
Graph Search

Review

 Graphs

o Vertices, edges,

neighbors, …

oDense, sparse

 Adjacency

matrix

implementation

 Adjacency

list

implementation

typedef unsigned int vertex;

typedef struct graph_header *graph_t;

graph_t graph_new(unsigned int numvert);

//@ensures \result != NULL;

void graph_free(graph_t G);

//@requires G != NULL;

unsigned int graph_size(graph_t G);

//@requires G != NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

//@requires v != w && !graph_hasedge(G, v, w);

typedef struct neighbor_header *neighbors_t;

neighbors_t graph_get_neighbors(graph_t G, vertex v);

//@requires G != NULL && v < graph_size(G);

//@ensures \result != NULL;

bool graph_hasmore_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

vertex graph_next_neighbor(neighbors_t nbors);

//@requires nbors != NULL;

//@requires graph_hasmore_neighbors(nbors);

//@ensures is_vertex(\result);

void graph_free_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

0

1

2

3

4

1 4

2

0 2 4

1 4 3

0 1 2

0

1

3

4

2

0 1 2 3 4

0

1

2

3

4

graph.h

1

Review

 Costs are similar for

dense graphs

 AL is more space-

efficient for sparse

graphs

o very common graphs

e O(v) is typical

Adjacency

list

Adjacency

matrix

Space O(v + e) O(v2)

graph_new O(v) O(v2)

graph_free O(v + e) O(1)

graph_size O(1) O(1)

graph_hasedge O(min(v,e)) O(1)

graph_addedge O(1) O(1)

graph_get_neighbors O(1) O(v)

graph_hasmore_neighbors O(1) O(1)

graph_next_neighbor O(1) O(1)

graph_free_neighbors O(1) O(min(v,e))

Assuming the neighbors are

represented as a linked list

Assuming the neighbors are

represented as a linked list
2

Review

 Typical function that traverses a graph

o go over most vertices and edges

o Adjacency list: O(v + e)

o Adjacency matrix: O(v2)
AL is much better for

sparse graphs

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

v times
O(1)

O(1)

O(e) altogether

O(1)

Cost Tally

O(v)

O(v)

O(v + e)

O(v + e)

O(1) O(v + e)

3

Same as

space bounds

Graph Connectivity

4

 Find a sequence of moves from the given

configuration to the solved configuration

o a path in the lightsout graph

Solving Lightsout

Start

Target

Here’s a path between them:

5

Juarez

Fort Worth

Columbus

Erie

Boston

Detroit

Atlanta

Houston

Galveston

Getting Directions

 Find a sequence of roads

from one city to another

o a path in the road graph

Indianapolis

6

E

Getting Introduced

 Find a series of people to

get introduced to someone

o a path in the contacts graph

7

Connected Vertices

 A path is a sequence of vertices

linked by edges

o 0-4-5-1 is a path between 0 and 1

 Two vertices are connected if there is a path between them

o 0 and 1 are connected

o 0 and 7 are not connected

 If v1 and v2 are connected, then v2 is reachable from v1

 A connected component is a maximal

set of vertices that are connected

o this graph has two connected

components

0

4

1

5

2

6

3

7

0

4

1

5

2

6

3

7

8

Checking Reachability

 How do we check if two vertices are connected?

o graph_hasedge only tells us if they are directly connected

by an edge

oWe want to develop general algorithms to check reachability

 then we can use them to check reachability in any domain

 to check if lightsout is solvable from a given board

 to figure out if there are roads between two cities

 to know if there is any social connection between two people

The rest of this lecture

0

4

1

5

2

6

3

7

9

Finding Paths

 How do we find a path between two vertices?
 what is a solution to lightsout from a given board?

 what roads are there between two cities?

 what series of people can get me introduced to person X?

o an algorithm that checks reachability can be instrumented to

report a path between the two vertices

 A path is a witness that two vertices are connected

o Finding a witness is called a search problem

oChecking a witness is called a verification problem

 checking that a witness is valid is often a lot easier

than finding a witness This is the basic

principle underlying

cryptography

We will limit ourselves to reachability

10

Checking Reachability

 Let’s define reachability mathematically

There is a path from start to target if

o start == target, or

o there is an edge from start to some vertex v

and there is a path from v to target

This is an

inductive definition

base case

inductive

case

0

1

3

4

2

0

1

3

4

2

start target start target

v

There is a path from 0 to 0 There is a path from 0 to 3

11

Recursive Depth-first Search – I

12

Implementing the Definition

 We can immediately transcribe

this inductive definition into a

recursive client-side function

There is a path from start to target if

o start == target, or

o there is an edge from start to some vertex v

and there is a path from v to target

bool naive_dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

// there is a path from start to target if

// target == start, or

// there is an edge from start to ...

// ... some vertex v …

// ... and there is a path from v to target

}

Contracts

13

Implementing the Definition

bool naive_dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

printf(" Visiting %u\n", start);

// there is a path from start to target if

// target == start, or

if (target == start) return true;

// there is an edge from start to ...

neighbors_t nbors = graph_get_neighbors(G, start);

while (graph_hasmore_neighbors(nbors)) {

// ... some vertex v …

vertex v = graph_next_neighbor(nbors);

// ... and there is a path from v to target

if (naive_dfs(G, v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}

typedef unsigned int vertex;

typedef struct graph_header *graph_t;

graph_t graph_new(unsigned int numvert);

//@ensures \result != NULL;

void graph_free(graph_t G);

//@requires G != NULL;

unsigned int graph_size(graph_t G);

//@requires G != NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w);

//@requires G != NULL;

//@requires v < graph_size(G) && w < graph_size(G);

//@requires v != w && !graph_hasedge(G, v, w);

typedef struct neighbor_header *neighbors_t;

neighbors_t graph_get_neighbors(graph_t G, vertex v);

//@requires G != NULL && v < graph_size(G);

//@ensures \result != NULL;

bool graph_hasmore_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

vertex graph_next_neighbor(neighbors_t nbors);

//@requires nbors != NULL;

//@requires graph_hasmore_neighbors(nbors);

//@ensures is_vertex(\result);

void graph_free_neighbors(neighbors_t nbors);

//@requires nbors != NULL;

graph.h

14

Implementing the Definition

 It has the same

structure as

graph_print

o the outer loop is

replaced with recursion

bool naive_dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

printf(" Visiting %u\n", start);

// there is a path from start to target if

// target == start, or

if (target == start) return true;

// there is an edge from start to ...

neighbors_t nbors = graph_get_neighbors(G, start);

while (graph_hasmore_neighbors(nbors)) {

// ... some vertex v …

vertex v = graph_next_neighbor(nbors);

// ... and there is a path from v to target

if (naive_dfs(G, v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

15

Does it Work?

 Let’s check there is a path from 3 to 0

 Let’s run it

bool naive_dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

printf(" Visiting %u\n", start);

// there is a path from start to target if

// target == start, or

if (target == start) return true;

// there is an edge from start to ...

neighbors_t nbors = graph_get_neighbors(G, start);

while (graph_hasmore_neighbors(nbors)) {

// ... some vertex v …

vertex v = graph_next_neighbor(nbors);

// ... and there is a path from v to target

if (naive_dfs(G, v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}

0

1

3

4

2
start target nbors

3 0 2

2 0 1, 3, 4

1 0 0, 2, 4

0 0

starttarget

gcc … lib/*.c connected.c main.c

./a.out 3 0

Visiting 3

Visiting 2

Visiting 1

Visiting 0

Reachable

Linux Terminal

… from to

Looks good

Assume the neighbors

are returned from

smallest to biggest

16

Does it Always Work?

 Let’s check there is a path from 0 to 3

 Let’s run it

bool naive_dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

printf(" Visiting %u\n", start);

// there is a path from start to target if

// target == start, or

if (target == start) return true;

// there is an edge from start to ...

neighbors_t nbors = graph_get_neighbors(G, start);

while (graph_hasmore_neighbors(nbors)) {

// ... some vertex v …

vertex v = graph_next_neighbor(nbors);

// ... and there is a path from v to target

if (naive_dfs(G, v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}

0

1

3

4

2
start target nbors

0 3 1, 4

1 3 0, 2, 4

0 3 1, 4

1 3 0, 2, 4

… (this is not promising) …

gcc … lib/*.c connected.c main.c

./a.out 0 3

Visiting 0

Visiting 1

Visiting 0

Linux Terminal

runs forever!

start target

17

It does not Work

 Either the definition is wrong

or the code is wrong

 Definition

o it magically picks the right

neighbor v if there is one

 the magic of “there is …”

 Code

o it must examine the neighbors in

some order

 the first v may not be the right one

There is a path from start to target if

o start == target, or

o there is an edge from start to some vertex v

and there is a path from v to target

bool naive_dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_si…

printf(" Visiting %u\n", start);

// there is a path from start to target if

// target == start, or

if (target == start) return true;

// there is an edge from start to ...

neighbors_t nbors = graph_get_neighbors(G, start);

while (graph_hasmore_neighbors(nbors)) {

// ... some vertex v …

vertex v = graph_next_neighbor(nbors);

// ... and there is a path from v to target

if (naive_dfs(G, v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}

The definition is fine

18

Why doesn’t it Work?

 The code examines the neighbors in some order

o it always starts with the same v

 the first neighbor

o… even if it has been examined before

 The code will never visit the

second neighbor (if there is one)
 it charges ahead with the first

neighbor, always

o if there is a path by only examining

first neighbors, it will find it

o if the path involves some other neighbor, it won’t

0

1

3

4

2

start target

start target nbors

0 3 1, 4

1 3 0, 2, 4

0 3 1, 4

1 3 0, 2, 4

…

19

Recursive Depth-first Search – II

20

Fixing the Code

 Problems: the code examines the same neighbors over

and over

 Solution: mark vertices that are being examined

o only examine a vertex if it is unmarked

omark it right away

 How to mark vertices?

o carry around an array of booleans

 true = marked

 false = unmarked

21

We could use any implementation of sets,

e.g., hash sets

Fixing the code

 Carry around an

array of booleans

 Only run if start is

unmarked

 Mark it right away

 Only examine a

neighbor if it’s

unmarked

owe need to guard the

recursive call

bool dfs_helper(graph_t G, bool *mark, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

REQUIRES(!mark[start]);

mark[start] = true;

printf(" Visiting %u\n", start);

// there is a path from start to target if

// target == start, or

if (target == start) return true;

// there is an edge from start to ...

neighbors_t nbors = graph_get_neighbors(G, start);

while (graph_hasmore_neighbors(nbors)) {

// ... some vertex v …

vertex v = graph_next_neighbor(nbors);

// ... and there is a path from v to target

if (!mark[v] && dfs_helper(G, mark, v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}22

Fixing the Code

 We have modified the prototype of the function

o but the client should not have to deal with the added details

o export a wrapper instead of dsf_helper

bool dfs (graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

bool *mark = xcalloc(graph_size(G), sizeof(bool));

bool connected = dfs_helper(G, mark, start, target);

free(mark);

return connected;

}

Create the mark array:

calloc initializes all

positions to false

We must free mark

since we calloc’ated it

23

An Alternative Wrapper

 We can also use a stack-allocated array for mark

 Is this version preferable?

o stack space is limited

o for a large graph, the stack may not be big enough

stack overflow

bool dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

bool mark[graph_size(G)];

for (vertex v = 0; v < graph_size(G); v++)

mark[v] = false;

return dfs_helper(G, mark, start, target);

}

Create the a stack allocated array

of size graph_size(G)

We need to initialize it explicitly

But we don’t need to free it

24

Does it Work?

 Let’s check there is a path from 0 to 3

 Let’s run it

0

1

3

4

2

start target nbors marked

0 3 1, 4 0

1 3 0, 2, 4 0, 1

2 3 1, 3, 4 0, 1, 2

3 3

gcc … lib/*.c connected.c main.c

./a.out 0 3

Visiting 0

Visiting 1

Visiting 2

Visiting 3

Reachable

Linux Terminal

start

0

1

3

4

2

target

target

0

1

3

4

2

target

0

1

3

4

2

target

25

Backtracking

 Let’s check there is a path

from 2 to 3

0

1

3

4

2

start target nbors marked

2 3 1, 3, 4 2

1 3 0, 2, 4 1, 2

0 3 1, 4 0, 1, 2

4 3 0, 1, 2 0, 1, 2, 4

3 3

start

0

1

3

4

2

target

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

target target target target

3 ≠ 4 and all the neighbors of 4 are marked

We backtrack to a vertex that has a still

unmarked neighbor continue from it

26

Backtracking

 We backtrack to a vertex

that has a still unmarked

neighbor and continue from it

 This is achieved by returning false from the recursive call

o the caller will then try the next unmarked neighbor

 Let’s run it

gcc … lib/*.c connected.c main.c

./a.out 2 3

Visiting 2

Visiting 1

Visiting 0

Visiting 4

Visiting 3

Reachable

Linux Terminal

start target nbors marked

2 3 1, 3, 4 2

1 3 0, 2, 4 1, 2

0 3 1, 4 0, 1, 2

4 3 0, 1, 2 0, 1, 2, 4

3 3

…

while (graph_hasmore_neighbors(nbors)) {

// ... some vertex v …

vertex v = graph_next_neighbor(nbors);

// ... and there is a path from v to target

if (!mark[v] && dfs_helper(G, mark v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}

27

Complexity of dfs

 Let’s call dfs on a graph with

o v vertices,

o e edges, and

o implemented using adjacency lists

 The cost of dfs is O(v) plus the cost of dfs_helper

bool dfs (graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

bool *mark = xcalloc(graph_size(G), sizeof(bool));

bool connected = dfs_helper(G, mark, start, target);

free(mark);

return connected;

}

O(v)

free has constant cost

28

graph_size O(1)

Complexity of dfs_helper

 The body of the loop runs at most 2e times altogether
 at most 2e calls to graph_next_neighbors

e edges from either endpoint

each endpoint is examined at most once

 There are at most min(e,v) recursive calls

o up to min(e,v)

vertices can be

marked

 Every operation

costs O(1)

 dfs_helper has

cost O(e)

bool dfs_helper(graph_t G, bool *mark, vertex start, vertex target) {

mark[start] = true;

if (target == start) return true;

neighbors_t nbors = graph_get_neighbors(G, start);

while (graph_hasmore_neighbors(nbors)) {

vertex v = graph_next_neighbor(nbors);

if (!mark[v] && dfs_helper(G, mark, v, target)) {

graph_free_neighbors(nbors);

return true;

}

}

graph_free_neighbors(nbors);

return false;

}

O(1)

O(e)

altogether

O(1)

O(1)

O(1)

29

graph_get_neighbors O(1)

graph_hasmore_neighbors O(1)

graph_next_neighbor O(1)

graph_free_neighbors O(1)

Tally

O(min(e,v))

O(min(e,v))

O(min(e,v))

O(e)

O(e)

Just like for

graph_print

Complexity of dfs

 Let’s call dfs on a graph with
 v vertices,

e edges, and

 implemented using adjacency lists

 The cost of dfs is O(v + e)

bool dfs (graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

bool *mark = xcalloc(graph_size(G), sizeof(bool));

bool connected = dfs_helper(G, mark, start, target);

free(mark);

return connected;

}

O(v)

O(e)

30

graph_size O(1)

graph_get_neighbors O(1)

graph_hasmore_neighbors O(1)

graph_next_neighbor O(1)

graph_free_neighbors O(1)

Complexity of dfs

For a graph with v vertices and e edges

 O(v + e) using the adjacency list implementation

 O(v2) using the adjacency matrix implementation

 AL is more efficient for sparse graphs

o the most common kind of graphs

Holds for both

sparse and dense

graphs

Holds for both

sparse and dense

graphs

Exercise

Moving forward, we will always

assume an adjacency list

implementation

31

Breadth-first Search

32

How does dfs Work?

 When calling dfs on 0 and 4,

it finds the path 0–1–2–4

o it also visits 3 and backtracks

 But there is a much shorter

path: 0–4

o dfs does more work than strictly necessary

0

1

3

4

2

0

1

3

4

2

target

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

start target nbors marked

0 4 1, 4 0

1 4 0, 2, 4 0, 1

2 4 1, 3, 4 0, 1, 2

3 4 2 0, 1, 2, 3

4 4

start target target target target

33

How does dfs Work?

 dfs charges ahead until

o it finds the target vertex

o or it hits a dead end

 then it backtracks to the last

choice point

 This strategy is called depth-first search

0

1

3

4

2

0

1

3

4

2

target

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

start target nbors marked

0 4 1, 4 0

1 4 0, 2, 4 0, 1

2 4 1, 3, 4 0, 1, 2

3 4 2 0, 1, 2, 3

4 4

start target target target target

DFS

34

Breadth-first Search

 To find the shortest path, we need to explore the graph

level by level from the start vertex

o first look at the vertices 0 hops away from start,

 if start == end

o then look at the vertices 1 hop away from start

o then 2 hops away

o then 3 hops away

o…

 This strategy is called breadth-first search

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

start
target target

0 1 2 3 1

target

1

BFS

35

Breadth-first Search

 We need to traverse the graph level by level

oWhen we examine 0, we need to remember that we

will have to examine 1 and 4 later

oWhen we examine 1, we need to remember we may have to

examine 2 later

but first we need to look at 4

 We need a todo list

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

start
target target

0 1 2 3 1

target

1

36

Breadth-first Search

 We need a work list

 We need to traverse the graph level by level

o finish examining the current level before starting the next level

owe need to retrieve the vertices inserted the longest time ago

 This work list must be a queue

o older nodes need to be visited before newer nodes

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

start
target target

0 1 2 3 1

target

1

That’s what we called

todo lists

37

Breadth-first Search

 This

work list

must be

a queue

o start with 0 in the queue

o at each step, retrieve the next vertex to examine

oWe mark the vertices

so we don’t put them in

the queue twice

either because we

examined them already

or because they are

already in the queue and

will be examined later

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

start
target target

0 1 2 3 1

target

1

next target queue marked

4 0 0

0 4 1, 4 0, 1, 4

1 4 4, 2 0, 1, 4, 2

4 4

38

Implementing BFS

 We need

o a queue where to store the vertices to examine next

o a mark array where to track the vertices we know about

either already examined or queued up to be examined

39

Implementing BFS

 For as long as there are vertices still to be processed

o retrieve the vertex v inserted in the queue the longest time ago

 if v is target, we are done — there is a path

o examine each neighbor w of v

 if w is unmarked add it to the queue and mark it

otherwise ignore w – it was already queued up for processing

 if the queue is empty

o there are no vertices left to process

o and we have not found a path

owe are done — there is no path

40

Implementing BFS – I

Initial setup

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q initially is a queue containing only start

queue_t Q = queue_new();

enq(Q, start);

…

If start is target, there is a path

calloc initializes every vertex

as unmarked

but we want start to be marked

Initially only start

is in the queue

41

Implementing BFS – II

Traversing the graph

…

while (!queue_empty(Q)) {

vertex v = deq(Q);

printf(" Visiting %u\n", v);

if (v == target) {

queue_free(Q);

free(mark);

return true;

}

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) {

mark[w] = true;

enq(Q, w);

}

}

graph_free_neighbors(nbors);

}

…

If v is target, there is a path

v is the next vertex to process

for as long as there

are vertices to process

examine each neighbor w of v

clean up before returning

if w is unmarked

mark it and

add it to the queue

we are done with the neighbors of v

42

Implementing BFS – III

Giving up

…

while (!queue_empty(Q)) {

…

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

If there are no more vertices to process

clean up before returning

there is no path

43

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

// v is the next vertex to process

vertex v = deq(Q);

printf(" Visiting %u\n", v);

if (v == target) { // if v is target return true

queue_free(Q);

free(mark);

return true;

}

// for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) { // if w is not already marked

mark[w] = true; // mark it

enq(Q, w); // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

Implementing BFS

 Here’s the overall code

44

Implementing BFS

 This code is iterative

oDFS earlier was recursive

 The code structure is the same

as graph_print

void graph_print(graph_t G) {

for (vertex v = 0; v < graph_size(G); v++) {

printf("Vertices connected to %u: ", v);

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

printf(" %u,", w);

}

graph_free_neighbors(nbors);

printf("\n");

}

}

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

// v is the next vertex to process

vertex v = deq(Q);

printf(" Visiting %u\n", v);

if (v == target) { // if v is target return true

queue_free(Q);

free(mark);

return true;

}

// for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) { // if w is not already marked

mark[w] = true; // mark it

enq(Q, w); // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

45

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

// v is the next vertex to process

vertex v = deq(Q);

printf(" Visiting %u\n", v);

if (v == target) { // if v is target return true

queue_free(Q);

free(mark);

return true;

}

// for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) { // if w is not already marked

mark[w] = true; // mark it

enq(Q, w); // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

Implementing BFS

 The code structure is the same

as graph_print

o except that we return early if we

find a path

 The complexity of bfs is

oO(v + e) with adjacency lists

oO(v2) with adjacency matrices

 same as dfs

min(e,v) times

O(1)

O(1)

O(e)

altogether

O(1)

O(1)

O(v)

O(1)

O(1)
O(1)

46

Correctness

 bfs is correct if it returns

o true when there is a path from

start to target

o false when there is no path from

start to target

 It returns in three places

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

// v is the next vertex to process

vertex v = deq(Q);

printf(" Visiting %u\n", v);

if (v == target) { // if v is target return true

queue_free(Q);

free(mark);

return true;

}

// for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) { // if w is not already marked

mark[w] = true; // mark it

enq(Q, w); // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

47

Correctness – I

 bfs is correct if it returns

o true when there is a path from

start to target

 We need to show that there is

a path in this case

o recall the definition

owe are in the first case

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

// v is the next vertex to process

vertex v = deq(Q);

printf(" Visiting %u\n", v);

if (v == target) { // if v is target return true

queue_free(Q);

free(mark);

return true;

}

// for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) { // if w is not already marked

mark[w] = true; // mark it

enq(Q, w); // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

There is a path from start to target if

o start == target, or

o there is an edge from start to some vertex v

and there is a path from v to target

48

Correctness – II

 bfs is correct if it returns

o true when there is a path from

start to target

 We need to show that there is

a path

o but we have nowhere to point to

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

// v is the next vertex to process

vertex v = deq(Q);

printf(" Visiting %u\n", v);

if (v == target) { // if v is target return true

queue_free(Q);

free(mark);

return true;

}

// for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) { // if w is not already marked

mark[w] = true; // mark it

enq(Q, w); // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

There is a path from start to target if

o start == target, or

o there is an edge from start to some vertex v

and there is a path from v to target

49

Correctness – II

We need to show there is a path

o but we have nowhere to point to

 We need loop invariants

oWhat do we know about marked

vertices?

 there is a path from start to every

marked vertex

oWhat do we know about vertices

in the queue?

every vertex in the queue is marked

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

// v is the next vertex to process

vertex v = deq(Q);

printf(" Visiting %u\n", v);

if (v == target) { // if v is target return true

queue_free(Q);

free(mark);

return true;

}

// for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) { // if w is not already marked

mark[w] = true; // mark it

enq(Q, w); // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

There is a path from start to target if

o start == target, or

o there is an edge from start to some vertex v

and there is a path from v to target

50

Correctness – II

 Candidate loop invariants

o LI 1: there is a path from start to

every marked vertex

o LI 2: every vertex in the queue is

marked

 INIT

o LI 1:

 initially only start is marked by l.7

 there is a path from start to start by def

o LI 2:

 initially only start is in the queue by l.10

start is marked by l.7

51

1. bool bfs(graph_t G, vertex start, vertex target) {

2. REQUIRES(G != NULL);

3. REQUIRES(start < graph_size(G) && target < …);

4. if (start == target) return true;

5. // mark is an array containing only start

6. bool *mark = xcalloc(graph_size(G), sizeof(bool));

7. mark[start] = true;

8. // Q is a queue containing only start initially

9. queue_t Q = queue_new();

10. enq(Q, start);

11. while (!queue_empty(Q)) {

12. // v is the next vertex to process

13. vertex v = deq(Q);

14. printf(" Visiting %u\n", v);

15. if (v == target) { // if v is target return true

16. queue_free(Q);

17. free(mark);

18. return true;

19. }

20. // for every neighbor w of v

21. neighbors_t nbors = graph_get_neighbors(G, v);

22. while (graph_hasmore_neighbors(nbors)) {

23. vertex w = graph_next_neighbor(nbors);

24. if (!mark[w]) { // if w is not already marked

25. mark[w] = true; // mark it

26. enq(Q, w); // enqueue it onto the queue

27. }

28. }

29. graph_free_neighbors(nbors);

30. }

31. ASSERT(queue_empty(Q));

32. queue_free(Q);

33. free(mark);

34. return false;

35. }

Correctness – II

 Candidate loop invariants

o LI 1: there is a path from start to

every marked vertex

o LI 2: every vertex in the queue is

marked

 PRES

o LI 1:
w gets marked by l.25

 v is in the queue by l.13

 v is marked by LI 2

 there is a path from start to v by LI 1

w is a neighbor of v by l.23

 there is a path from start to w by def

o LI 2:

w is added to the queue by l.26

w gets marked by l.25

1. bool bfs(graph_t G, vertex start, vertex target) {

2. REQUIRES(G != NULL);

3. REQUIRES(start < graph_size(G) && target < …);

4. if (start == target) return true;

5. // mark is an array containing only start

6. bool *mark = xcalloc(graph_size(G), sizeof(bool));

7. mark[start] = true;

8. // Q is a queue containing only start initially

9. queue_t Q = queue_new();

10. enq(Q, start);

11. while (!queue_empty(Q)) {

12. // v is the next vertex to process

13. vertex v = deq(Q);

14. printf(" Visiting %u\n", v);

15. if (v == target) { // if v is target return true

16. queue_free(Q);

17. free(mark);

18. return true;

19. }

20. // for every neighbor w of v

21. neighbors_t nbors = graph_get_neighbors(G, v);

22. while (graph_hasmore_neighbors(nbors)) {

23. vertex w = graph_next_neighbor(nbors);

24. if (!mark[w]) { // if w is not already marked

25. mark[w] = true; // mark it

26. enq(Q, w); // enqueue it onto the queue

27. }

28. }

29. graph_free_neighbors(nbors);

30. }

31. ASSERT(queue_empty(Q));

32. queue_free(Q);

33. free(mark);

34. return false;

35. }

52

Correctness – II

 We can now prove the

correctness of this case

 v was in the queue by l.15

 so, v is marked by LI 2

 there is a path from start to v by LI 1

 v == target by l.17

 there is a path from start to target

by def

1. bool bfs(graph_t G, vertex start, vertex target) {

2. REQUIRES(G != NULL);

3. REQUIRES(start < graph_size(G) && target < …);

4. if (start == target) return true;

5. // mark is an array containing only start

6. bool *mark = xcalloc(graph_size(G), sizeof(bool));

7. mark[start] = true;

8. // Q is a queue containing only start initially

9. queue_t Q = queue_new();

10. enq(Q, start);

11. while (!queue_empty(Q)) {

12. //@ LI 1: there is a path from start to every marked vertex

13. //@ LI 2: every vertex in the queue is marked

14. // v is the next vertex to process

15. vertex v = deq(Q);

16. printf(" Visiting %u\n", v);

17. if (v == target) { // if v is target return true

18. queue_free(Q);

19. free(mark);

20. return true;

21. }

22. // for every neighbor w of v

23. neighbors_t nbors = graph_get_neighbors(G, v);

24. while (graph_hasmore_neighbors(nbors)) {

25. vertex w = graph_next_neighbor(nbors);

26. if (!mark[w]) { // if w is not already marked

27. mark[w] = true; // mark it

28. enq(Q, w); // enqueue it onto the queue

29. }

30. }

31. graph_free_neighbors(nbors);

32. }

33. ASSERT(queue_empty(Q));

34. queue_free(Q);

35. free(mark);

36. return false;

37. }

There is a path from start to target if

o start == target, or

o there is an edge from start to some vertex v

and there is a path from v to target

53

Correctness – III

 bfs is correct if it returns

o false when there is no path from

start to target

 LI 1 and LI 2 are insufficient

 We need more insight into the

way bfs works

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

//@ LI 1: there is a path from start to every marked vertex

//@ LI 2: every vertex in the queue is marked

// v is the next vertex to process

vertex v = deq(Q);

printf(" Visiting %u\n", v);

if (v == target) { // if v is target return true

queue_free(Q);

free(mark);

return true;

}

// for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) { // if w is not already marked

mark[w] = true; // mark it

enq(Q, w); // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

54

Correctness – III

 What do the elements of the

queue represent?

o The frontier of the search

0

1

3

4

2

next target queue marked

4 0 0

0 4 1, 4 0, 1, 4

1 4 4, 2 0, 1, 4, 2

4 4 Success!

Unexplored
Explored

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

//@ LI 1: there is a path from start to every marked vertex

//@ LI 2: every vertex in the queue is marked

// v is the next vertex to process

vertex v = deq(Q);

printf(" Visiting %u\n", v);

if (v == target) { // if v is target return true

queue_free(Q);

free(mark);

return true;

}

// for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) { // if w is not already marked

mark[w] = true; // mark it

enq(Q, w); // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

55

Correctness – III

0

1

3

4

2

Unexplored
Explored

This is a new loop invariant

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

//@ LI 1: there is a path from start to every marked vertex

//@ LI 2: every vertex in the queue is marked

// v is the next vertex to process

vertex v = deq(Q);

printf(" Visiting %u\n", v);

if (v == target) { // if v is target return true

queue_free(Q);

free(mark);

return true;

}

// for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) { // if w is not already marked

mark[w] = true; // mark it

enq(Q, w); // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

 All vertices behind the frontier are marked

o they have been explored

 All vertices beyond the frontier are unmarked

o they are still unexplored

 Every path from start to target goes through

the frontier

56

Correctness – III

 Every path from start to target

goes through the frontier

 When we finally return,

1.every path from start to target goes

through the frontier

LI 3 hold

2. the frontier is empty

negation of the loop guard

o therefore there can’t be a path

from start to target

 this is the only way (1) can hold

 bfs is correct

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

//@ LI 1: there is a path from start to every marked vertex

//@ LI 2: every vertex in the queue is marked

//@ LI 3: every path from start to target goes through Q

// v is the next vertex to process

vertex v = deq(Q);

printf(" Visiting %u\n", v);

if (v == target) { // if v is target return true

queue_free(Q);

free(mark);

return true;

}

// for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) { // if w is not already marked

mark[w] = true; // mark it

enq(Q, w); // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

57

Other Searches

58

Work List Choice

 bfs uses a queue as a work list

o But the correctness proof does not

depend on this

 We get a correct implementation

of reachability whatever work list

we use

bool bfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// Q is a queue containing only start initially

queue_t Q = queue_new();

enq(Q, start);

while (!queue_empty(Q)) {

//@ LI 1: there is a path from start to every marked vertex

//@ LI 2: every vertex in the queue is marked

//@ LI 3: every path from start to target goes through Q

// v is the next vertex to process

vertex v = deq(Q);

printf(" Visiting %u\n", v);

if (w == target) { // if w is target return true

queue_free(Q);

free(mark);

return true;

}

// for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) { // if w is not already marked

mark[w] = true; // mark it

enq(Q, w); // enqueue it onto the queue

}

}

graph_free_neighbors(nbors);

}

ASSERT(queue_empty(Q));

queue_free(Q);

free(mark);

return false;

}

59

Work List Choice

 We get a correct implementation

of reachability whatever work list

we use

 Stack?

o The next vertex we process is the

last we inserted

oWe get an iterative implementation

of depth-first search

oComplexity

O(v + e) with adjacency lists

O(v2) with adjacency matrices

because stack and queue operations

have the same complexity

bool dfs(graph_t G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (start == target) return true;

// mark is an array containing only start

bool *mark = xcalloc(graph_size(G), sizeof(bool));

mark[start] = true;

// S is a stack containing only start initially

stack_t S = stack_new();

push(S, start);

while (!stack_empty(S)) {

//@ LI 1: there is a path from start to every marked vertex

//@ LI 2: every vertex in the stack is marked

//@ LI 3: every path from start to target goes through S

// v is the next vertex to process

vertex v = pop(S);

printf(" Visiting %u\n", v);

if (w == target) { // if w is target return true

stack_free(S);

free(mark);

return true;

}

// for every neighbor w of v

neighbors_t nbors = graph_get_neighbors(G, v);

while (graph_hasmore_neighbors(nbors)) {

vertex w = graph_next_neighbor(nbors);

if (!mark[w]) { // if w is not already marked

mark[w] = true; // mark it

push(S, w); // push it onto the stack

}

}

graph_free_neighbors(nbors);

}

ASSERT(stack_empty(S));

stack_free(S);

free(mark);

return false;

}

60

Work List Choice

 We get a correct implementation of reachability whatever

work list we use

 Priority queues?

o The next vertex we process is the most promising

oWe get artificial intelligence search algorithms like A*

used in planning problems, game search, …

 the priority function becomes a heuristic function that tells how good a

vertex is

oComplexity is higher because insertion and removal from a

priority queue is not O(1)

pronounced “A star”

61

Reachability

 All these graph reachability

algorithms share the same

basic idea

Explore the graph by expanding the frontier

 The difference is the kind of work list they use to

remember the vertices to examine next

oDFS: a stack

o BFS: a queue

o A*: a priority queue

0

1

3

4

2

Unexplored
Explored

62

