Graph Search

Review

• Graphs

- o Vertices, edges, neighbors, …
- o Dense, sparse
- **Adjacency** matrix implementation

4

0

3

 $\boxed{2}$

1

• Adjacency list implementation

graph.h

typedef unsigned int vertex; typedef struct graph_header *graph_t;

graph_t graph_new(unsigned int numvert); //@ensures \result != NULL;

void graph_free(graph_t G); //@requires G != NULL;

unsigned int graph_size(graph_t G); //@requires G != NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w); //@requires G != NULL; //@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w); //@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G); //@requires v != w && !graph_hasedge(G, v, w);

typedef struct neighbor header *neighbors_t;

neighbors_t graph_get_neighbors(graph_t G, vertex v); //@requires G != NULL && v < graph_size(G); //@ensures \result != NULL;

bool graph_hasmore_neighbors(neighbors_t nbors); //@requires nbors != NULL;

vertex graph_next_neighbor(neighbors_t nbors); \mathcal{W} @requires nbors != NULL;

//@requires graph_hasmore_neighbors(nbors); //@ensures is_vertex(\result);

void graph_free_neighbors(neighbors_t nbors); //@requires nbors != NULL;

Review

- Costs are similar for dense graphs
- AL is **more spaceefficient** for sparse graphs
	- o very common graphs \triangleright e \in O(v) is typical

Assuming the neighbors are represented as a linked list ²

Review

Typical function that **traverses** a graph

Graph Connectivity

Solving Lightsout

Getting Directions

Getting Introduced

Connected Vertices

 A **path** is a sequence of vertices linked by edges \circ 0-4-5-1 is a path between 0 and 1

- Two vertices are **connected** if there is a path between them o 0 and 1 are connected o 0 and 7 are not connected
- \bullet If v_1 and v_2 are connected, then v_2 is **reachable** from v_1
- A **connected component** is a maximal set of vertices that are connected o this graph has two connected components

Checking Reachability

- How do we check if two vertices are connected?
	- o graph_hasedge only tells us if they are *directly* connected \triangleright by an edge
	- o We want to develop general algorithms to check reachability
		- \triangleright then we can use them to check reachability in any domain
			- \Box to check if lightsout is solvable from a given board
			- \Box to figure out if there are roads between two cities
			- \Box to know if there is any social connection between two people

The rest of this lecture

Finding Paths

• How do we find a path between two vertices?

- \Box what is a solution to lightsout from a given board?
- □ what roads are there between two cities?
- \Box what series of people can get me introduced to person X?
- o an algorithm that checks reachability can be instrumented to report a path between the two vertices

We will limit ourselves to reachability

- A path is a **witness** that two vertices are connected
	- o Finding a witness is called a **search problem**
	- o Checking a witness is called a **verification problem**
		- \triangleright checking that a witness is valid is often a lot easier than finding a witness $\overline{}$ This is the basic

principle underlying **cryptography**

Checking Reachability

• Let's define reachability mathematically

This is an

inductive definition

There is a path from 0 to 0 There is a path from 0 to 3

Recursive Depth-first Search – I

Implementing the Definition

• We can immediately transcribe this inductive definition into a recursive **client-side** function

There is a path from start to target if

- \circ start == target, or
- \circ there is an edge from start to some vertex v and there is a path from v to target

Implementing the Definition

```
bool naive_dfs(graph_t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_size(G));
 printf(" Visiting %u\n", start);
// there is a path from start to target if
 \frac{1}{1} target == start, or
 if (target == start) return true;
 // there is an edge from start to ...
 neighbors_t nbors = graph_get_neighbors(G, start);
 while (graph_hasmore_neighbors(nbors)) {
  // ... some vertex v …
  vertex v = graph_next_neighbor(nbors);
  // ... and there is a path from v to target
  if (naive_dfs(G, v, target)) {
   graph_free_neighbors(nbors);
   return true;
  }
 }
 graph_free_neighbors(nbors);
 return false;
}
```
typedef unsigned int vertex; typedef struct graph_header *graph_t; graph_t graph_new(unsigned int numvert); //@ensures \result != NULL; void graph_free(graph_t G); //@requires G != NULL; unsigned int graph_size(graph_t G); //@requires G != NULL; bool graph_hasedge(graph_t G, vertex v, vertex w); //@requires G != NULL; //@requires v < graph_size(G) && w < graph_size(G); void graph_addedge(graph_t G, vertex v, vertex w); //@requires G != NULL; $\frac{1}{2}$ (equires v < graph_size(G) && w < graph_size(G); $\frac{1}{2}$ //@requires v != w && !graph_hasedge(G, v, w); typedef struct neighbor header *neighbors_t; neighbors_t graph_get_neighbors(graph_t G, vertex v); //@requires G != NULL && v < graph_size(G); //@ensures \result != NULL; bool graph_hasmore_neighbors(neighbors_t nbors); //@requires nbors != NULL; vertex graph_next_neighbor(neighbors_t nbors); $\mathcal{U} \otimes \mathcal{U}$ requires nbors $!=$ NULL; //@requires graph_hasmore_neighbors(nbors); //@ensures is_vertex(\result); void graph free neighbors(neighbors t nbors); $\mathcal{U} \otimes \mathcal{U}$ requires nbors $!=$ NULL;

graph.h

←

Implementing the Definition

```
\bullet It has the same
                                                                       structure as 
                                                                       graph_print
                                                                       o the outer loop is 
                                                                          replaced with recursion
bool naive_dfs(graph_t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_size(G));
 printf(" Visiting %u\n", start);
// there is a path from start to target if
 \frac{1}{1} target == start, or
 if (target == start) return true;
 // there is an edge from start to ...
 neighbors_t nbors = graph_get_neighbors(G, start);
 while (graph_hasmore_neighbors(nbors)) {
  // ... some vertex v …
  vertex v = graph\_next\_neighbor(hbars);// ... and there is a path from v to target
  if (naive_dfs(G, v, target)) {
   graph_free_neighbors(nbors);
   return true;
  }
 }
 graph_free_neighbors(nbors);
 return false;
}
                                                         void graph_print(graph_t G) {
                                                          for (vertex v = 0; v < graph_size(G); v++) {
                                                            printf("Vertices connected to %u: ", v);
                                                           neighbors_t nbors = graph_get_neighbors(G, v);
                                                           while (graph_hasmore_neighbors(nbors)) {
                                                             vertex w = graph_next_neighbor(nbors);
                                                             printf(" %u,", w);
                                                            }
                                                           graph_free_neighbors(nbors);
                                                            printf("\n");
                                                           }
                                                         }
```
Does it Work?

• Let's check there is a path from 3 to 0

● Let's run it

Assume the neighbors are returned from smallest to biggest

```
bool naive dfs(graph t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_size(G));
 printf(" Visiting %u\n", start);
 // there is a path from start to target if
 \frac{1}{1} target == start, or
 if (target == start) return true;
 // there is an edge from start to ...
 neighbors_t nbors = graph_get_neighbors(G, start);
 while (graph_hasmore_neighbors(nbors)) {
  // ... some vertex v …
  vertex v = graph\_next\_neighbor(hbars);// ... and there is a path from v to target
  if (naive_dfs(G, v, target)) {
    graph_free_neighbors(nbors);
    return true;
   }
 }
```
graph_free_neighbors(nbors); return false; }

Does it *Always* Work?

• Let's check there is a path from 0 to 3

● Let's run it


```
bool naive dfs(graph t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_size(G));
 printf(" Visiting %u\n", start);
 // there is a path from start to target if
 \frac{1}{1} target == start, or
 if (target == start) return true;
 // there is an edge from start to ...
 neighbors_t nbors = graph_get_neighbors(G, start);
 while (graph_hasmore_neighbors(nbors)) {
  // ... some vertex v …
  vertex v = graph\_next\_neighbor(hbars);// ... and there is a path from v to target
  if (naive_dfs(G, v, target)) {
   graph_free_neighbors(nbors);
    return true;
   }
 }
 graph_free_neighbors(nbors);
 return false;
```
It does **not** Work

}

- Either the definition is wrong or the code is wrong
- **•** Definition
	- o it magically picks the right neighbor v if there is one
		- the magic of "*there is …*"

Code

- o it must examine the neighbors in some order
	- \triangleright the first v may not be the right one

```
There is a path from start to target if
\circ start == target, or
\circ there is an edge from start to some vertex v
   and there is a path from \vee to target
bool naive dfs(graph t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_si…
 printf(" Visiting %u\n", start);
 // there is a path from start to target if
 \frac{1}{1} target == start, or
 if (target == start) return true;
 // there is an edge from start to ...
 neighbors_t nbors = graph_get_neighbors(G, start);
 while (graph_hasmore_neighbors(nbors)) {
  // ... some vertex v …
  vertex v = graph\_next\_neighbor(hbars);// ... and there is a path from v to target
  if (naive_dfs(G, v, target)) {
   graph_free_neighbors(nbors);
   return true;
  }
 }
 graph_free_neighbors(nbors);
 return false;
```
Why doesn't it Work?

• The code examines the neighbors in some order

- \circ it always starts with the same v
	- \triangleright the first neighbor
- o … even if it has been examined before
- The code will never visit the second neighbor (if there is one)
	- \triangleright it charges ahead with the first neighbor, always
	- \circ if there is a path by only examining first neighbors, it will find it
	- \circ if the path involves some other neighbor, it won't

 $\overline{0}$

3

2

4

start target

1

Recursive Depth-first Search – II

Fixing the Code

- Problems: the code examines the same neighbors over and over
- **Solution: mark** vertices that are being examined o only examine a vertex if it is unmarked o mark it right away
- How to mark vertices?
	- o carry around an array of booleans
		- \triangleright true = marked
		- \triangleright false = unmarked

Fixing the code

- Carry around an array of booleans
- Only run if start is unmarked
- Mark it right away
- Only examine a neighbor if it's unmarked

o we need to guard the recursive call

bool dfs_helper(graph_t G(bool *mark) vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G)); REQUIRES(!mark[start]); mark[start] = true; printf(" Visiting %u\n", start); // there is a path from start to target if $\frac{1}{1}$ target == start, or if (target $==$ start) return true; // there is an edge from start to ... neighbors_t nbors = graph_get_neighbors(G, start); while (graph_hasmore_neighbors(nbors)) { // ... some vertex v … vertex $v = graph_next_neighbor(hbars);$ // ... and there is a path from v to target if (Imark[v] && dfs_helper(G(mark, v, target)) { graph_free_neighbors(nbors); return true; } } graph_free_neighbors(nbors); return false;

Fixing the Code

• We have modified the prototype of the function o but the client should not have to deal with the added details o export a **wrapper** instead of dsf_helper

An Alternative Wrapper

We can also use a *stack-allocated array* for mark

- Is this version preferable?
	- o stack space is limited
	- o for a large graph, the stack may not be big enough
		- **stack overflow**

Does it Work?

Let's check there is a path from 0 to 3

● Let's run it

Backtracking

• Let's check there is a path from 2 to 3 **start target nbors marked** 2 $/ \hspace{.1cm} 3 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 3 \hspace{.1cm} 2$ 1 || 3 || \bullet 2, 4 || 1, 2 $0 \quad | \quad 3 \quad | \quad 1, (4) \quad | \quad 0, 1, 2$ 1 3 \times 0, 1, 2 0, 1, 2, 4 3^{\sim} 3 $3 \neq 4$ and all the neighbors of 4 are marked

We **backtrack** to a vertex that has a still unmarked neighbor continue from it

 $\sqrt{}$

Backtracking

 We backtrack to a vertex that has a still unmarked neighbor and continue from it

 This is achieved by returning **false** from the recursive call o the caller will then try the next unmarked neighbor

● Let's run it


```
…
while (graph_hasmore_neighbors(nbors)) {
  // ... some vertex v …
  vertex v = graph\_next\_neighbor(hbars);// ... and there is a path from v to target
  if (!mark[v] && dfs_helper(G, mark v, target)) {
   graph_free_neighbors(nbors);
   return true;
  }
 }
graph_free_neighbors(nbors);
return false;
}
```
Complexity of dfs

- Let's call dfs on a graph with
	- o v vertices,
	- o e edges, and
	- o implemented using adjacency lists

• The cost of dfs is $O(v)$ plus the cost of dfs_helper

Complexity of dfs_helper

Just like for

graph_print

The body of the loop runs at most 2e times **altogether**

- □ at most 2e calls to graph_next_neighbors
- \triangleright e edges from either endpoint
- \triangleright each endpoint is examined at most once
- There are at most min(e,v) recursive calls
- \circ up to min(e,v) vertices can be marked **• Every operation** costs O(1) **dfs_helper has** cost O(e) bool dfs_helper(graph_t G, bool *mark, vertex start, vertex target) { mark[start] = true; if (target $==$ start) return true; neighbors_t nbors = graph_get_neighbors(G, start); while (graph_hasmore_neighbors(nbors)) { vertex v = graph_next_neighbor(nbors); if (!mark[v] && dfs_helper(G, mark, v, target)) { graph_free_neighbors(nbors); return true; } } graph_free_neighbors(nbors); return false; } $O(1)$ O(e) **altogether** $O(1)$ $O(1)$ $O(1)$ Tally O(min(e,v)) O(min(e,v)) O(min(e,v)) O(e) O(e)

Complexity of dfs

• Let's call dfs on a graph with

- \triangleright v vertices,
- \triangleright e edges, and
- \triangleright implemented using adjacency lists

```
bool dfs (graph_t G, vertex start, vertex target) {
 REQUIRES(G != NULL);
 REQUIRES(start < graph_size(G) && target < graph_size(G));
 bool *mark = xcalloc(graph_size(G), sizeof(bool));
 bool connected = dfs_helper(G, mark, start, target);
 free(mark);
 return connected;
}
                                                                    \overline{O(v)}O(e)
```
• The cost of dfs is $O(v + e)$

Complexity of dfs

For a graph with v vertices and e edges

 \bullet O(v + e) using the adjacency list implementation

Holds for both sparse and dense graphs

 \bullet O(v^2) using the adjacency matrix implementation Exercise

• AL is more efficient for sparse graphs o the most common kind of graphs

> Moving forward, we will always assume an adjacency list implementation

How does dfs Work?

- When calling dfs on 0 and 4, it finds the path 0–1–2–4 o it also visits 3 and backtracks
- But there is a much shorter path: 0–4

o dfs does more work than strictly necessary

How does dfs Work?

• dfs charges ahead until o it finds the target vertex o or it hits a dead end \triangleright then it backtracks to the last

choice point

 This strategy is called **depth-first search TDFS**

• To find the shortest path, we need to explore the graph **level by level** from the start vertex

o first look at the vertices 0 hops away from start,

 \triangleright if start == end

o then look at the vertices 1 hop away from start

o then 2 hops away

o then 3 hops away

o …

0 1 3 4 2 0 1 3 4 2 0 1 3 4 2 start target target **0 1 2 3 1** target **1** \checkmark

 This strategy is called **breadth-first search BFS**

We need to traverse the graph **level by level**

- o When we examine 0, we need to remember that we will have to examine 1 and 4 later
- o When we examine 1, we need to remember we may have to examine 2 later

 \triangleright but first we need to look at 4

We need a **todo list**

- We need to traverse the graph level by level o finish examining the current level before starting the next level o we need to retrieve the vertices inserted the longest time ago
- This work list must be a **queue** o older nodes need to be visited before newer nodes

 This work list must be a queue

 \circ start with 0 in the queue

o at each step, retrieve the next vertex to examine

- o We mark the vertices so we don't put them in the queue twice
	- \triangleright either because we examined them already
	- \triangleright or because they are already in the queue and will be examined later

● We need

- o a **queue** where to store the vertices to examine next
- o a **mark array** where to track the vertices we know about
	- \triangleright either already examined or queued up to be examined

• For as long as there are vertices still to be processed \circ retrieve the vertex \bf{v} inserted in the queue the longest time ago \triangleright if v is **target**, we are done — there is a path

o examine each neighbor w of v

 \triangleright if w is unmarked add it to the queue and mark it

 \triangleright otherwise ignore w – it was already queued up for processing

• if the queue is empty

o there are no vertices left to process

o and we have not found a path

 \circ we are done — there is no path

Implementing BFS – I

Initial setup

Implementing BFS – II

Traversing the graph

Implementing BFS – III

Giving up

• Here's the overall code

bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G));

```
if (start == target) return true;
```

```
// mark is an array containing only start
bool *mark = xcalloc(graph_size(G), sizeof(bool));
mark[start] = true;
```

```
// Q is a queue containing only start initially
queue_t Q = queue_new();
enq(Q, start);
```
while (!queue_empty(Q)) { // v is the next vertex to process vertex $v = deg(Q)$; printf(" Visiting %u\n", v); if ($v =$ target) { // if v is target return true queue_free(Q); free(mark); return true;

```
}
 // for every neighbor w of v
 neighbors_t nbors = graph_get_neighbors(G, v);
 while (graph_hasmore_neighbors(nbors)) {
  vertex w = graph\_next\_neighbor(hbars);if (!mark[w]) { \frac{1}{2} // if w is not already marked
   mark[wl = true; // mark it
   enq(Q, w); // enqueue it onto the queue
   }
 }
 graph free neighbors(nbors);
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark);
```
}

- This code is **iterative** o DFS earlier was recursive
- The code structure is the same as graph_print

```
void graph_print(graph_t G) {
for (vertex v = 0; v < graph_size(G); v++) {
  printf("Vertices connected to %u: ", v);
  neighbors_t nbors = graph_get_neighbors(G, v);
  while (graph_hasmore_neighbors(nbors)) {
   vertex w = graph_next_neighbor(nbors);
   printf(" %u,", w);
  }
  graph_free_neighbors(nbors);
  printf("\n");
 }
}
```
bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

```
// mark is an array containing only start
bool *mark = xcal(c)graph_size(G), sizeof(bool));
mark[start] = true;
```
// Q is a queue containing only start initially queue_t $Q =$ queue_new(); enq(Q, start);

while (!queue_empty(Q)) { // v is the next vertex to process vertex $v = deg(Q)$; printf(" Visiting %u\n", v); if ($v =$ target) { // if v is target return true queue_free(Q); free(mark); return true; } // for every neighbor w of v neighbors_t nbors = graph_get_neighbors(G , v); while (graph_hasmore_neighbors(nbors)) { vertex $w = graph_next_neighbor(hbars);$ if (!mark[w]) { $\frac{1}{2}$ // if w is not already marked

```
mark[wl = true; // mark it
eng(Q, w); // enqueue it onto the queue
```

```
}
graph free neighbors(nbors);
```

```
}
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark);
return false;
}
```
 \bullet The code structure is the same as graph_print

o except that we return early if we find a path

- The complexity of bfs is \circ O(v + e) with adjacency lists o O(v²) with adjacency matrices
- same as dfs

bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G)); if (start $==$ target) return true; // mark is an array containing only start bool *mark = xcalloc(graph_size(G), sizeof(bool)); O(v) mark[start] = true; // Q is a queue containing only start initially queue_t $Q =$ queue_new(); enq(Q, start); while (!queue_empty(Q)) { // v is the next vertex to process vertex $v = deg(Q)$; printf(" Visiting %u\n", v); if ($v == target$) { // if v is target return true queue_free(Q); free(mark); return true; } // for every neighbor w of v neighbors_t nbors = graph_get_neighbors(G, v); while (graph_hasmore_neighbors(nbors)) { vertex $w = graph_next_neighbor(hbars);$ if (!mark[w]) { $\frac{1}{2}$ // if w is not already marked $mark[wl = true;$ // mark it $eng(Q, w);$ // enqueue it onto the queue altogether } } graph free neighbors(nbors); } ASSERT(queue_empty(Q)); queue_free(Q); free(mark); return false; min(e,v) times $O(1)$ $O(1)$ O(e) $O(1)$ $O(1)$ $O(1)$ $O(1)$ $O(1)$

Correctness

• bfs is correct if it returns

- o *true* when there is a path from **start** to **target**
- o *false* when there is no path from **start** to **target**
- It returns in three places

bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start $==$ target) return true;

```
// mark is an array containing only start
bool *mark = xcalloc(graph_size(G), sizeof(bool));
mark[start] = true;
```

```
// Q is a queue containing only start initially
queue_t Q = queue_new();
enq(Q, start);
```
while (!queue_empty(Q)) { // v is the next vertex to process vertex $v = deg(Q)$; printf(" Visiting %u\n", v); if ($v =$ target) { // if v is target return true queue_free(Q); free(mark); return true;

```
}
 // for every neighbor w of v
 neighbors_t nbors = graph_get_neighbors(G, v);
 while (graph_hasmore_neighbors(nbors)) {
  vertex w = graph\_next\_neighbor(hbars);if (!mark[w]) { \frac{1}{2} // if w is not already marked
   mark[wl = true; // mark it
   eng(Q, w); // enqueue it onto the queue
   }
 }
 graph free neighbors(nbors);
}
ASSERT(queue_empty(Q));
queue free(Q);
free(mark);
return false;
```
- bfs is correct if it returns o *true* when there is a path from **start** to **target**
- We need to show that there is a path in this case
	- o recall the definition

There is a path from start to target if

- \circ start == target, or
- \circ there is an edge from start to some vertex $\mathbf v$ and there is a path from v to target

```
o we are in the first case
```
bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

```
// mark is an array containing only start
bool *mark = xcal(c)graph_size(G), sizeof(bool));
mark[start] = true;
```
// Q is a queue containing only start initially queue_t $Q =$ queue_new(); enq(Q, start);

while (!queue_empty(Q)) { // v is the next vertex to process vertex $v = deg(Q)$; printf(" Visiting %u\n", v); if ($v =$ target) { // if v is target return true queue_free(Q); free(mark); return true; }

```
// for every neighbor w of v
 neighbors_t nbors = graph_get_neighbors(G, v);
 while (graph_hasmore_neighbors(nbors)) {
  vertex w = graph_next_neighbor(nbors);
  if (!mark[w]) { \frac{1}{2} // if w is not already marked
   mark[wl = true; // mark it
   eng(Q, w); // enqueue it onto the queue
  }
 }
 graph free neighbors(nbors);
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark);
return false;
```
}

- bfs is correct if it returns o *true* when there is a path from **start** to **target**
- We need to show that there is a path

```
There is a path from start to target if
```
- \circ start == target, or
- \circ there is an edge from start to some vertex v

and there is a path from \vee to target

o but we have nowhere to point to

bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

```
// mark is an array containing only start
bool *mark = xcalloc(graph_size(G), sizeof(bool));
mark[start] = true;
```

```
// Q is a queue containing only start initially
queue_t Q = queue_new();
enq(Q, start);
```

```
while (!queue_empty(Q)) {
 // v is the next vertex to process
 vertex v = deg(Q);
 printf(" Visiting %u\n", v);
 if (v = target) { // if v is target return true
  queue_free(Q);
  free(mark);
   return true;
 }
```

```
// for every neighbor w of v
neighbors_t nbors = graph_get_neighbors(G, v);
while (graph_hasmore_neighbors(nbors)) {
 vertex w = graph\_next\_neighbor(hbars);if (!mark[w]) { \frac{1}{2} // if w is not already marked
  mark[wl = true; // mark it
  enq(Q, w); // enqueue it onto the queue
 }
}
```

```
graph free neighbors(nbors);
```

```
}
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark);
return false;
```
There is a path from start to target if

- \circ start == target, or
- \circ there is an edge from start to some vertex \vee
	- and there is a path from v to target

We need to show there is a path o *but we have nowhere to point to*

We need **loop invariants**

- o What do we know about marked vertices?
	- **≻** there is a path from **start** to every marked vertex
- o What do we know about vertices in the queue?
	- \triangleright every vertex in the queue is marked

bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

```
// mark is an array containing only start
bool *mark = xcalloc(graph_size(G), sizeof(bool));
mark[start] = true;
```

```
// Q is a queue containing only start initially
queue_t Q = queue_new();
enq(Q, start);
```

```
while (!queue_empty(Q)) {
 // v is the next vertex to process
 vertex v = deg(Q);
 printf(" Visiting %u\n", v);
 if (v = target) { // if v is target return true
  queue_free(Q);
  free(mark);
   return true;
 }
```

```
// for every neighbor w of v
 neighbors_t nbors = graph_get_neighbors(G, v);
 while (graph_hasmore_neighbors(nbors)) {
  vertex w = graph\_next\_neighbor(hbars);if (!mark[w]) { \frac{1}{2} // if w is not already marked
   mark[wl = true; // mark it
   eng(Q, w); // enqueue it onto the queue
  }
 }
 graph free neighbors(nbors);
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark);
return false;
```
}

Candidate loop invariants

- o LI 1: there is a path from **start** to every marked vertex
- o LI 2: every vertex in the queue is marked

D INIT

o LI 1:

initially only **start** is marked *by l.7*

there is a path from **start** to **start** *by def*

o LI 2:

 \triangleright initially only start is in the queue *by l.10*

 \checkmark

start is marked *by l.7*

```
1. bool bfs(graph_t G, vertex start, vertex target) {
2. REQUIRES(G != NULL);3. REQUIRES(start < graph size(G) && target < ...);
4. if (start == target) return true;
5. // mark is an array containing only start
6. bool *mark = xcalloc(graph_size(G), sizeof(bool));7. mark[start] = true;
8. // Q is a queue containing only start initially
9. queue_t Q = queue_new();
10. enq(Q, start);
11. while (!queue_empty(Q)) {
12. // v is the next vertex to process
13. vertex v = deg(Q);
14. printf(" Visiting %u\n", v);
15. if (v == target) \{ // if v is target return true
16. queue_free(Q);
17. free(mark);
18. Freturn true
19. }
20. // for every neighbor w of v
21. neighbors_t nbors = graph_get_neighbors(G, v);
22. while (graph_hasmore_neighbors(nbors)) {
23. vertex w = graph\_next\_neighbor(hbars);24. if (!mark[w]) { \frac{1}{2} // if w is not already marked
25. mark[w] = true; // mark it
26. eng(Q, w); \frac{1}{26} enqueue it onto the queue
27. }
28. }
29. graph_free_neighbors(nbors);
30. }
31. ASSERT(queue_empty(Q));
32. queue_free(Q);
33. free(mark);
34. return false;
35. }
```
Candidate loop invariants

- o LI 1: there is a path from **start** to every marked vertex
- o LI 2: every vertex in the queue is marked

• PRES

o LI 1: w gets marked *by l.25* v is in the queue *by l.13* v is marked *by LI 2* there is a path from **start** to v *by LI 1* w is a neighbor of v *by l.23* there is a path from **start** to w *by def* o LI 2: w is added to the queue *by l.26* w gets marked *by l.25*

There is a path from start to target if

- \circ start == target, or
- \circ there is an edge from start to some vertex v
	- and there is a path from v to target
- We can now prove the correctness of this case
	- v was in the queue *by l.15* so, v is marked *by LI 2* there is a path from **start** to v *by LI 1* \triangleright **v** = **target** *by l.17* there is a path from **start** to **target** *by def*

 \checkmark

- \bullet bfs is correct if it returns o *false* when there is *no* path from **start** to **target**
- **IF LI 1 and LI 2 are insufficient**
- We need more insight into the way bfs works

bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start $==$ target) return true;

// mark is an array containing only start bool *mark = xcalloc(graph_size(G), sizeof(bool)); mark[start] = true;

// Q is a queue containing only start initially queue_t $Q =$ queue_new(); enq(Q, start);

```
while (!queue_empty(Q)) {
 //@ LI 1: there is a path from start to every marked vertex
 //@ LI 2: every vertex in the queue is marked
```

```
// v is the next vertex to process
 vertex v = deg(Q);
 printf(" Visiting %u\n", v);
 if (v = target) { // if v is target return true
  queue_free(Q);
  free(mark);
  return true;
 }
// for every neighbor w of v
 neighbors_t nbors = graph_get_neighbors(G, v);
 while (graph_hasmore_neighbors(nbors)) {
  vertex w = graph next neighbor(nbors);
  if (!mark[w]) { \frac{1}{2} // if w is not already marked
   mark[w] = true; // mark it
   eng(Q, w); // enqueue it onto the queue
   }
 }
 graph_free_neighbors(nbors);
}
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark);
return false;
```
 What do the elements of the queue represent?

o The **frontier** of the search

bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start $==$ target) return true;

// mark is an array containing only start bool *mark = xcalloc(graph_size(G), sizeof(bool)); mark[start] = true;

// Q is a queue containing only start initially queue_t $Q =$ queue_new(); enq(Q, start);

while (!queue_empty(Q)) { //@ LI 1: there is a path from start to every marked vertex //@ LI 2: every vertex in the queue is marked

```
// v is the next vertex to process
 vertex v = deg(Q);
 printf(" Visiting %u\n", v);
 if (v = target) { // if v is target return true
  queue_free(Q);
  free(mark);
  return true;
 }
 // for every neighbor w of v
 neighbors_t nbors = graph_get_neighbors(G, v);
 while (graph_hasmore_neighbors(nbors)) {
  vertex w = graph_next_neighbor(nbors);
  if (!mark[w]) { \frac{1}{2} // if w is not already marked
   mark[w] = true; // mark it
   eng(Q, w); // enqueue it onto the queue
   }
 }
 graph_free_neighbors(nbors);
}
ASSERT(queue_empty(Q));
queue_free(Q);
free(mark);
return false;
```


- \bullet All vertices behind the frontier are marked o they have been explored
- // for every neighbor w of v \bullet All vertices beyond the frontier are unmarked graph_get_neighbors(G, v); o they are still unexplored
- } \bullet Every path from start to target goes through graph free neighbors(nbors); } ASSERT(queue_empty(Q)); the frontier

This is a new loop invariant

bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start $==$ target) return true;

// mark is an array containing only start bool *mark = xcalloc(graph_size(G), sizeof(bool)); $mark[start] = true;$

// Q is a queue containing only start initially queue_t $Q =$ queue_new(); enq(Q, start);

while (!queue_empty(Q)) { //@ LI 1: there is a path from start to every marked vertex //@ LI 2: every vertex in the queue is marked

// v is the next vertex to process vertex $v = deg(Q)$; printf(" Visiting %u\n", v); $\frac{1}{\sqrt{2}}$ if v is target return true

free(mark); return true;

queue_free(Q);

free(mark); return false;

}

} while (graph_hasmore_neighbors(nbors)) { vertex $w =$ graph_next_neighbor(nbors); if $(\text{lmark}[w])$ { // if w is not already marked $mark[w] = true;$ // mark it $eng(Q, w);$ // enqueue it onto the queue

- Every path from **start** to **target** goes through the frontier
- When we finally return,
	- 1.every path from **start** to **target** goes through the frontier
		- \triangleright LI 3 hold
	- 2.the frontier is empty
		- \triangleright negation of the loop guard
	- o therefore there can't be a path from **start** to **target**
		- \triangleright this is the only way (1) can hold

bis is correct

bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start $==$ target) return true;

// mark is an array containing only start bool *mark = xcalloc(graph_size(G), sizeof(bool)); mark[start] = true;

```
// Q is a queue containing only start initially
queue_t Q = queue_new();
enq(Q, start);
```
while (!queue_empty(Q)) {

}

 \checkmark

 $1/10$ LI 1: there is a path from start to every marked vertex //@ LI 2: every vertex in the queue is marked $\sqrt{1/\omega}$ LI 3: every path from start to target goes through Q

```
// v is the next vertex to process
 vertex v = deg(Q);
 printf(" Visiting %u\n", v);
 if (v = target) { // if v is target return true
  queue_free(Q);
  free(mark);
  return true;
 }
 // for every neighbor w of v
 neighbors t nbors = graph get neighbors(G, v);
 while (graph_hasmore_neighbors(nbors)) {
  vertex w = graph_next_neighbor(nbors);
  if (!mark[w]) { \frac{1}{2} // if w is not already marked
   mark[w] = true; // mark it
   eng(Q, w); // enqueue it onto the queue
   }
 }
 graph_free_neighbors(nbors);
}
ASSERT(queue_empty(Q));
queue_free(Q);
fr\omega(mark)return false;
```
Other Searches

Work List Choice

- bfs uses a **queue** as a work list
	- o But the correctness proof does not depend on this
- We get a correct implementation of reachability whatever work list we use

bool bfs(graph_t G, vertex start, vertex target) { REQUIRES(G != NULL); REQUIRES(start < graph_size(G) && target < graph_size(G)); if (start == target) return true; // mark is an array containing only start bool *mark = xcalloc(graph_size(G), sizeof(bool)); mark[start] = true; // Q is a queue containing only start initially queue $t \Omega$ = queue_new(); enq(Q, start); while $(Q$ (queue_empty(Q)) Q //@ LI 1: there is a path from start to every marked vertex //@ LI 2: every vertex in the queue is marked //@ LI 3: every path from start to target goes through Q $\frac{1}{\sqrt{2}}$ v is the next vertex to process vertex $v \in deg(Q)$; printf(" Visiting %u\n", v); if $(w - t)$ { // if w is target return true queue free(Q); free(mark); return true; } // for every neighbor w of v neighbors_t nbors = graph_get_neighbors(G, v); while (graph_hasmore_neighbors(nbors)) { vertex $w = graph_next_neighbor(hbars);$ if (!mark[w]) { $\frac{1}{2}$ // if w is not already marked $mark[wl = true;$ // mark it $\left(\begin{array}{cc} \n\text{eng}(Q, w); \n\end{array}\right)$ // enqueue it onto the queue } } graph_free_neighbors(nbors); } ASSERT(queue_empty(Q)); queue free(Q); free(mark); return false; }

Work List Choice

 We get a correct implementation of reachability whatever work list we use

Stack?

- o The next vertex we process is the **last** we inserted
- o We get an iterative implementation of **depth-first search**
- o Complexity
	- \triangleright O(v + e) with adjacency lists
	- \triangleright O(v²) with adjacency matrices

because stack and queue operations have the same complexity

Work List Choice

 We get a correct implementation of reachability whatever work list we use

Priority queues?

- o The next vertex we process is the **most promising**
- \circ We get artificial intelligence search algorithms like A $\check{}$
	- used in planning problems, game search, …
	- \triangleright the priority function becomes a heuristic function that tells how good a vertex is

 $|$ pronounced "A star

o Complexity is higher because insertion and removal from a priority queue is not O(1)

Reachability

 All these graph reachability algorithms share the same basic idea

Explore the graph by expanding the frontier

• The difference is the kind of work list they use to remember the vertices to examine next

o DFS: a stack

- o BFS: a queue
- o A*: a priority queue