
Graphs

Graphs

1

What is a Graph?

 A graph is a collection of

dots and

lines

2

J

F

C

E

B

I

D

A

H

G

What is a Graph?

 The dots are called

vertices or nodes

o they are generally given

unique labels

A vertex labeled A

3

J

F

C

E

B

I

D

A

H

G

What is a Graph?

 The lines are called edges

o each edge connects a

pairs of vertices

 its endpoints

o there is at most one edge

between any two vertices

An edge with

endpoints A and B

4

 The graphs we will consider

o are undirected

 the edge (A,B) is the same

the edge (B,A)

o have no self-edges

 there is no edge (V,V)

for any vertex V

o but there are many other

kinds of graphs out there

J

F

C

E

B

I

D

A

H

G

What is a Graph?

This is for

simplicity

5

J

F

C

E

B

I

D

A

H

G

What is a Graph?

 To describe a graph, we need

to give its vertices and its

edges

oMathematically, a graph G

is a pair (V, E)

V is its set of vertices

E is its set of edges

G = (V, E)

This graph:
• vertices {A,B,C,D,E,F,G,H,I,J}

• edges {(A,B), (A,C), (A,I), (A,H),

(B,C), (B,E), (C,D), (C,E),

(C,H), (C,I), (D,E), (D,I), (F,H),

(F,I), (F,J), (G,H), (H,J)}
6

J

F

C

E

B

I

D

A

H

G

What is a Graph?

 The neighbors of a vertex

are all the vertices

connected to it with an

edge

The neighbors of A are B, C, H, I

7

What are Graphs Good for?

 Graphs are a convenient abstraction that brings out

commonalities between different domains

 Once we understand a problem in term of graphs, we can

use general graph algorithms to solve it

o no need to reinvent the wheel every time

 Graphs are everywhere

8

9

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

Our graph could represent a road network

• vertices are cities

• edges are major highways

10

E

It could represent a social network

• vertices are people

• edges are social connections

This is what a social network looked like … in 2005

• vertices are people posting photos

• edges are people following the photo stream of others

11

Lightsout

 Lightsout is a game played on

boards consisting of n x n lights

o each light can be either on or off

 We make a move by pressing a

light, which toggles it and its

cardinal neighbors

 From a given configuration, the

goal of the game is to turn off

all light

A 6x6 lightsout

configuration

Light

is on

Light

is off

The move toggles

these 5 lights

12

Lightsout as a Graph

 A vertex is a board configuration

 An edge is a move

o pressing a light twice brings us back

to where we were

 the graph is undirected

o pressing a light takes us

to a new configuration

no self-edges

2x2 lightsout

configurations

13

 To solve a given board, we must find a sequence

of moves that takes us to the board

with all the lights out

o find a series of vertices

connected by edges

Lightsout as a Graph

Given

configurations

Solved

configurations

14

 A series of vertices connected by edges

is called a path

o solving lightsout is the same as finding

a path from the given configuration

to the solved configuration

Lightsout as a Graph

Start

Target

Here’s a path between them:

15

Juarez

Fort Worth

Columbus

Erie

Boston

Detroit

Atlanta

Houston

Galveston

Getting Directions
 Figuring out how to go from

one place to another also

amounts to finding a path

between them

o Graphs bring out

commonalities between

different domains

Indianapolis

16

E

Getting Introduced

 Figuring out how to get

introduced to someone

also amounts to finding a

path between them

oGraphs bring out

commonalities between

different domains

17

 A path is a series of vertices connected by edges

owe can reduce the problem of solving lightsout

to the problem of finding a path

between two vertices

Lightsout as a Graph

Start

Target

Here’s another path between them:

Here, we are backtracking

18

 A path is a series of vertices connected by edges

o There can be many paths between

two vertices

Lightsout as a Graph

Start

Target

And another one:

19

Lightsout as a Graph

 On n x n lightsout,

o there are 2n*n board configurations

each of the n*n lights can be either on or off

o from any board, we can make n*n moves

by pressing any one of the n*n lights

 The graph representing n x n lightsout has

o 2n*n vertices

o n*n * 2n*n / 2 edges

 there are 2n*n vertices

each has n x n neighbors

but this would count each edge (A,B) twice

 from A to B and

 from B to A

so we divide by 2

20

Target

All the vertices and edges of 2x2 lightsout

(color-coded by which light is

pressed to make a move)

The 2x2 Lightsout

Graph

21

Models vs. Data Structures

 A graph can be

o a conceptual model to understand a problem

o a concrete data structure to solve it

 For 2x2 lightsout, it is both

oConceptually, it brings out the structure of the problem and

highlights what it has in common with other problems

oConcretely, we can traverse a data structure that represents it in

search of a path to the solved board

 Turning 6x6 lightsout into a data structure is not practical

o each board requires 36 bits

owe need over 64GB to represent its 236 vertices

owe need over 2TB to represent its 36 * 236 / 2 edges

That’s more memory than most computers have
22

Implicit Graphs

 We don’t need a graph data structure to solve n x n lightsout

o from each board we can algorithmically generate all boards that

can be reached in one move

o pick one of them and repeat until

we reach the solved board

or we reach a previously seen board

 from it try a different move

 In the process, we are building an implicit graph

o a small portion of the graph exists in memory at any time

 the boards we have previously seen

 vertices

 the moves we still need to try from them

 edges

23

Explicit Graphs

 For many graphs, there is no algorithmic way to generate

their edges
 roads between cities

 social networks

…

 We must represent them explicitly as a data structure in

memory

 We will now develop a small library for solving problems

with these explicit graphs

24

A Graph Interface

25

A Minimal Graph Data Structure

 What we need to represent

o graphs themselves

 type graph_t

o the vertices of a graph

 type vertex

 we label vertices with the numbers 0, 1, 2, …

 consecutive integers starting at 0

 vertex is defined as unsigned int

o the edges of the graph

we represent an edge as its endpoints

 no need for an edge type

26

A Minimal Graph Data Structure

 Basic operations on graphs

o graph_new(n) create a new graph with n vertices

we fix the number of vertices at creation time

 we cannot add vertices after the fact

o graph_size(G) returns the number of vertices in G

o graph_hasedge(G, v, w) checks if the graph G contains the edge

(v,w)

o graph_addedge(G, v, w) adds the edge (v,w) to the graph G

o graph_free(G) disposes of G

 A realistic graph library would provide a much richer set of

operations

owe can define most of them on the basis of these five

27

A Minimal Graph Interface – I

typedef unsigned int vertex;

typedef struct graph_header *graph_t;

graph_t graph_new(unsigned int numvert);

//@ensures \result != NULL;

void graph_free(graph_t G);

//@requires G != NULL;

unsigned int graph_size(graph_t G);

//@requires G != NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

//@requires v != w && !graph_hasedge(G, v, w);

…

File graph.h

In a C header file,

we must define abstract types

… but we don’t need to give the details

vertex is a concrete type

This says that v and w

must be valid vertices

No self-edges

For simplicity,

only add new edges
28

Example

 We create this graph as

graph_t G = graph_new(5);

graph_addedge(G, 0, 1);

graph_addedge(G, 0, 4);

graph_addedge(G, 1, 2);

graph_addedge(G, 1, 4);

graph_addedge(G, 2, 3);

graph_addedge(G, 2, 4);

 Then
graph_hasedge(G, 3, 2) returns true, but

graph_hasedge(G, 3, 1) return false

 there is a path from 3 to 1, but no direct edge

0

1

3

4

2

in any

order

We sometimes write

the labels inside the

vertices

29

Neighbors

 It is convenient to handle neighbors explicitly
 this is not strictly necessary

but graph algorithms get better complexity if we do so inside the library

 Abstract type of neighbors

o neighbors_t

 Operations on neighbors

o graph_get_neighbors(G, v)

 returns the neighbors of vertex v in G

o graph_hasmore_neighbors(nbors)

 checks if there are additional neighbors

o graph_next_neighbor(nbors)

 returns the next neighbor

o graph_free_neighbors(nbors)

dispose of unexamined neighbors

These allow us to iterate through

the neighbors of a vetex

These allow us to iterate through

the neighbors of a vertex

This is called an iterator

30

A Minimal Graph Interface – II

…

typedef struct neighbor_header *neighbors_t;

neighbors_t graph_get_neighbors(graph_t G, vertex v);

//@requires G != NULL && v < graph_size(G);

//@ensures \result != NULL;

bool graph_hasmore_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

vertex graph_next_neighbor(neighbors_t nbors);

//@requires nbors != NULL;

//@requires graph_hasmore_neighbors(nbors);

void graph_free_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

File graph.h

There must be additional neighbors

to retrieve the next neighbor

These declarations are

part of the same header file

31

Example

 We grab the neighbors of vertex 4 as
neighbors_t n4 = graph_get_neighbors(G, 4);

 n4 contains vertices 0, 1, 2 in some order

vertex a = graph_next_neighbor(n4);

 say a is vertex 1

 it could also be 0 or 2

vertex b = graph_next_neighbor(n4);

 say b is vertex 0

 it cannot be 1 because we already got that neighbor

 but it could be 2

vertex c = graph_next_neighbor(n4);

 c has to be vertex 2

 it cannot be 0 or 1 because we already got those neighbors

graph_hasmore_neighbor(n4)

 returns false because we have exhausted all the neighbors of 4

0

1

3

4

2

32

G

Implementing Graphs

33

Implementing Graphs

 How to implement graphs based on what we studied?

o The main operations are

adding an edge to the graph

 checking if an edge is contained in the graph

 These are the operations we had for sets

 iterating through the neighbors of a vertex

 Implement graphs as

o a linked list of edges

o a hash set

 How much would the operations cost?

We could also use AVL trees

if we are able to sort the edges

34

Measuring the Cost of Graph Operations

 If a graph has v vertices, the number e

of edges ranges between

o 0, and

o v(v-1)/2

 there is an edge between each of the v vertices

and the other v-1 vertices, but we divide by 2 so

that we don’t double-count edges

 So, e O(v2)

owe could do with just v as a cost parameter,

o but many graphs have far fewer than v(v-1)/2 edges

using only v would be overly pessimistic

 Use both v and e as cost parameters

The graph has no edgesThe graph has no edges

This is a complete graphThis is a complete graph

35

Naïve Graph Implementations

 For implementations based on known data structures,

the cost of the basic graph operations are

 What about iterating through the neighbors of a vertex?

Linked list of edges Hash set of edges

graph_hasedge O(e) O(1) avg

graph_addedge O(1) O(1) avg+amt

36

Naïve Graph Implementations

 Finding the neighbors of a vertex requires going over all

the edges

o graph_get_neighbors has cost O(e) and O(v) avg

 How many neighbors are there?

o at most v-1

 if this vertex has an edge to all other vertices

o at most e

 there cannot be more neighbors than edges

in the graph

 A vertex has O(min(v,e)) neighbors

o iterating through the neighbors costs O(min(v,e))

 times the cost of the operation being performed

37

Naïve Graph Implementations

 In summary

Linked list of edges Hash set of edges

graph_hasedge O(e) O(1) avg

graph_addedge O(1) O(1) avg + amt

graph_get_neighbors O(e) O(v) avg

Iterating through

neighbors
O(min(v,e)) O(min(v,e))

38

Classic Graph Implementations

 Can we do better?

 Two representations of graphs are commonly used

o the adjacency matrix representation

o the adjacency list representation

 Both give us better cost

… in different situations …

“adjacency” is just a fancy

word for neighbors

39

The Adjacency Matrix Representation

 Represent the graph as a v*v matrix of booleans

oM[i,j] == true if there is an edge between i and j

oM[i,j] == false otherwise

M is called the adjacency matrix

 Cost of the operations

o graph_hasedge(G, v, w): O(1)

 just return M[v,w]

o graph_addedge(G, v, w): O(1)

 just set M[v,w] to true

o graph_get_neighbors(G, v): O(v)

go through the row for v in M

 Space needed: O(v2)

0

1

3

4

2

0 1 2 3 4

0

1

2

3

4

For undirected graphs,

M is symmetric:

M[i,j] == M[j,i]

No self-edges,

so M[i,i] == false

M[2,4] == true

because G

contains

edge (2,4)

40

The Adjacency List Representation

 For each vertex v, keep track of its neighbors

in a list

o the adjacency list of v

 Store the adjacency lists in a vertex-indexed array

 Cost of the operations

o graph_hasedge(G, v, w): O(min(v,e))

each vertex has O(min(v,e)) neighbors

each adjacency list has length O(min(v,e))

o graph_addedge(G, v, w): O(1)

add v in w’s list and w in v’s list

o graph_get_neighbors(G, v): O(1)

 just grab v’s adjacency list

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

0

1

3

4

2

The neighbors

of 4 are 0, 1, 2

41

The Adjacency List Representation

 For each vertex v, keep track of its neighbors

in a list

o the adjacency list of v

 Store the adjacency lists in a vertex-indexed array

 Space needed: O(v + e)

o a v-element array

o 2e list items

each edge corresponds to exactly

2 list items

 O(v + e) is conventionally

written O(max(v,e))

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

0

1

3

4

2

Why? Note that

max(v,e) ≤ v+e ≤ 2max(v,e)

42

Adjacency Matrix vs. List

Adjacency matrix Adjacency list

Space O(v2) O(v + e)

graph_hasedge O(1) O(min(v,e))

graph_addedge O(1) O(1)

graph_get_neighbors O(v) O(1)

Iterating through

neighbors
O(min(v,e)) O(min(v,e))

43

When to Use What Representation?

 Recall that 0 ≤ e ≤ v(v-1)/2

 A graph is dense if it has lots of edges

o e is on the order of v2

 A graph is sparse if it has relatively few edges

o e is in O(v)
 at most O(v log v)

but definitely not O(v2)

o lots of graphs are sparse

 social networks

 roads between cities

…

45

Cost in Dense Graphs

 We replace e with v2 and simplify

Adjacency matrix Adjacency list

Space O(v2) O(v + e) O(v2)

graph_hasedge O(1) O(min(v,e)) O(v)

graph_addedge O(1) O(1)

graph_get_neighbors O(v) O(1)

Iterating through

neighbors
O(min(v,e)) O(v) O(min(v,e)) O(v)

Same

Same

Same

AM

AL

46

Cost in Dense Graphs

 graph_hasedge is faster with AM

 graph_get_neighbors is faster with AL

o but we typically iterate through the neighbors after grabbing

them

 All other operations are the same

 The space requirements are the same

 For dense graphs

o the two representations have about the same cost

o but graph_hasedge is faster with AM

the adjacency matrix representation is preferable

47

Cost in Sparse Graphs

 We replace e with v and simplify

Adjacency matrix Adjacency list

Space O(v2) O(v + e) O(v)

graph_hasedge O(1) O(min(v,e)) O(v)

graph_addedge O(1) O(1)

graph_get_neighbors O(v) O(1)

Iterating through

neighbors
O(min(v,e)) O(v) O(min(v,e)) O(v)

AL

Same

Same

AM

AL

Assume e O(v)

48

Cost in Sparse Graphs

 AL requires a lot less space

 graph_hasedge is faster with AM

 graph_get_neighbors is faster with AL

o but we typically iterate through the neighbors after grabbing

them

 All other operations are the same

 For sparse graphs

o AL uses substantially less space

o the two representations have about the same cost

o but graph_hasedge is faster with AM

the adjacency list representation is preferable because it

doesn’t require as much space

49

Adjacency List Implementation

50

Graph Types

 An adjacency list is just a

NULL-terminated linked list of

vertices

 The graph data structure

consists of

o the number v of vertices in

the graph

 field size

o a v-element array of

adjacency lists

 field adjlist

typedef struct adjlist_node adjlist;

struct adjlist_node {

vertex vert;

adjlist *next;

};

typedef struct graph_header graph;

struct graph_header {

unsigned int size;

adjlist **adj;

};
adjlist*[] adj in C0

51

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

adj

size 5

Representation Invariants

 The interface defines

typedef unsigned int vertex;

 A vertex is valid if its value is between 0 and the size of

the graph

bool is_vertex(graph *G, vertex v) {

REQUIRES(G != NULL);

return v < G->size;

}

0 <= v

is automatic since v has

type unsigned int

52

Representation

Invariants

 A graph is valid if

o it is non-NULL

o the length of the array of adjacency lists is equal to it size

but we can’t check this in C

o each adjacency list is valid

bool is_graph(graph *G) {

if (G == NULL) return false;

//@assert(G->size == \length(G->adj));

for (unsigned int i = 0; i < G->size; i++) {

if (!is_adjlist(G, i, G->adj[i])) return false;

}

return true;

}

53

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

adj

size 5

Representation Invariants

 An adjacency list is valid if

o it is NULL-terminated

o each vertex is valid

o there are not self-edges

o every outgoing edge has a

corresponding edge coming

back in

o there are no duplicate edges

bool is_adjlist(graph *G, vertex v, adjlist *L) {

REQUIRES(G != NULL);

//@requires(G->size == \length(G->adj));

if (!is_acyclic(L)) return false;

while (L != NULL) {

vertex w = L->vert; // w is a neighbor of v

// Neighbors are legal vertices

if (!is_vertex(G, w)) return false;

// No self-edges

if (v == w) return false;

// Every outgoing edge has a corresponding

// edge coming back to it

if (!is_in_adjlist(G->adj[w], v)) return false;

// Edges aren't duplicated

if (is_in_adjlist(L->next, w)) return false;

L = L->next;

}

return true;

}

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

54

Basic operations

 graph_size returns the stored size

oCost O(1)

 graph_new creates an array of

empty adjacency lists

o calloc makes it convenient

oCost O(v)

 calloc needs to zero out all v positions

graph *graph_new(unsigned int size) {

graph *G = xmalloc(sizeof(graph));

G->size = size;

G->adj = xcalloc(size, sizeof(adjlist*));

ENSURES(is_graph(G));

return G;

}

unsigned int graph_size(graph *G) {

REQUIRES(is_graph(G));

return G->size;

}

0

1

2

3

4
55

adj

size 5

Freeing a Graph

 graph_free must free

o all adjacency lists

o the array

o the graph header

 Cost: O(v + e)

o there are 2e nodes to free in the

adjacency lists

o v array positions need to be

accessed for that

void graph_free(graph *G) {

REQUIRES(is_graph(G));

for (unsigned int i = 0; i < G->size; i++) {

adjlist *L = G->adj[i];

while (L != NULL) {

adjlist *tmp = L->next;

free(L);

L = tmp;

}

}

free(G->adj);

free(G);

}

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

Free the header

Free the array

Free the adjacency list nodes

56

adj

size 5

Checking Edges

 graph_hasedge(G, v, w) does a linear search for w in the

adjacency list of v

owe could implement it the

other way around as well

 Its cost is O(min(v,e))

o the maximum length of

an adjacency list

o the maximum number of

neighbors of a vertex

bool graph_hasedge(graph *G, vertex v, vertex w) {

REQUIRES(is_graph(G));

REQUIRES(is_vertex(G, v) && is_vertex(G, w));

for (adjlist *L = G->adj[v]; L != NULL; L = L->next) {

if (L->vert == w) return true;

}

return false;

}

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

57

Adding an Edge

 The preconditions exclude

o self-edges

o edges already contained in

the graph

 graph_addedge(G, v, w)

o adds w as a neighbor of v

o and v as a neighbor of w

 Constant cost

void graph_addedge(graph *G, vertex v, vertex w) {

REQUIRES(is_graph(G));

REQUIRES(is_vertex(G, v) && is_vertex(G, w));

REQUIRES(v != w && !graph_hasedge(G, v, w));

adjlist *L;

L = xmalloc(sizeof(adjlist));

L->vert = w;

L->next = G->adj[v];

G->adj[v] = L;

L = xmalloc(sizeof(adjlist));

L->vert = v;

L->next = G->adj[w];

G->adj[w] = L;

ENSURES(is_graph(G));

ENSURES(graph_hasedge(G, v, w));

}

add w as a neighbor of v

add v as a neighbor of w

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

58

Neighbors

 We can use the adjacency list of a vertex as a

representation of its neighbors

oWe must be careful however not to modify the graph as we

iterate through the neighbors

oDefine a struct with a single field

a pointer to the next neighbor to examine

typedef struct neighbor_header neighbors;

struct neighbor_header {

adjlist *next_neighbor;

};

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

next_neighbor

nbor

G

59

Neighbors

 graph_get_neighbors(G, v)

o creates a neighbors struct

o points the next_neighbor

fields to the adjacency list

of v

o returns this struct

 Constant cost

neighbors *graph_get_neighbors(graph *G, vertex v) {

REQUIRES(is_graph(G) && is_vertex(G, v));

neighbors *nbors = xmalloc(sizeof(neighbors));

nbors->next_neighbor = G->adj[v];

ENSURES(is_neighbors(nbors));

return nbors;

}

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

next_neighbor

nbor

G

60

Neighbors

 graph_next_neighbor

o returns the next neighbor

o advances the next_neighbor

field along the adjacency list

 Constant cost

vertex graph_next_neighbor(neighbors *nbors) {

REQUIRES(is_neighbors(nbors));

REQUIRES(graph_hasmore_neighbors(nbors));

vertex v = nbors->next_neighbor->vert;

nbors->next_neighbor = nbors->next_neighbor->next;

return v;

}

It must not free that adjacency list

node since it is owned by the graph

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

next_neighbor

nbor

G

61

Neighbors

 graph_hasmore_neighbors

checks whether the end of

the adjacency list has been

reached

 graph_free_neighbors frees

the neighbor header

o and only the header

 Constant time

bool graph_hasmore_neighbors(neighbors *nbors) {

REQUIRES(is_neighbors(nbors));

return nbors->next_neighbor != NULL;

}

void graph_free_neighbors(neighbors *nbors) {

REQUIRES(is_neighbors(nbors));

free(nbors);

}

It must not free the rest of the adjacency

list since it is owned by the graph

62

Cost Summary

Adjacency list

Space O(v + e)

graph_new O(v)

graph_free O(v + e)

graph_size O(1)

graph_hasedge O(min(v,e))

graph_addedge O(1)

graph_get_neighbors O(1)

graph_hasmore_neighbors O(1)

graph_next_neighbor O(1)

graph_free_neighbors O(1)

63

Using the Graph Interface

64

Printing a Graph

 Using the graph interface, write a

client function that prints a graph

o for every vertex

print it

print every neighbor of this node

 We will see other algorithms that follow this pattern

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

w is a neighbor of v

typedef unsigned int vertex;

typedef struct graph_header *graph_t;

graph_t graph_new(unsigned int numvert);

//@ensures \result != NULL;

void graph_free(graph_t G);

//@requires G != NULL;

unsigned int graph_size(graph_t G);

//@requires G != NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

//@requires v != w && !graph_hasedge(G, v, w);

typedef struct neighbor_header *neighbors_t;

neighbors_t graph_get_neighbors(graph_t G, vertex v);

//@requires G != NULL && v < graph_size(G);

//@ensures \result != NULL;

bool graph_hasmore_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

vertex graph_next_neighbor(neighbors_t nbors);

//@requires nbors != NULL;

//@requires graph_hasmore_neighbors(nbors);

//@ensures is_vertex(\result);

void graph_free_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

graph.h

65

What is the Cost of graph_print?

 For a graph with v vertices and e edges

 using a library based on the adjacency list representation

 So the cost of graph_print is O(v min(v, e))

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

v times
O(1)

O(1)

O(min(v,e)) times

O(1)

O(1)

O(1)

O(1)

Cost Tally

O(v)

O(v)

O(v min(v,e))

O(v min(v,e))

O(v min(v,e))

O(v min(v,e))

O(v min(v,e))

66

graph_get_neighbors O(1)

graph_hasmore_neighbors O(1)

graph_next_neighbor O(1)

graph_free_neighbors O(1)

What is the Cost of graph_print?

 The cost of graph_print is O(v min(v, e))

o for a graph with v vertices and e edges using adjacency lists

 Is that right?

oWe assumed every vertex has O(min(v,e)) neighbors

o But overall graph_print visits every edge exactly twice

once from each endpoint

 the body of the inner loop runs 2e times over all iterations of the outer

loop

 the entire inner loop costs O(e)
0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

67

What is the Cost of graph_print?

 The entire inner loop costs O(e)

 The actual cost of graph_print is O(v + e)

o for a graph with v vertices and e edges using adjacency lists

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

v times
O(1)

O(1)

O(e)

O(1)

O(1)

Cost Tally

O(v)

O(v)

O(v + e)

O(v + e)

O(v + e)

68

What is the Cost of graph_print?

 Using the adjacency matrix representation

 By the same argument, the entire inner loop costs O(e)

o and graph_free_neighbors too

 The actual cost of graph_print is O(v2 + e)

o This is O(v2) since e O(v2) always

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

v times
O(1)

O(v)

O(e)

O(1)

Cost Tally

O(v)

O(v2)

O(v2 + e)

O(v2 + e)

This is O(min(v,e)) by itself, but

there are only 2e neighbors to free

69

What is the Cost of print_graph?

 Adjacency list representation: O(v + e)

 Adjacency matrix representation: O(v2)

 For a dense graph
e O(v2)

they are the same

 For a sparse graph, AL is

better

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

70

Same as

space bounds

Same as

space bounds

