 6

./a.out

x coord : -15

y coord: 30

./a.out

x coord : -15

y coord: 1879048222

Linux Terminal

#include …

int main() {

struct point2d* P = xmalloc(sizeof(struct point2d));

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

printf("x coord: %d\n", P->x);

printf("y coord: %d\n", P->y);

return 0;

}

This was impossible in C0

Danger

52

Running Our Program

 C does not initialize allocated memory to default value

o This makes C fast

o But this is dangerous

o The obvious fix is to

initialize P->y

o But it is rarely this obvious

o A more systematic way to

find uninitialized memory

bugs (and others) is to use

the valgrind tool

#include <stdio.h>

#include <stdlib.h>

#include "lib/xalloc.h"

#include <assert.h>

#include "simple.h"

#include "simple.h"

#include <stdbool.h>

int main() {

struct point2d* P = xmalloc(sizeof(struct point2d));

P->x = -15;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

printf("x coord: %d\n", P->x);

printf("y coord: %d\n", P->y);

return 0;

}

File test.c

53

Valgrind

 Just type valgrind in front of the executable

valgrind ./a.out

==9073== Memcheck, a memory error detector

==9073== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==9073== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==9073== Command: a.out

==9073==

==9073== Conditional jump or move depends on uninitialised value(s)

==9073== at 0x10891B: main (test.c:13)

==9073==

x coord: -15

…

Linux Terminal

Valgrind notices that

a statement depending

on an unitialized value

has been executed

Approximate line where

this occurred

54

Initializing Memory

 C does not initialize allocated memory to default values

o Fix it by initializing P->y

o Let’s try now again

#include <stdio.h>

#include <stdlib.h>

#include "lib/xalloc.h"

#include <assert.h>

#include "simple.h"

#include "simple.h"

#include <stdbool.h>

int main() {

struct point2d* P = xmalloc(sizeof(struct point2d));

P->x = -15;

P->y = 0;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

printf("x coord: %d\n", P->x);

printf("y coord: %d\n", P->y);

return 0;

}

File test.c

55

Initializing Memory

 Let’s recompile and run it again

 This is the expected output

o Same as with C0

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c

./a.out

x coord: -15

y coord: 30

Linux Terminal

56

Initializing Memory

 Let’s run it with valgrind too

valgrind ./a.out

…

x coord: -15

y coord: 30

==9197==

==9197== HEAP SUMMARY:

==9197== in use at exit: 8 bytes in 1 blocks

==9197== total heap usage: 2 allocs, 1 frees, 1,032 bytes allocated

==9197==

==9197== LEAK SUMMARY:

==9197== definitely lost: 8 bytes in 1 blocks

==9197== indirectly lost: 0 bytes in 0 blocks

==9197== possibly lost: 0 bytes in 0 blocks

==9197== still reachable: 0 bytes in 0 blocks

==9197== suppressed: 0 bytes in 0 blocks

==9197== Rerun with --leak-check=full to see details of leaked memory

…

Linux Terminal

57

Memory Leaks

 When the program exits, 8 bytes are still in use

o that’s the struct point2d it allocated

 C0 and C manage memory differently

oC0 is garbage-collected

memory is reclaimed whenever needed

o In C, the programmer needs to free allocated memory once it is not

used any more

memory is never reclaimed

 A program has a memory leak if unused memory is not freed

o in long-running programs
 games, browsers, operating systems, …

memory leaks cause the program to get slower and slower and

eventually crash

58

Memory Leaks

 A program has a memory leak if unused memory is not freed

oWe avoid this by freeing allocated memory once it is not used any

more

o By the end of a program, no allocated memory shall be still in use

 The C motto

If you allocate it, you free it

59

Freeing Memory

 In C, the programmer needs to free allocated memory

once it is not used any more

o Let’s run valgrind again

#include <stdio.h>

#include <stdlib.h>

#include "lib/xalloc.h"

#include <assert.h>

#include "simple.h"

#include "simple.h"

#include <stdbool.h>

int main() {

struct point2d* P = xmalloc(sizeof(struct point2d));

P->x = -15;

P->y = 0;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

printf("x coord: %d\n", P->x);

printf("y coord: %d\n", P->y);

free(P);

return 0;

}

File test.c

Danger

60

Freeing Memory

 Let’s run it with valgrind again

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c

valgrind ./a.out

…

x coord: -15

y coord: 30

==9519==

==9519== HEAP SUMMARY:

==9519== in use at exit: 0 bytes in 0 blocks

==9519== total heap usage: 2 allocs, 2 frees, 1,032 bytes allocated

==9519==

==9519== All heap blocks were freed -- no leaks are possible

…

Linux Terminal

61

What does free(P) do?

 It gives the memory pointed to by P back to the computer

 The computer may

o leave it untouched

o use it for another malloc

o give it back to the OS

o…

 P still contains the same address

o but this address does not belong to the program any more

 P can be assigned to other values

e.g.: P = malloc(sizeof(struct point2d));

62

…

free(P);

…

File test.c

x -15

y 30

P
0xBB8

P is not set to NULL

0xBB8

At address 0xBB8

0xBB8

It frees addresses,

not variables

What does free(P) do?

 It gives the memory pointed to by P back to the computer

63

…

free(P);

…

File test.c

x -15

y 30

P
0xBB8

At address 0xBB8

0xBB8

It frees addresses,

not variables

Freeing Memory Wrong

 We must not free memory before we are done using it

o Let’s run valgrind again

#include <stdio.h>

#include <stdlib.h>

#include "lib/xalloc.h"

#include <assert.h>

#include "simple.h"

#include "simple.h"

#include <stdbool.h>

int main() {

struct point2d* P = xmalloc(sizeof(struct point2d));

P->x = -15;

P->y = 0;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

printf("x coord: %d\n", P->x);

free(P);

printf("y coord: %d\n", P->y);

return 0;

}

File test.c

64

This memory may be inaccessible

or it contain different data

Freeing Memory Wrong

 Let’s run it with valgrind again

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c

valgrind ./a.out

…

x coord: -15

==9550== Invalid read of size 4

==9550== at 0x1089B0: main (test.c:17)

==9550== Address 0x522d044 is 4 bytes inside a block of size 8 free'd

==9550== at 0x4C30D3B: free (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)

==9550== by 0x1089AB: main (test.c:16)

==9550== Block was alloc'd at

==9550== at 0x4C2FB0F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-

linux.so)

==9550== by 0x1088D4: xmalloc (xalloc.c:29)

==9550== by 0x10891D: main (test.c:10)

…

Linux Terminal

Line where the bad access occurred

Line where that memory was freed

Line where it was allocated

…

free(P);

printf("y coord: %d\n", P->y);

…

File test.c

65

Freeing Memory Wrong

 We must not free memory more than once

o Let’s run valgrind again

#include <stdio.h>

#include <stdlib.h>

#include "lib/xalloc.h"

#include <assert.h>

#include "simple.h"

#include "simple.h"

#include <stdbool.h>

int main() {

struct point2d* P = xmalloc(sizeof(struct point2d));

P->x = -15;

P->y = 0;

P->y = P->y + absval(P->x * 2);

assert(P->y > P->x && true);

printf("x coord: %d\n", P->x);

printf("y coord: %d\n", P->y);

free(P);

free(P);

return 0;

}

File test.c

66

Freeing Memory Wrong

 Let’s run it with valgrind again

gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c simple.c test.c

valgrind ./a.out

…

x coord: -15

y coord: 30

==9631== Invalid free() / delete / delete[] / realloc()

==9631== at 0x4C30D3B: free (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)

==9631== by 0x1089D1: main (test.c:18)

==9631== Address 0x522d040 is 0 bytes inside a block of size 8 free'd

==9631== at 0x4C30D3B: free (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)

==9631== by 0x1089C5: main (test.c:17)

==9631== Block was alloc'd at

==9631== at 0x4C2FB0F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-

linux.so)

==9631== by 0x1088D4: xmalloc (xalloc.c:29)

==9631== by 0x10891D: main (test.c:10)

…

Linux Terminal

Line where the memory was freed again

Line where it was freed the first time

Line where it was allocated

…

free(P);

free(P);

…

File test.c

67

Memory Ownership

68

Data Structure Libraries in C

 Data structures allocate memory
e.g., a BST implementation of a dictionary

 all the nodes of the BST

 the dictionary header

o This memory must be freed

 But the client knows nothing about

the implementation

 The interface must provide a

function to free it

// typedef ______* dict_t;

dict_t dict_new(entry_key_fn* entry_key,

key_compare_fn* compare)

/*@requires entry_key != NULL && compare != NULL @*/

/*@ensures \result != NULL; @*/ ;

entry dict_lookup(dict_t D, key k)

/*@requires D != NULL; @*/ ;

void dict_insert(dict_t D, entry e)

/*@requires D != NULL && e != NULL; @*/ ;

entry dict_min(dict_t D)

/*@requires D != NULL; @*/ ;

void dict_free(dict_t D)

/*@requires D != NULL; @*/ ;

Library Interface

typedef void* entry;

typedef void* key;

typedef key entry_key_fn(entry e)

/*@requires e != NULL; @*/ ;

typedef bool key_compare_fn(key k1, key k2)

/*@ensures -1 <= \result && \result <= 1; @*/ ;

Client Interface

69

Data Structure Libraries in C

 Data structures allocate memory

o This memory must be freed
 all the nodes of the BST and the dictionary header

 But what about the data itself
e.g., the entries the client stored in the dictionary

o The library should not always free them

because the client may need them later

o But sometimes it should

because the client won’t need them later

o In any case, only the client knows how to free the data

 Let the client tell the library whether it should free the data

or not

o specify who owns the data when freeing the data structure

70

Memory Ownership

 The library needs the client to specify

who owns the memory used by the

data

 The client can declare a function

that frees the data

 dict_free takes such a function as a

second argument

o if called with an actual function, it will use

it to free the data

o if called with NULL, it will leave the data

alone

// typedef ______* dict_t;

dict_t dict_new(entry_key_fn* entry_key,

key_compare_fn* compare)

/*@requires entry_key != NULL && compare != NULL @*/

/*@ensures \result != NULL; @*/ ;

entry dict_lookup(dict_t D, key k)

/*@requires D != NULL; @*/ ;

void dict_insert(dict_t D, entry e)

/*@requires D != NULL && e != NULL; @*/ ;

entry dict_min(dict_t D)

/*@requires D != NULL; @*/ ;

void dict_free(dict_t D, entry_free_fn* Fr)

/*@requires D != NULL; @*/ ;

Library Interface

typedef void* entry;

typedef void* key;

typedef key entry_key_fn(entry e)

/*@requires e != NULL; @*/ ;

typedef bool key_compare_fn(key k1, key k2)

/*@ensures -1 <= \result && \result <= 1; @*/ ;

typedef void entry_free_fn(entry e);

Client Interface

71

Memory Ownership

 Library implementation

/*** BST dictionary Implementation ***/

void tree_free(tree *T, entry_free_fn *Fr) {

REQUIRES(is_bst(T));

if (T == NULL) return;

if (Fr != NULL) (*Fr)(T->data);

tree_free(T->left, Fr);

tree_free(T->right, Fr);

free(T);

}

void dict_free(dict *D, entry_free_fn *Fr) {

REQUIRES(is_dict(D));

tree_free(D->root, Fr);

free(D);

}

// typedef ______* dict_t;

dict_t dict_new(entry_key_fn* entry_key,

key_compare_fn* compare)

/*@requires entry_key != NULL && compare != NULL @*/

/*@ensures \result != NULL; @*/ ;

entry dict_lookup(dict_t D, key k)

/*@requires D != NULL; @*/ ;

void dict_insert(dict_t D, entry e)

/*@requires D != NULL && e != NULL; @*/ ;

entry dict_min(dict_t D)

/*@requires D != NULL; @*/ ;

void dict_free(dict_t D, entry_free_fn* Fr)

/*@requires D != NULL; @*/ ;

Library Interface

If Fr is not NULL,

it is used to free the data

Free each node of the tree

Free the dictionary header

72

typedef struct tree_node tree;

struct tree_node {

tree* left;

entry data; // != NULL

tree* right;

};

struct dict_header {

tree* root;

};

typedef struct dict_header dict;

Summary

73

Lost Gained

• Contracts

• Safety

• Garbage collection

• Memory initialization

• Preprocessor

• Whimsical execution

• Explicit memory management

• Separate compilation

Balance Sheet

74

