Graphs

Graphs

What are Graphs Good for?

- Graphs are a convenient **abstraction** that brings out commonalities between different domains
- Once we understand a problem in term of graphs, we can use **general graph algorithms** to solve it

o no need to reinvent the wheel every time

• Graphs are everywhere

- This is what a social network looked like … in 2005
- vertices are people posting photos
- edges are people following the photo stream of others

The FlickrVerse, April 2005

n. 成型

Lightsout

- Lightsout is a *game* played on boards consisting of *n x n* lights o each light can be either on or off
- We make a *move* by pressing a light, which toggles it and its cardinal neighbors
- **•** From a given configuration, the *goal* of the game is to turn off all light

Getting Introduced

E

- Figuring out how to get introduced to someone also amounts to **finding a path** between them
	- o Graphs bring out commonalities between different domains

17

● On *n x n* lightsout,

o there are *2 n*n* board configurations \triangleright each of the n^*n lights can be either on or off o from any board, we can make *n*n* moves by pressing any one of the *n*n* lights

● The graph representing *n x n* lightsout has

- o *2 n*n* vertices
- o *n*n * 2n*n / 2* edges
	- \triangleright there are $2^{n^{*}n}$ vertices
	- each has *n x n* neighbors
	- \triangleright but this would count each edge (A,B) twice
		- \Box from A to B and
		- \Box from B to A
		- so we divide by 2

Models vs. Data Structures

• A graph can be

o a conceptual **model** to understand a problem

o a concrete **data structure** to solve it

● For 2x2 lightsout, it is both

- o Conceptually, it brings out the structure of the problem and highlights what it has in common with other problems
- o Concretely, we can traverse a data structure that represents it in search of a path to the solved board
- Turning 6x6 lightsout into a data structure is not practical o each board requires 36 bits
	- o we need over 64GB to represent its 2 ³⁶ vertices
	- o we need over 2TB to represent its 36 * 2 ³⁶ / 2 edges

That's more memory than most computers have

Implicit Graphs

 We don't need a graph data structure to solve *n x n* lightsout o from each board we can **algorithmically** generate all boards that can be reached in one move

- o pick one of them and repeat until
	- \triangleright we reach the solved board
	- \triangleright or we reach a previously seen board
		- \Box from it try a different move
- **•** In the process, we are building an **implicit graph**
	- \circ a small portion of the graph exists in memory at any time
		- \triangleright the boards we have previously seen
			- □ vertices
		- \triangleright the moves we still need to try from them
			- \Box edges

Explicit Graphs

- For many graphs, there is no algorithmic way to generate their edges
	- \triangleright roads between cities
	- \triangleright social networks
	- \triangleright ...
- We must represent them explicitly as a data structure in memory

• We will now develop a small library for solving problems with these **explicit graphs**

A Graph Interface

A Minimal Graph Data Structure

- What we need to represent
	- o graphs themselves
		- type graph_t
	- o the vertices of a graph
		- \triangleright type vertex
			- \Box we label vertices with the numbers 0, 1, 2, ...
				- consecutive integers starting at 0
			- \Box vertex is defined as unsigned int
	- o the edges of the graph
		- \triangleright we represent an edge as its endpoints
			- *no need for an edge type*

A Minimal Graph Data Structure

• Basic operations on graphs

o graph_new(n) create a new graph with n vertices

- \triangleright we fix the number of vertices at creation time
	- \Box we cannot add vertices after the fact
- o graph_size(G) returns the number of vertices in G
- o graph_hasedge(G, v, w) checks if the graph G contains the edge (v,w)
- o graph_addedge(G, v, w) adds the edge (v,w) to the graph G o graph_free(G) disposes of G
- A realistic graph library would provide a much richer set of operations

o we can define most of them on the basis of these five

A Minimal Graph Interface – I

Example

• We create this graph as

 $graph_t G = graph_new(5);$ graph_addedge(G, 0, 1); graph_addedge(G, 0, 4); graph_addedge(G, 1, 2); graph_addedge(G, 1, 4); graph_addedge(G, 2, 3); graph_addedge(G, 2, 4);

in any order

Then

- graph_hasedge(G, 3, 2) returns true, but
- \triangleright graph_hasedge(G, 3, 1) return false
	- \Box there is a path from 3 to 1, but no direct edge

 \bullet It is convenient to handle neighbors explicitly

 \triangleright this is not strictly necessary

 \triangleright but graph algorithms get better complexity if we do so inside the library

Abstract type of neighbors o neighbors_t

• Operations on neighbors

o graph_get_neighbors(G, v)

 \triangleright returns the neighbors of vertex v in G

o graph_hasmore_neighbors(nbors)

 \triangleright checks if there are additional neighbors

- o graph_next_neighbor(nbors)
	- \triangleright returns the next neighbor

This is called an **iterator**

These allow us to iterate through

the neighbors of a vertex

- o graph_free_neighbors(nbors)
	- \triangleright dispose of unexamined neighbors

A Minimal Graph Interface – II

Example

G

• We grab the neighbors of vertex 4 as

neighbors_t $n4 = graph$ _get_neighbors(G, 4);

n4 contains vertices 0, 1, 2 in some order

vertex $a = graph_next_neighbor(n4);$

 \triangleright say a is vertex 1

 \Box it could also be 0 or 2

vertex $b = graph_next_neighbor(n4);$

 \triangleright say b is vertex 0

 \Box it cannot be 1 because we already got that neighbor

 \Box but it could be 2

vertex $c = graph_next_neighbor(n4);$

 \triangleright c has to be vertex 2

 \Box it cannot be 0 or 1 because we already got those neighbors

graph_hasmore_neighbor(n4)

 \triangleright returns false because we have exhausted all the neighbors of 4

Implementing Graphs

Implementing Graphs

• How to implement graphs based on what we studied?

- o The main operations are
	- \triangleright adding an edge to the graph
	- \triangleright checking if an edge is contained in the graph
		- □ These are the operations we had for **sets**
	- \triangleright iterating through the neighbors of a vertex
- Implement graphs as
	- o a linked list of edges
	- o a hash set

We could also use AVL trees if we are able to sort the edges

• How much would the operations cost?

Measuring the Cost of Graph Operations

This is a complete graph

- If a graph has **v** vertices, the number **e** of edges ranges between
	- \circ 0, and The graph has no edges
	- $O (v-1)/2$
		- \triangleright there is an edge between each of the v vertices and the other v-1 vertices, but we divide by 2 so that we don't double-count edges

\bullet So, $e \in O(v^2)$

o we could do with just v as a cost parameter,

- \circ but many graphs have far fewer than $v(v-1)/2$ edges
	- using only v would be overly pessimistic
- Use **both** v and e as cost parameters

Naïve Graph Implementations

 For implementations based on known data structures, the cost of the basic graph operations are

What about iterating through the neighbors of a vertex?

Naïve Graph Implementations

• Finding the neighbors of a vertex requires going over all the edges

o graph_get_neighbors has cost O(e) and O(v) avg

- How many neighbors are there?
	- o at most v-1
		- \triangleright if this vertex has an edge to all other vertices
	- o at most e
		- \triangleright there cannot be more neighbors than edges in the graph
- A vertex has O(min(v,e)) neighbors \circ iterating through the neighbors costs $O(min(v,e))$ \triangleright times the cost of the operation being performed

Naïve Graph Implementations

• In summary

Classic Graph Implementations

- Can we do better?
- Two representations of graphs are commonly used o the adjacency matrix representation o the adjacency list representation

"adjacency" is just a fancy word for neighbors

• Both give us better cost … in different situations …

The Adjacency Matrix Representation

• Represent the graph as a v^*v matrix of booleans \circ M[i,j] == true if there is an edge between i and j \circ M[i,j] == false otherwise M is called the **adjacency matrix**

• Space needed: O(v²)

The Adjacency List Representation

- For each vertex v, keep track of its neighbors in a list
	- o the **adjacency list** of v
- Store the adjacency lists in a vertex-indexed array
- Cost of the operations o graph_hasedge(G, v, w): O(min(v,e)) \triangleright each vertex has $O(min(v,e))$ neighbors \triangleright each adjacency list has length O(min(v,e)) o graph_addedge(G, v, w): O(1) \triangleright add v in w's list and w in v's list o graph_get_neighbors(G, v): O(1)
	- \triangleright just grab v's adjacency list

0

3

2

4

 $\overline{1}$

The Adjacency List Representation

 For each vertex v, keep track of its neighbors in a list

o *the adjacency list of v*

- *Store the adjacency lists in a vertex-indexed array*
- \bullet Space needed: $O(v + e)$
	- o a v-element array
	- o 2e list items
		- \triangleright each edge corresponds to exactly 2 list items
- \bullet O(v + e) is conventionally written O(max(v,e))

Why? Note that $max(v,e) \le v+e \le 2max(v,e)$

0

1 \leftrightarrow 4

 0 \rightarrow 2 \rightarrow 4

0

3

2

4

1

1 \rightarrow 4 \rightarrow 3

0 1 2

2

1

2

3

4

Adjacency Matrix vs. List

When to Use What Representation?

- Recall that $0 \le e \le v(v-1)/2$
- A graph is **dense** if it has lots of edges \circ e is on the order of v^2
- A graph is **sparse** if it has relatively few edges \circ e is in $O(v)$
	- \Box at most O(v log v)
	- \triangleright but definitely not $O(v^2)$
	- o lots of graphs are sparse
		- \triangleright social networks
		- \triangleright roads between cities

 \triangleright ...

Cost in Dense Graphs

 \bullet We replace e with v^2 and simplify

Cost in Dense Graphs

- graph_hasedge is faster with AM
- graph_get_neighbors is faster with AL o but we typically iterate through the neighbors after grabbing them
- All other operations are the same
- The space requirements are the same
- For dense graphs

o the two representations have about the same cost o but graph_hasedge is faster with AM the adjacency matrix representation is preferable

Cost in Sparse Graphs

• We replace e with **v** and simplify

Cost in Sparse Graphs

- AL requires **a lot less space**
- graph_hasedge is faster with AM
- graph_get_neighbors is faster with AL
	- o but we typically iterate through the neighbors after grabbing them
- All other operations are the same
- For sparse graphs
	- o AL uses substantially less space
	- o the two representations have about the same cost
	- o but graph_hasedge is faster with AM

the adjacency list representation is preferable because it doesn't require as much space

Adjacency List Implementation

Graph Types

- An adjacency list is just a NULL-terminated linked list of vertices
- The graph data structure consists of
	- o the number v of vertices in the graph
		- \triangleright field size
	- o a v-element array of adjacency lists
		- \triangleright field adjlist

Representation Invariants

• The interface defines

typedef unsigned int vertex;

 A vertex is valid if its value is between 0 and the size of the graph

Representation Invariants

• A graph is valid if o it is non-NULL

o the length of the array of adjacency lists is equal to it size

but we can't check this in C

o each adjacency list is valid

```
bool is_graph(graph *G) {
 if (G == NULL) return false;
 //@assert(G->size == \length(G->adj));
 for (unsigned int i = 0; i < G->size; i++) {
  if (!is_adjlist(G, i, G->adj[i])) return false;
 }
 return true;
}
```
Representation Invariants

- An adjacency list is valid if o it is NULL-terminated
	- o each vertex is valid
	- o there are not self-edges
	- o every outgoing edge has a corresponding edge coming back in
	- o there are no duplicate edges


```
bool is_adjlist(graph *G, vertex v, adjlist *L) {
 REQUIRES(G != NULL);
 //@requires(G->size == \length(G->adj));
 if (!is_acyclic(L)) return false;
```
while $(L != NULL)$ {

vertex $w = L$ ->vert; // w is a neighbor of v

// Neighbors are legal vertices if (!is_vertex(G, w)) return false;

// No self-edges if $(v == w)$ return false;

// Every outgoing edge has a corresponding edge coming back to it if (!is_in_adjlist(G->adj[w], v)) return false;

// Edges aren't duplicated if (is_in_adjlist(L->next, w)) return false;

```
L = L->next;
}
```
return true;

}

Basic operations

• graph_size returns the stored size \circ Cost O(1)

- **•** graph_new creates an array of empty adjacency lists
	- o calloc makes it convenient
	- o Cost O(v)
		- \triangleright calloc needs to zero out all v positions

unsigned int graph_size(graph *G) { REQUIRES(is_graph(G)); return G->size; }

graph *graph_new(unsigned int size) { graph $*G =$ xmalloc(sizeof(graph)); $G\rightarrow$ size = size; G ->adj = xcalloc(size, sizeof(adjlist*)); ENSURES(is_graph(G)); return G; }

Freeing a Graph

- graph_free must free o all adjacency lists \circ the array
	- o the graph header

Checking Edges

 graph_hasedge(G, v, w) does a linear search for w in the adjacency list of v

}

o we could implement it the other way around as well

- Its cost is O(min(v,e)) o the maximum length of an adjacency list
	- o the maximum number of neighbors of a vertex

bool graph_hasedge(graph *G, vertex v, vertex w) { REQUIRES(is_graph(G)); REQUIRES(is_vertex(G, v) && is_vertex(G, w));

for (adjlist $L = G$ ->adj[v]; L != NULL; L = L->next) { if $(L\text{-}>\text{vert} == w)$ return true; }

return false;

Adding an Edge

- The preconditions exclude o self-edges
	- o edges already contained in the graph
- graph_addedge(G, v, w) o adds w as a neighbor of v o and v as a neighbor of w

Constant cost

- We can use the adjacency list of a vertex as a representation of its neighbors
	- o We must be careful however not to modify the graph as we iterate through the neighbors

o Define a struct with a single field

 \triangleright a pointer to the next neighbor to examine

}

- graph_get_neighbors(G, v)
	- o creates a neighbors struct
	- o points the next_neighbor fields to the adjacency list of v
	- o returns this struct

neighbors *graph_get_neighbors(graph *G, vertex v) { REQUIRES(is_graph(G) && is_vertex(G, v));

neighbors *nbors = xmalloc(sizeof(neighbors)); nbors->next_neighbor = G->adj[v]; ENSURES(is_neighbors(nbors)); return nbors;

Constant cost

}

● graph_next_neighbor

- o returns the next neighbor
- o advances the next_neighbor field along the adjacency list

It **must not** free that adjacency list node since it is owned by the graph vertex graph_next_neighbor(neighbors *nbors) { REQUIRES(is_neighbors(nbors)); REQUIRES(graph_hasmore_neighbors(nbors));

vertex v = nbors->next_neighbor->vert; nbors->next_neighbor = nbors->next_neighbor->next; return v;

Constant cost

}

}

• graph_hasmore_neighbors checks whether the end of the adjacency list has been reached

bool graph_hasmore_neighbors(neighbors *nbors) { REQUIRES(is_neighbors(nbors)); return nbors->next_neighbor != NULL;

- graph_free_neighbors frees the neighbor header
	- o and **only** the header

It must not free the rest of the adjacency list since it is owned by the graph

void graph_free_neighbors(neighbors *nbors) { REQUIRES(is_neighbors(nbors)); free(nbors);

Constant time

Cost Summary

Using the Graph Interface

Printing a Graph

• Using the graph interface, write a client function that prints a graph

o for every vertex

 \triangleright print it

 \triangleright print every neighbor of this node

```
void graph_print(graph_t G) {
 for (vertex v = 0; v < graph_size(G); v++) {
  printf("Vertices connected to %u: ", v);
  neighbors_t nbors = graph_get_neighbors(G, v);
  while (graph_hasmore_neighbors(nbors)) {
   vertex w = graph_next_neighbor(nbors);
   printf("\%u,", w);
  }
  graph_free_neighbors(nbors);
  printf("\n");
 }
}
                                    |w is a neighbor of v|
```
typedef unsigned int vertex; typedef struct graph_header *graph_t; graph_t graph_new(unsigned int numvert); //@ensures \result != NULL; void graph_free(graph_t G); //@requires G != NULL; unsigned int graph_size(graph_t G); //@requires G != NULL; bool graph_hasedge(graph_t G, vertex v, vertex w); //@requires G != NULL; //@requires $v <$ qraph size(G) && w < graph size(G); void graph_addedge(graph_t G, vertex v, vertex w); //@requires G != NULL; //@requires v < graph_size(G) && w < graph_size(G); //@requires $v = w \&&$!graph_hasedge(G, v, w); typedef struct neighbor_header *neighbors_t; neighbors_t graph_get_neighbors(graph_t G, vertex v); //@requires G != NULL $88 v <$ graph_size(G); $1/10$ ensures \result != NULL: bool graph_hasmore_neighbors(neighbors_t nbors); $\mathcal{U} \mathcal{Q}$ requires nbors $!=$ NULL; vertex graph_next_neighbor(neighbors_t nbors); \mathcal{U} @requires nbors != NULL; //@requires graph_hasmore_neighbors(nbors); //@ensures is_vertex(\result);

graph.h

 \bigcap

5

void graph_free_neighbors(neighbors_t nbors); \mathcal{W} @requires nbors != NULL;

● We will see other algorithms that follow this pattern

- For a graph with v vertices and e edges
- using a library based on the **adjacency list** representation

 \bullet So the cost of graph print is O(v min(v, e))

- The cost of graph print is $O(v \ min(v, e))$ o for a graph with v vertices and e edges using adjacency lists
- \bullet Is that right?
	- \circ We assumed every vertex has $O(min(v,e))$ neighbors
	- o But **overall** graph_print visits every edge exactly twice
		- \triangleright once from each endpoint
		- \triangleright the body of the inner loop runs 2e times over all iterations of the outer loop
		- \triangleright the entire inner loop costs O(e)

• The entire inner loop costs O(e)

• The actual cost of graph_print is $O(v + e)$ o for a graph with v vertices and e edges **using adjacency lists**

- Using the adjacency matrix representation
- \bullet By the same argument, the entire inner loop costs $O(e)$ o and graph_free_neighbors too

• The actual cost of graph_print is $O(v^2 + e)$ \circ This is O(v²) since $e \in O(v^2)$ always

What is the Cost of print_graph?

- Adjacency list representation: $O(v + e)$
- Adjacency matrix representation: O(v²)

- For a dense graph \triangleright e \in O(v²) they are the same
- **•** For a sparse graph, AL is better

```
void graph_print(graph_t G) {
 for (vertex v = 0; v < graph_size(G); v++) {
  printf("Vertices connected to %u: ", v);
  neighbors_t nbors = graph_get_neighbors(G, v);
  while (graph_hasmore_neighbors(nbors)) {
   vertex w = graph_next_neighbor(nbors);
   printf("\%u,", w);
  }
  graph_free_neighbors(nbors);
  printf("\n");
 }
}
```