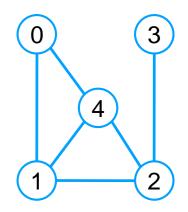
Spanning Trees

Review

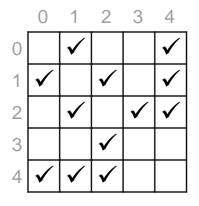


• Graphs

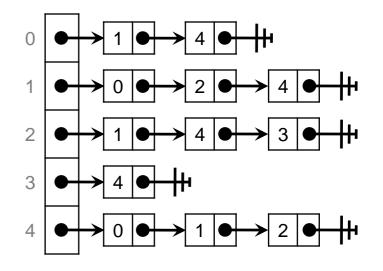
 \odot Vertices, edges, neighbors, paths, ...

 \odot Dense, sparse

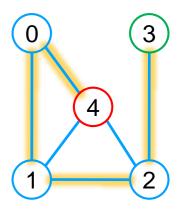
• Adjacency matrix implementation



 Adjacency list implementation



Review



in a queue

• Graph search

Determine whether two vertices are connected

> and possibly report a path that connects them

Explore the graph by expanding the frontier — to visit next a work list

Charge ahead until we find the target vertex or hit a dead-end

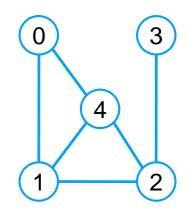
- ➤ then backtrack
- Breadth-first search
 - Explore the graph level-by level

• Complexity

	ιριολιί			
		DFS	BFS	
\subseteq	Adjacency list	O(v + e)	O(v + e)	
	Adjacency matrix	O(v ²)	O(v ²)	

Trees

Cycles

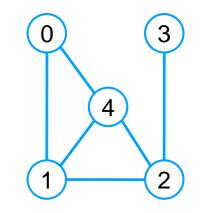


• A cycle is a path from a vertex to itself

- \circ 0–1–4–0 is a cycle
- 0–1–0 is a cycle
- 0 is a cycle too
- A simple cycle is a cycle with at least one edge and without repeated edges
 0-1-4-0 is a simple cycle
 0-1-0 is not a simple cycle _________
 is not a simple cycle either _________

these are **trivial** cycles

Simple Cycles



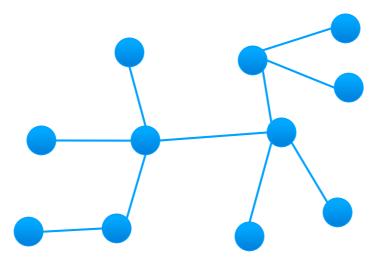
A cycle without repeated edges

➤ and at least one edge

- Simple cycles are what forces us to use a mark array in DFS and BFS
 - \circ After following edge (0,1) to go from 0 to 1, it is easy to avoid using (0,1) to go back to 0
 - remembering where we come from is trivial
 - \circ After following (0,1) and (1,4) to go from 0 to 4, it is hard to know we shouldn't use (0,4)
 - > unless we mark visited vertices
- Graphs without simple cycles are convenient to work with
 o no need for mark arrays

Trees

• A connected graph without simple cycles is called a **tree**



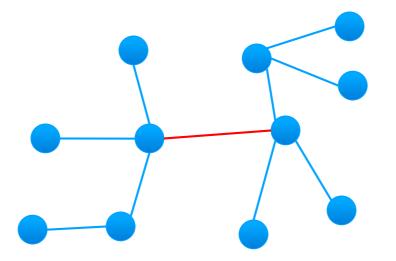
• The are many ways to define a tree

A Recursive Definition

We can also define trees recursively

A tree is

- a vertex by itself
- two trees connected by an edge

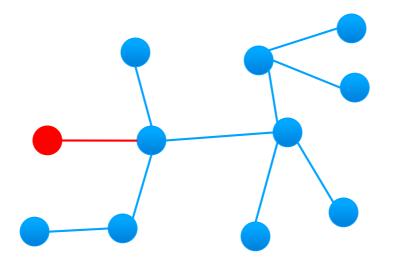


Another Recursive Definition

We can define trees recursively in several ways

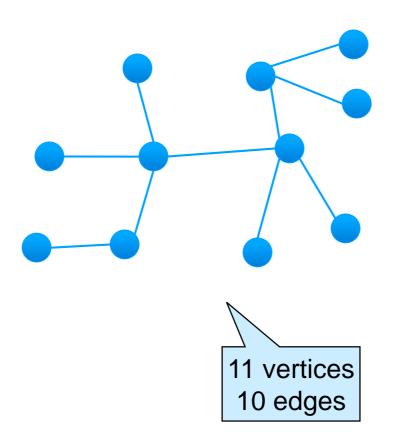
A tree is

• a vertex by itself



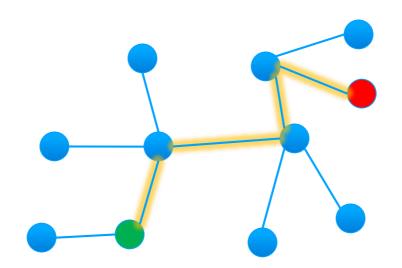
The Edges of a Tree

• A tree is a connected graph with v vertices and v-1 edges



The Paths of a Tree

 A tree is a connected graph with exactly one path between any two vertices



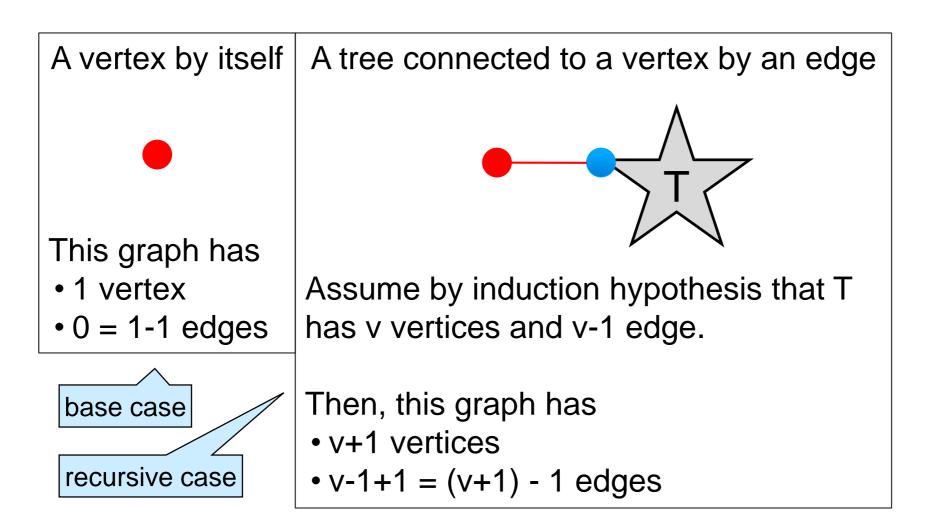
The Edges of a Tree

• We can prove that these definitions are equivalent

○ For example,

if we define a tree as a vertex by itself or a tree connected to a vertex by an edge,

then if such a graph has v vertices it has v-1 edges



In Summary, a Tree is ...

A. a connected graph with no simple cycles

B. (*recursive definition #1*)

 \circ a vertex

 \odot two trees connected by an edge

C. (recursive definition #2)

 \circ a vertex

 \odot a tree connected to a vertex by an edge

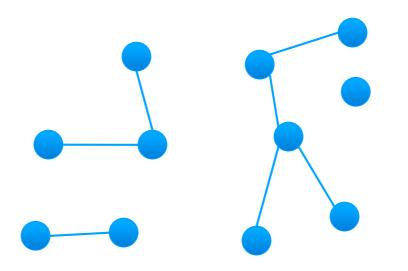
- D. a connected graph with v vertices and v-1 edges
- E. a connected graph with exactly 1 path between any two vertices

Forest

• A forest is a bunch of trees

 \odot a graph where each connected component is a tree

- Other definitions
 a forest is a *connected* graph with no simple cycles
 a graph with *at most* one path between any two vertices
- A forest with v vertices has at most v-1 edges



Reachability Problem on a Tree

• What is the cost of DFS or BSF on a tree?

> assuming an adjacency list implementation

O(v) — always

- DFS and BFS cost O(v + e) in general
- \circ in a tree, e = v-1

definition D

 \odot so, the cost reduces to O(v)

A. a connected graph with no simple cycles	
В.	(recursive definition #1)
	○ a vertex
	\circ two trees connected by an edge
C.	(recursive definition #2)
	○ a vertex
	o a tree connected to a vertex by an edge
	a connected graph with v vertices and v-1 edges
Ε.	a connected graph with exactly 1 path between
	any two vertices

Are BSTs Trees?

 A binary search tree is a tree where every vertex has at most 3 edges

 \circ two children

○ one parent

(plus there is the ordering invariant)

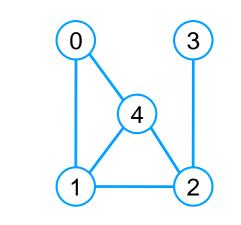
• Which node is the root?

o any vertex with at most 2 edges

 \succ the root does not have a parent

Simply hoist the graph by that node

Spanning Trees



Reaching Nodes Over and Over

 Some applications need to frequently reach a connected vertex in a graph

- > diagnosis in communication networks
- ➢ billing in power networks, ..

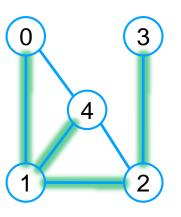
We can use DFS or BFS
 but this is expensive: O(v + e) each query
 it may go through a different path for the same query each time

• We can remember the paths

 \odot but this requires a lot of space

- $> O(v^2)$ in each vertex
 - □ each vertex needs to remember v-1 paths
 - $\hfill\square$ each of these paths can contain up to v-1 vertices
- $> O(v^3)$ for the whole graph

Reaching Nodes Over and Over



Some applications need to frequently reach a connected vertex in a graph
 using DFS or BFS is too expensive
 remembering paths to all vertices is O(v²) in *each* vertex

Idea

Factor out the common subpaths by superimposing a tree on the graph

provides a path from every vertex to every other vertex

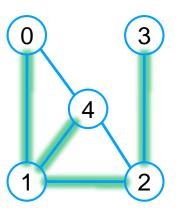
requires O(v) space in each vertex

> O(v) total if we have a "path server" vertex

• This is a **spanning tree**

If the graph has more than one connected component, we superimpose one spanning tree on each connected component this is a spanning forest

Spanning Tree



• Factor out the common subpaths by superimposing a tree (or forest) on the graph

Formally,

- A subgraph of a graph G is a graph with the same vertices and a subset of its edges
- A **spanning tree** for G is a subgraph that

o has the same connectivity as G

 \circ and is a tree

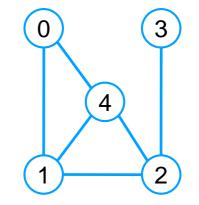
A graph has a spanning trees only if it consists of a single connected component

• A spanning forest for G is a subgraph that

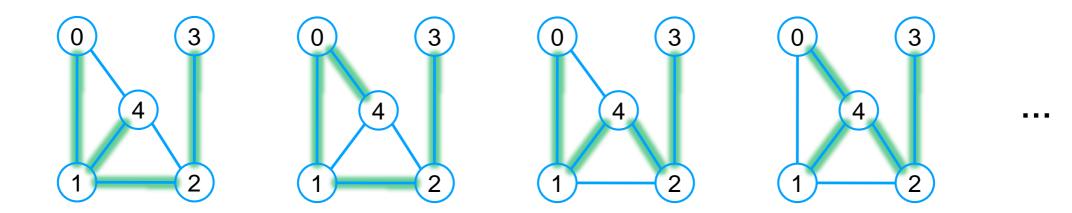
has the same connectivity as G
 and is a forest

The Spanning Trees of a Graph

 Most graphs have multiple spanning trees



• Here are some



• In general, any spanning tree will do

How to Compute a Spanning Tree?

Two classic algorithms

• The edge-centric algorithm

Start with a spanning forest of singleton trees and add edges from the graph as long as they don't form a cycle

• The vertex-centric algorithm

Start with a single vertex in the tree and add edges to vertices not in the tree This leverages definition B A tree is

• a vertex, or

two trees connected by an edge

This leverages definition C A tree is

a vertex, or

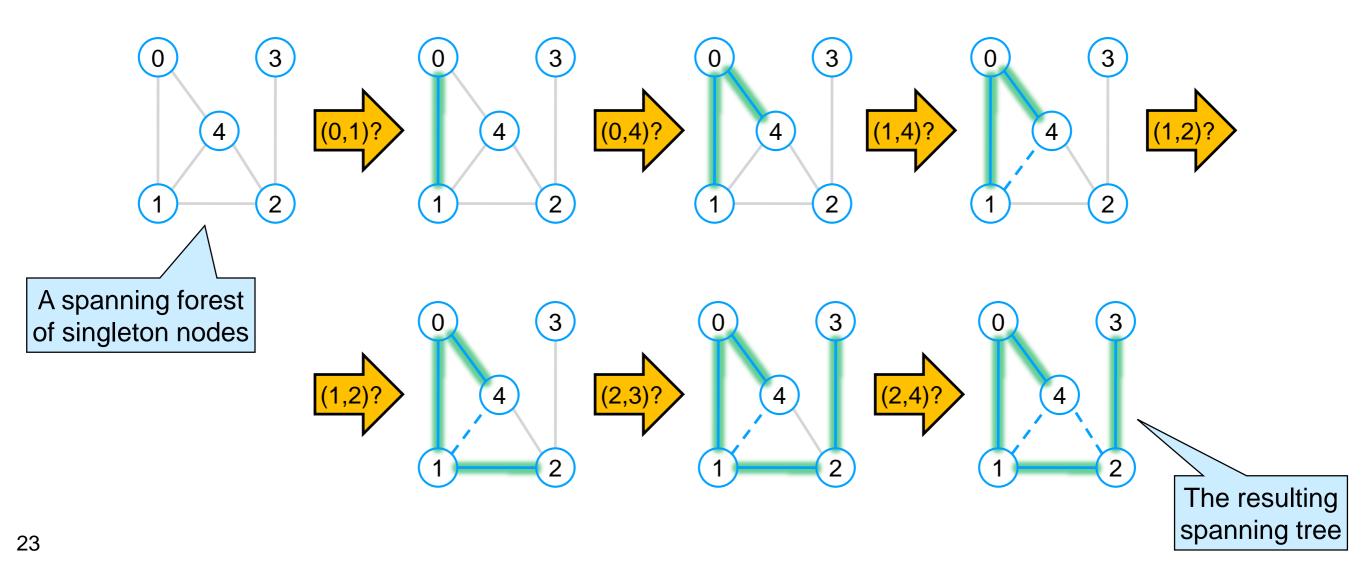
 a trees connected to a vertex by an edge

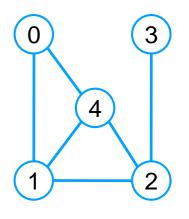
Edge-centric Algorithm

The Edge-centric Algorithm

Start with a spanning forest of singleton trees and add edges from the graph as long as they don't form a cycle

• Let's run it on the example graph





Towards an Actual Algorithm

Start with a spanning forest of singleton trees and add edges from the graph as long as they don't form a cycle

Given a graph G, construct a spanning tree T for it

- 1. Start T with the isolated vertices of G
- 2. For each edge (u,v) in G
 - are u and v already connected in T?
 - > yes: discard the edge
 - ➤ no: add it to T

If G has more than 1 connected component, this will produce a spanning forest

Towards an Actual Algorithm

Given a graph G, construct a spanning tree T for it

- 1. Start T with the isolated vertices of G
- 2. For each edge (u,v) in G
 - are u and v already connected in T?
 - > yes: discard the edge
 - > no: add it to T
- Is there room for improvement?
 Stop as soon as we added v-1 edges in T

By definition D A tree is a connected graph v vertices and v-1 edges

The Edge-centric Algorithm

Given a graph G, construct a spanning tree T for it

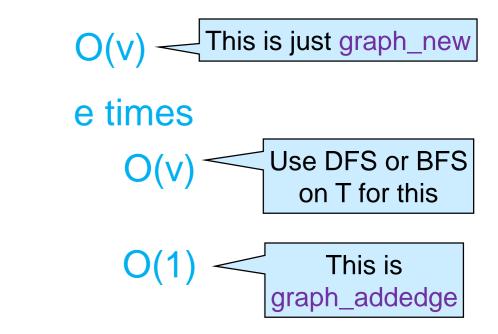
- 1. Start T with the isolated vertices of G
- 2. For each edge (u,v) in G
 - are u and v already connected in T?
 - ➤ yes: discard the edge
 - no: add it to T

Stop once T has v-1 edges

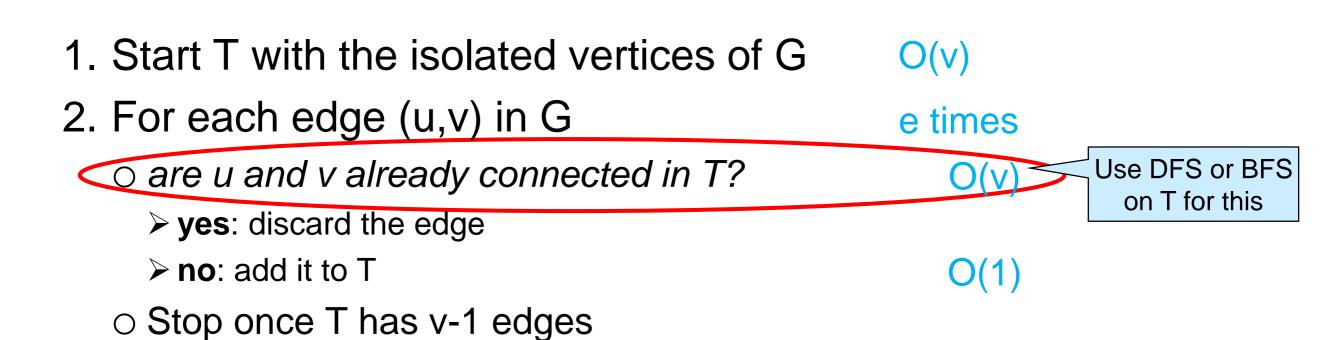
This won't apply if G has more than 1 connected component

Given a graph G, construct a spanning tree T for it

- 1. Start T with the isolated vertices of G
- 2. For each edge (u,v) in G
 - are u and v already connected in T?
 - > yes: discard the edge
 - ➤ no: add it to T
 - Stop once T has v-1 edges



Given a graph G, construct a spanning tree T for it



We run DFS/BFS on T
 ○ at most v-1 edges
 ○ the cost is O(v)
 ➢ not O(e)

Given a graph G, construct a spanning tree T for it

- Start T with the isolated vertices of G
 For each edge (u,v) in G
 are u and v already connected in T?
 yes: discard the edge
 no: add it to T
 O(1)
- Even if we end up adding at most v-1 edges, we may need to go through all the edges in e

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G	O(v)
2. For each edge (u,v) in G	e times
\circ are u and v already connected in T?	O(v)
yes: discard the edge	
➤ no: add it to T	O(1)
 Stop once T has v-1 edges 	

• The edge-centric algorithm has complexity O(ev)

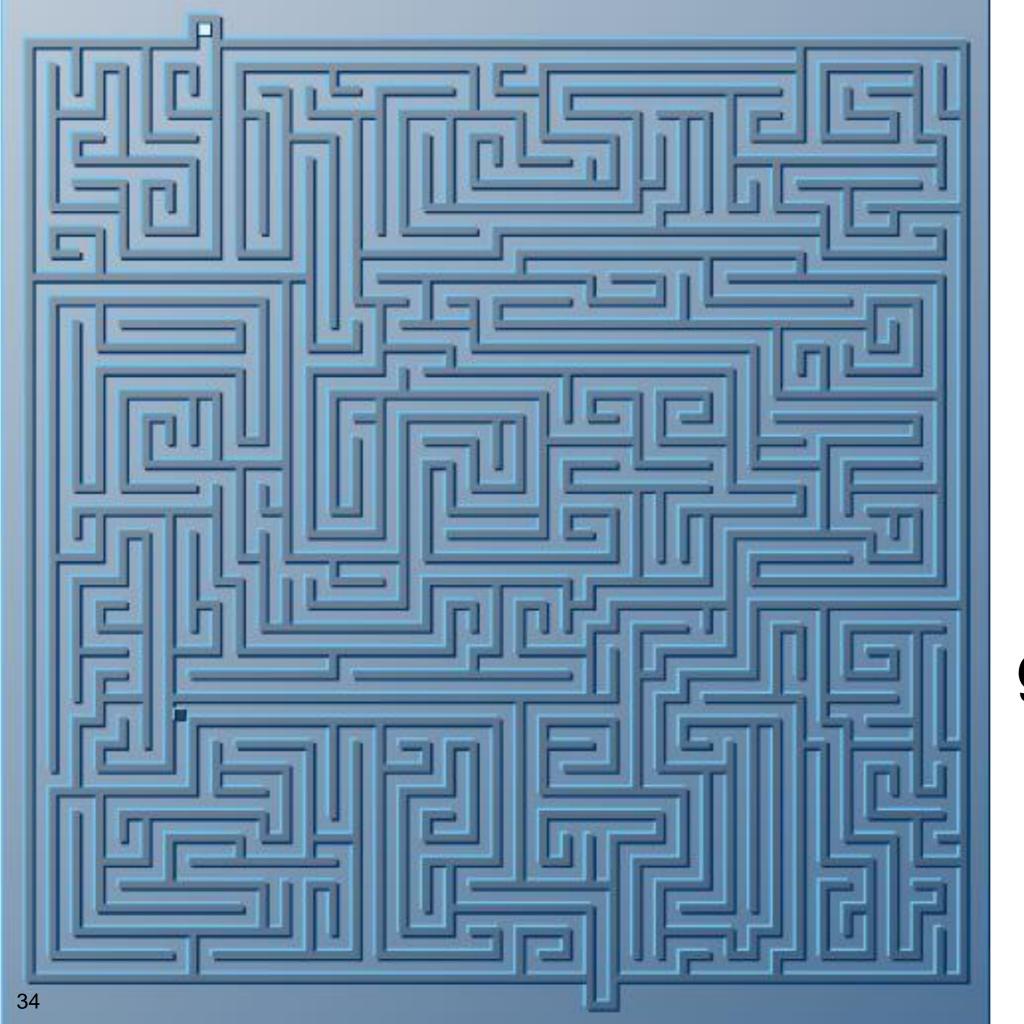
Greedy Algorithms

- At each step, we choose a candidate edge to add to the tree
- Which edge does not matter
 - o we will get a spanning tree in the end
 - possibly a different one for each choice
- Algorithms where we have to make a choice but the actual choice does not matter are called greedy

Greedy Algorithms

- Algorithms where we have to make a choice but the actual choice does not matter are called greedy
- DFS and BFS also involve making a choice
 - which vertex to examine next
 - but if we don't pick the right one we may not compute the correct answer
 - \odot we need to remember the alternative choices
 - \succ in a work list
 - DFS and BFS are not greedy
- Greedy algorithms are great
 o no need to remember alternatives
 o but few problems have greedy algorithms that solve them

Intermission

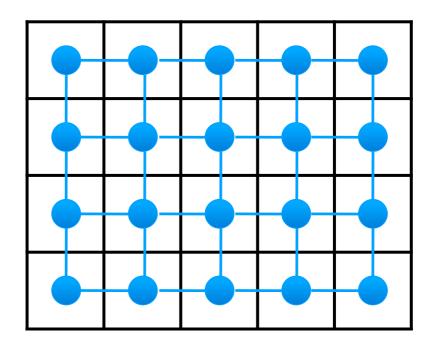


How are maze screensavers generated?

How to Create a Screensaver Maze?

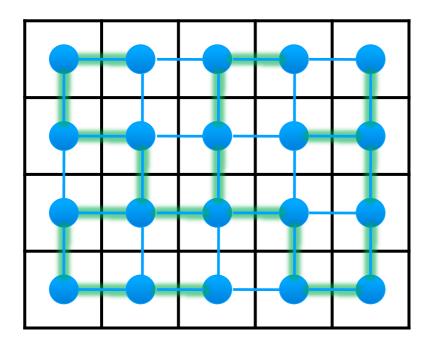
Start with an n * m grid of cells

Place a node in every cell and an edge between adjacent cells

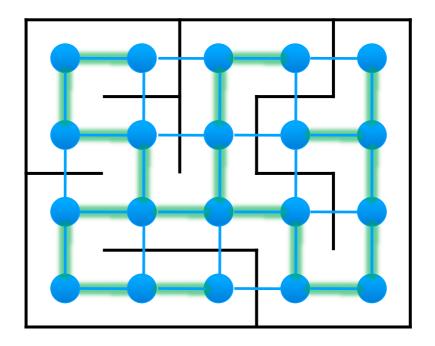


How to Create a Screensaver Maze?

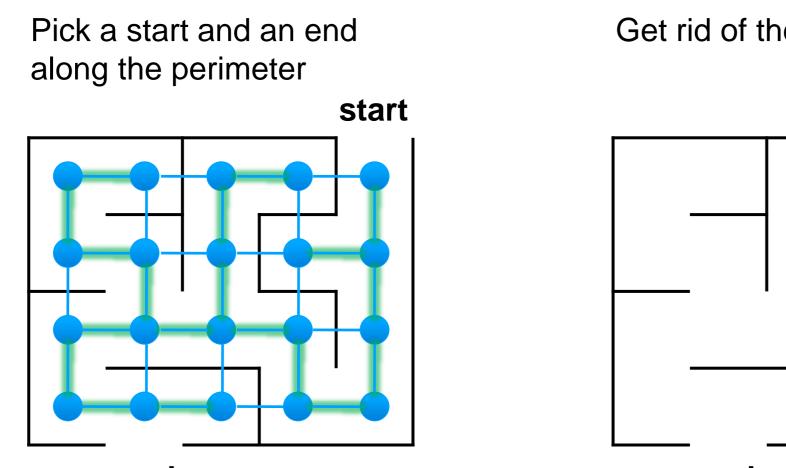
Build a spanning tree for this graph



Dissolve the cell walls where its edges cross



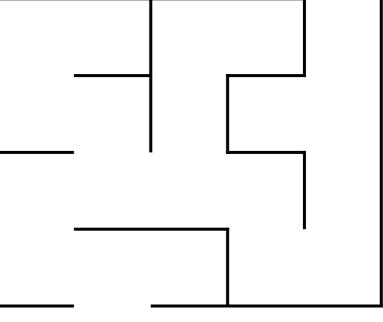
How to Create a Screensaver Maze?



end

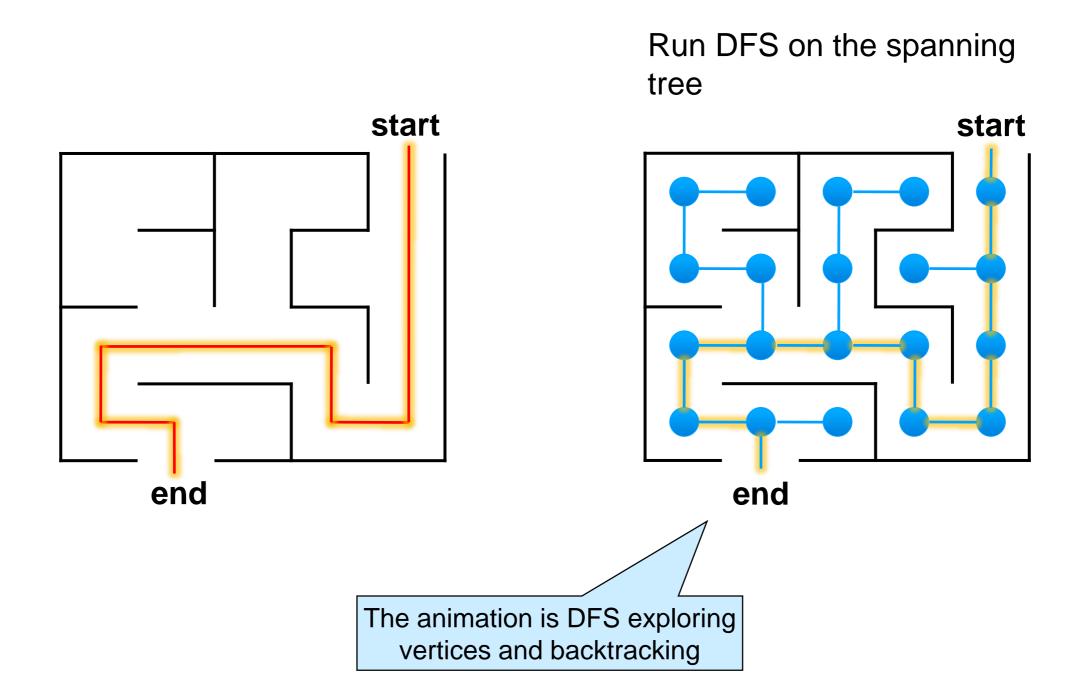
Get rid of the graph

start

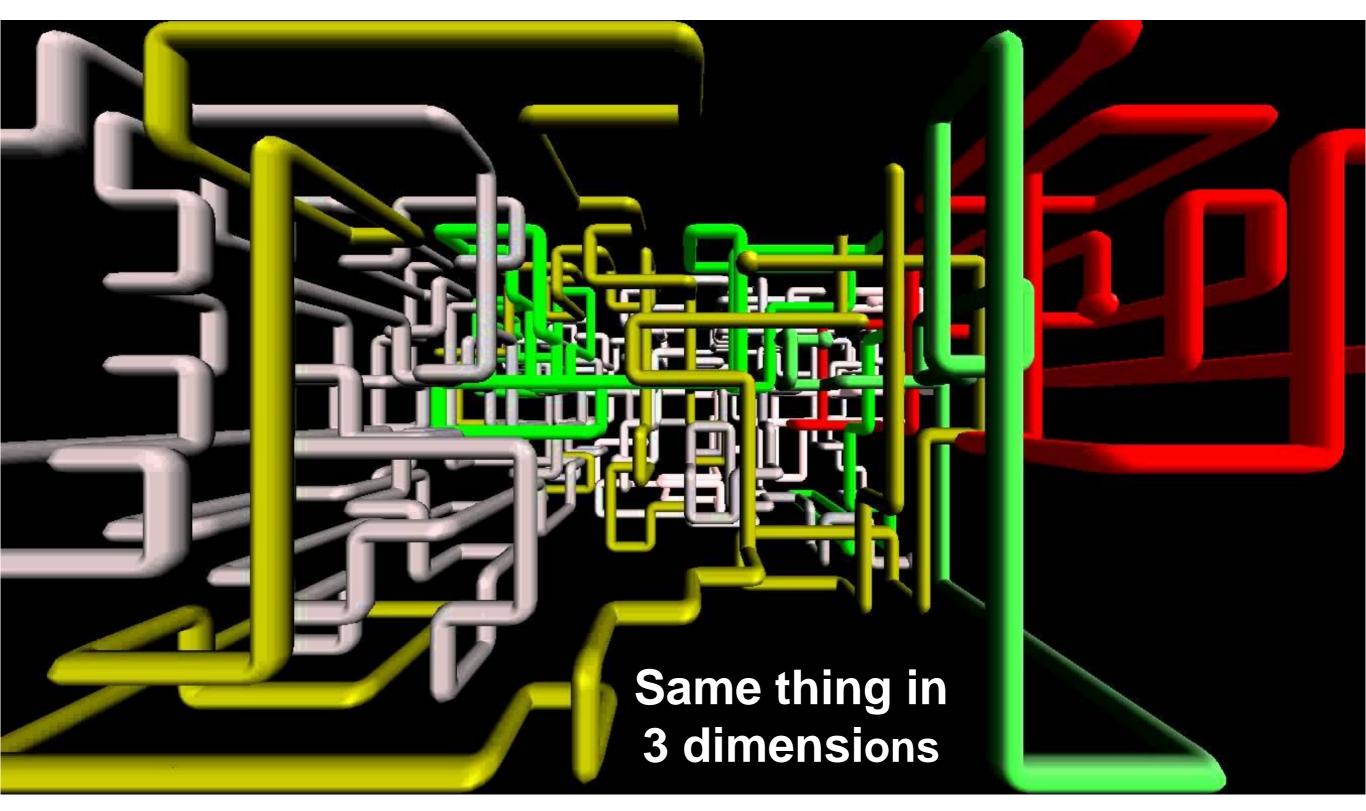


end

How to Solve a Screensaver Maze?



What about Pipe Screensavers?



Vertex-centric Algorithm

The Vertex-centric Algorithm

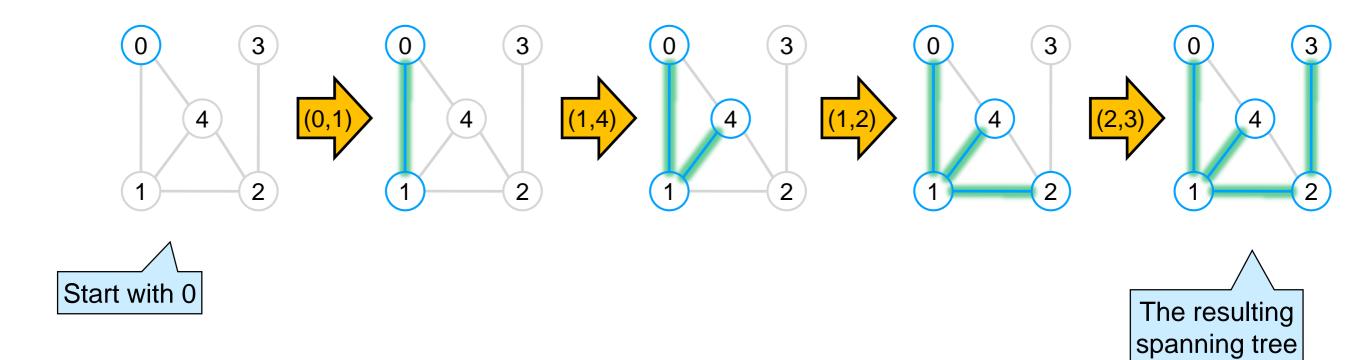
0

4

2

Start with a single vertex in the tree and add edges to vertices not in the tree

• Let's run it on the example graph



Towards an Algorithm

Start with a single vertex in the tree and add edges to vertices not in the tree

Given a graph G, construct a spanning tree T for it

- 1. Pick an arbitrary vertex start in G and put it in T
- 2. Repeat until all vertices are in T

 find an edge (u,v) in G between a vertex u in T and a vertex v not in T

 \odot add (u,v) to T

How do we find (u,v)?
 Mark the vertices we add to T
 Keep track of their neighbors

Assume G has a single connected component

Towards an Actual Algorithm

Given a graph G, construct a spanning tree T for it

- 1. Pick an arbitrary vertex start in G and put it in T
 - o mark start
 - o add all edges (start,w) in G to a work list
- 2. Repeat until the work list is empty
 - o pick an edge (u,v) from the work list
 - \succ if **v** is marked, discard it
 - ➤ add (u,v) to T
 - ≻ mark v
 - > add to the work list all edges (v,w) in G such that w is unmarked
 - stop once T has v-1 edges

This is our early exit condition

Consider the neighbors of

the vertices added to T

Assume G has a single connected component Towards an Actual Algorithm

 This looks just like BSF and DFS

 \odot depending on the work list

- 1. Pick an arbitrary vertex start in G and put it in T o mark start
 - o add all edges (start,w) in G to a work list
- 2. Repeat until the work list is empty
 - pick an edge (u,v) from the work list
 - if v is marked, discard it
 - > add (u,v) to T
 - > mark v
 - add to the work list all edges (v,w) in G such that w is unmarked
 - o stop once T has v-1 edges

The edges followed by BFS and DFS form a spanning tree!

Disconnected Graphs

- If G has more than one such that w is unmarked o stop once T has v-1 edges connected component, this will find a spanning tree only for start's component
- We need to repeat with a start vertex from each connected component

1. Pick an arbitrary vertex start in G and put it in T

o add all edges (start,w) in G to a work list

2. Repeat until the work list is empty

> if v is marked, discard it

> add (u,v) to T

> mark v

○ pick an edge (u,v) from the work list

> add to the work list all edges (v,w) in G

o mark start

Disconnected Graphs

Given a graph G, construct a spanning forestT for it

- 1. Pick an arbitrary vertex start in G and put it in T
 - o mark start
 - o add all edges (start,w) in G to a work list
- 2. Repeat until the work list is empty
 - o pick an edge (u,v) from the work list
 - \succ if v is marked, discard it
 - ➤ add (u,v) to T

≻ mark v

> add to the work list all edges (v,w) in G such that w is unmarked

o stop once T has v-1 edges

3. If T has fewer than v-1 edges

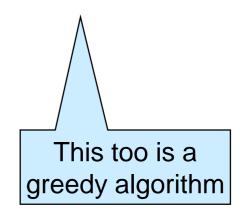
o add an arbitrary unmarked vertex and continue with (1)

Complexity

- The vertex-centric algorithm has the same complexity as DFS and BFS
 - if we use a stack or a queue as the work list

O(v + e)

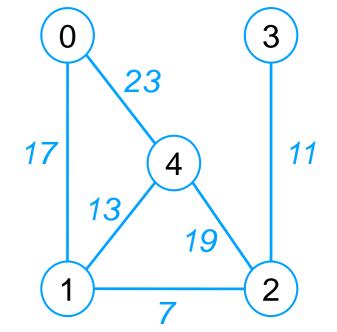
- 1. Pick an arbitrary vertex **start** in G and put it in T o mark **start**
 - o add all edges (start,w) in G to a work list
- 2. Repeat until the work list is empty
 - \odot pick an edge (u,v) from the work list
 - if v is marked, discard it
 - > add (u,v) to T
 - mark v
 - add to the work list all edges (v,w) in G such that w is unmarked
 - \odot stop once T has v-1 edges
- 3. If T has fewer than v-1 edges
 - o add an arbitrary unmarked vertex and continue with (1)

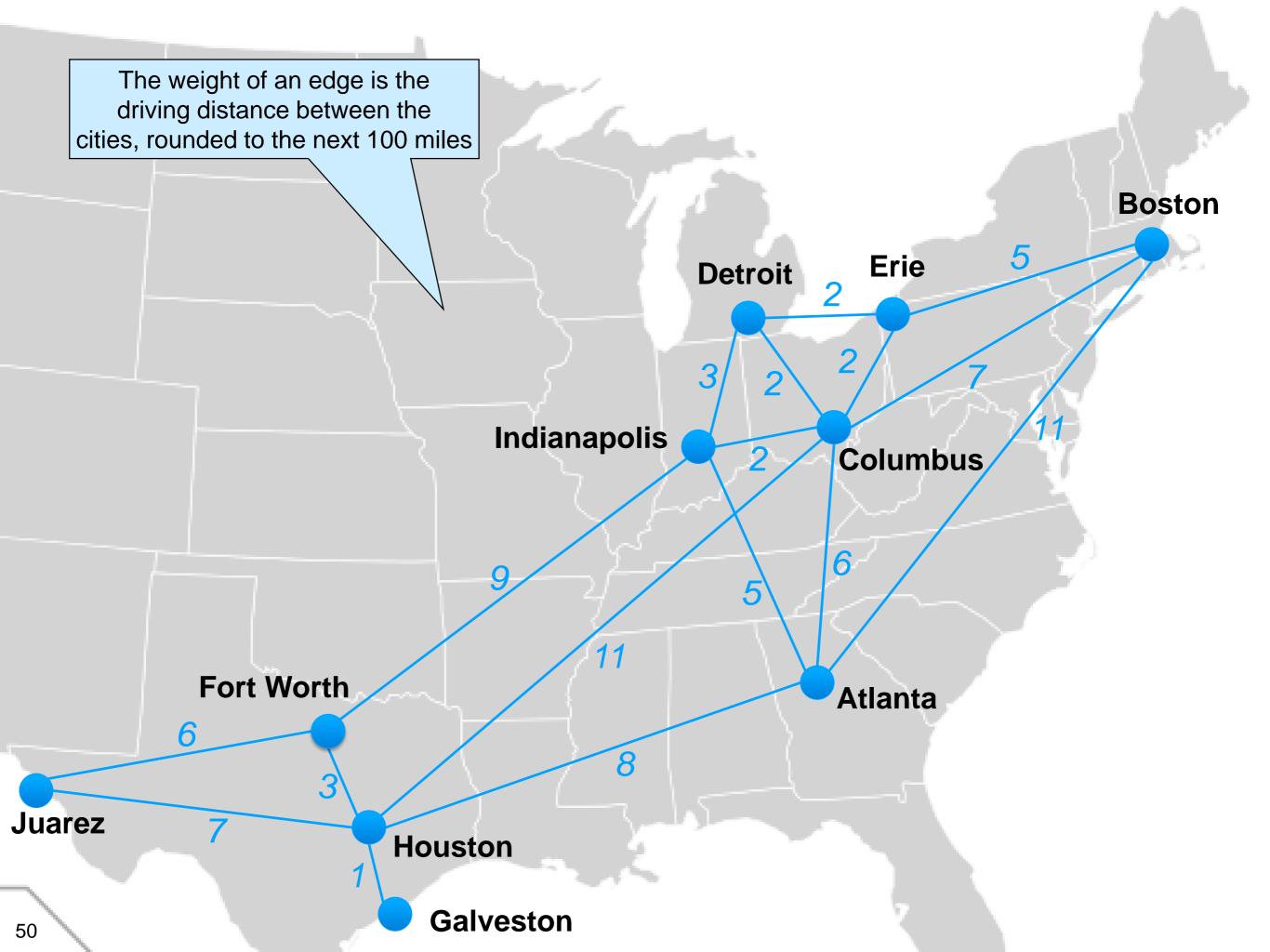


Minimum Spanning Trees

Weighted Graphs

- A graph with measures associated with the edges is a weighted graph
 the measures are called weights
 for us, they will be integers
- The weights represent some kind of cost or value of using that edge
 - ≻ time
 - distance
 - ➢ power, …





Minimum Spanning Tree

 Of all the spanning trees for a weighted graph, one with the least total weight

 $\hfill\square$ the sum of weights of all its edges

is called a minimum spanning tree

 A graph may have several minimum spanning trees
 o if all the weights are the same, every spanning tree is a minimum spanning tree

They should be called minimal spanning trees

Computing MSTs

- The algorithms for computing spanning trees are easily adapted to minimum spanning trees
 - The edge-centric algorithm for MSTs is called Kruskal's algorithm
 - The vertex-centric algorithm for MSTs is called Prim's algorithm

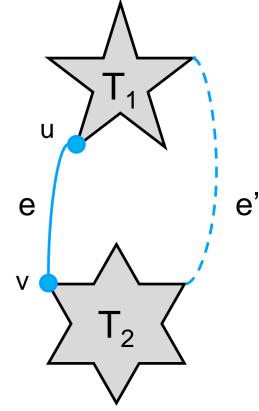
Kruskal's Algorithm

The Cycle Property

If C is a simple cycle in graph G, and e is an edge of maximal weight in C, then there is some MST of G that does not contain e

Proof

- Assume e is the edge (u,v) and T is a spanning tree
 o either e is not in T, and we are done
 - \circ or e is in T
 - \succ if we remove e, we obtain **two** spanning trees T₁ and T₂
 - because e is part of a cycle in G, there is another edge e' we can add to connect T₁ and T₂
 - \geq let T' be the resulting tree
 - Since e had maximal weight, the total weight of T' is ≤ the total weight of T



The Cycle Property

If C is a simple cycle in graph G, and e is an edge of maximal weight in C, then there is some MST of G that does not contain e

 If we construct a spanning tree by adding the edges of lowest weight that won't create a simple cycle first, we will obtain a minimum spanning tree

○ This is the basic insight of Kruskal's algorithm

Kruskal's Algorithm

Joseph Kruskal

Add a preliminary step to the edge-centric algorithm:

sort the edges in increasing weight order

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight

- 1. Start T with the isolated vertices of G
- 2. For each edge (u,v) in G
 - are u and v already connected in T?
 - > yes: discard the edge
 - ➤ no: add it to T
 - Stop once T has v-1 edges

Complexity of Kruskal's Algorithm

Given a graph G, construct a minimum spanning tree T for it

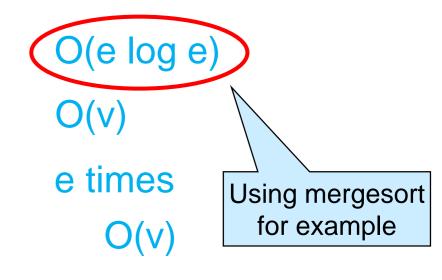
- 0. Sort the edges of G by increasing weight
- 1. Start T with the isolated vertices of G
- 2. For each edge (u,v) in G
 - are u and v already connected in T?
 - ➤ yes: discard the edge
 - > no: add it to T

○ Stop once T has v-1 edges

Kruskal's algorithm has complexity O(ev)
 That's O(e log e + ev) above
 but log e < O(v)

 \bigcirc but log e \in O(v)

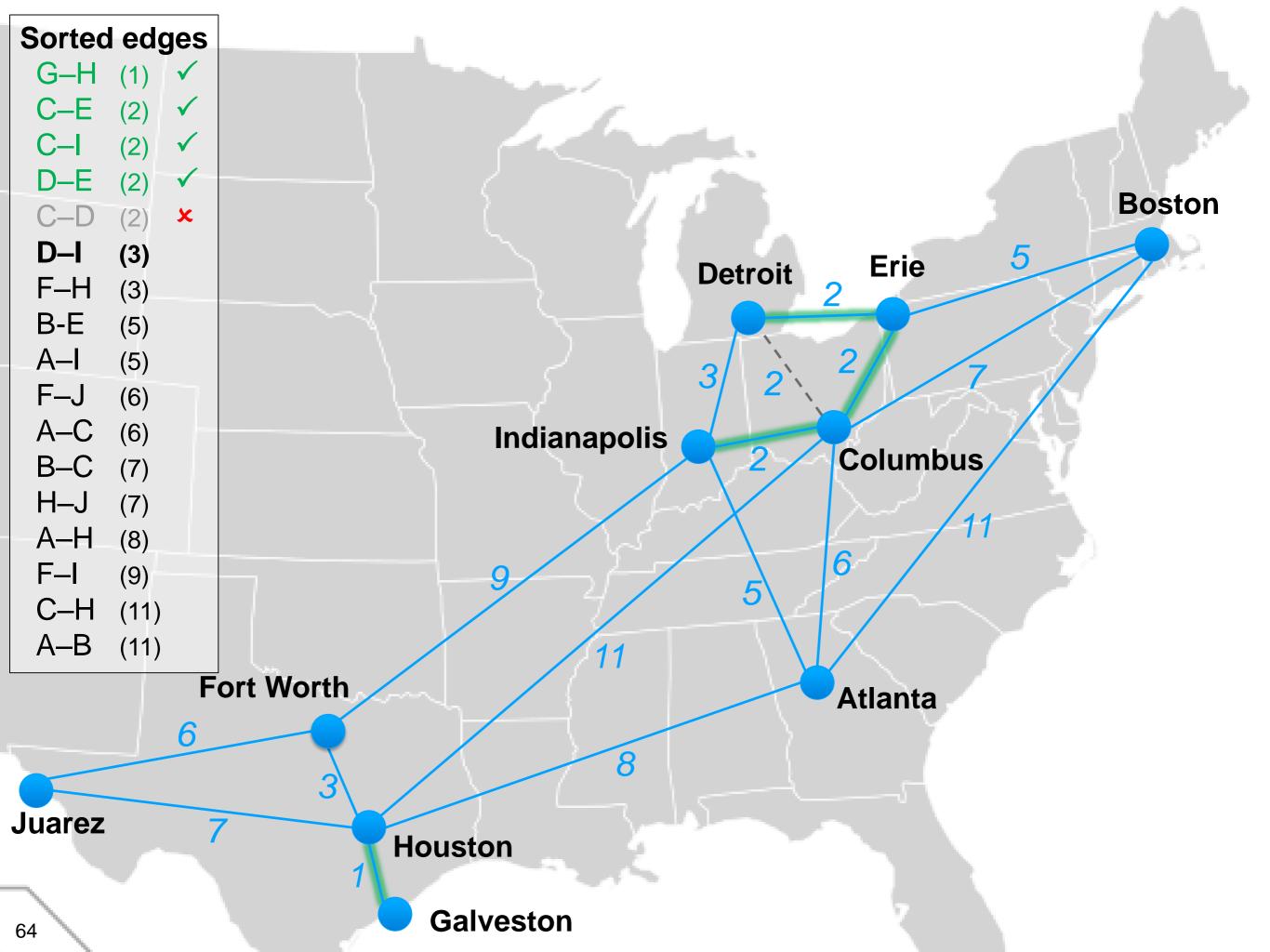
- \blacktriangleright because $e \in O(v^2)$, so log $e \in O(\log v)$
- \succ and log v \in O(v)

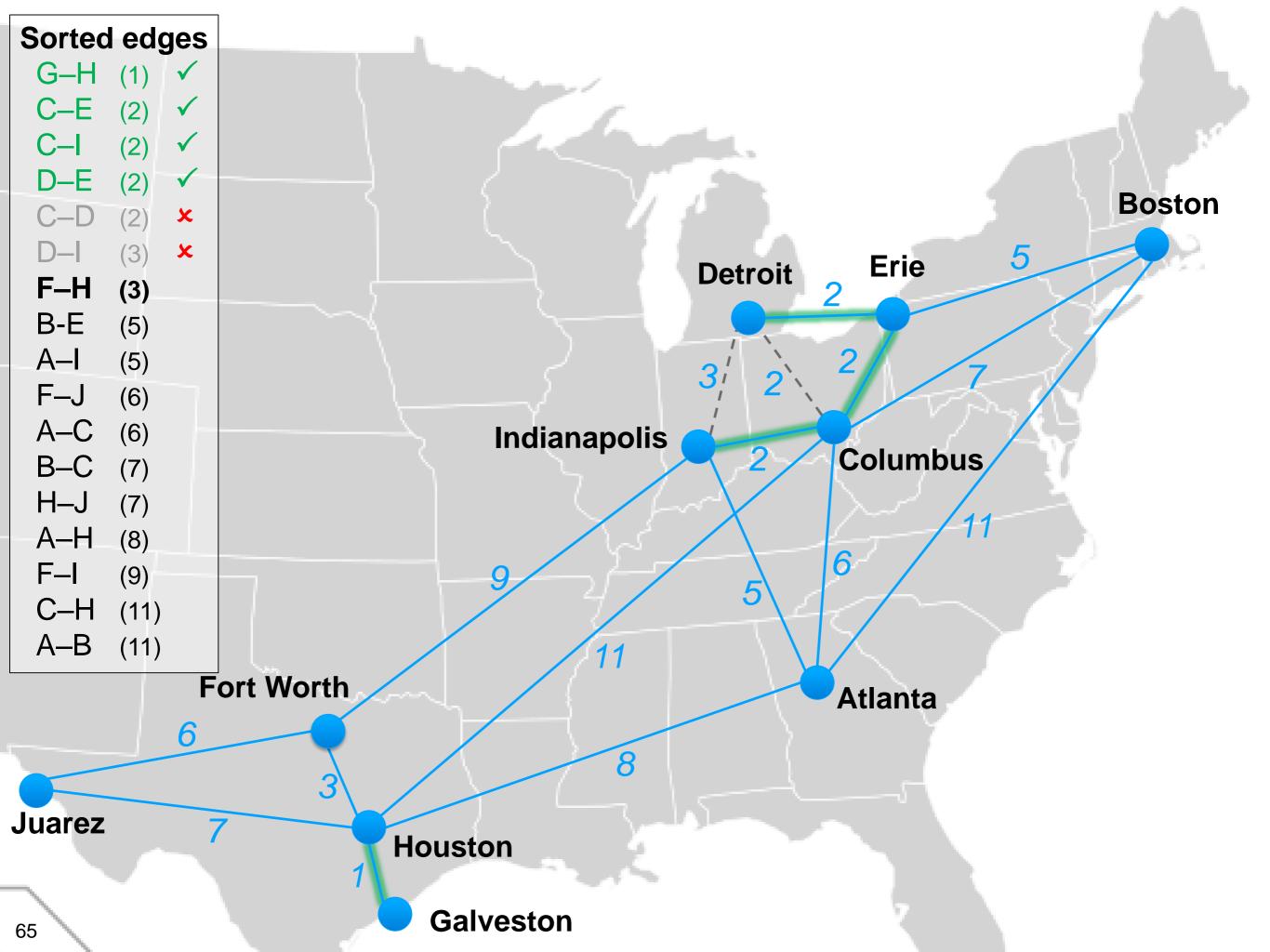


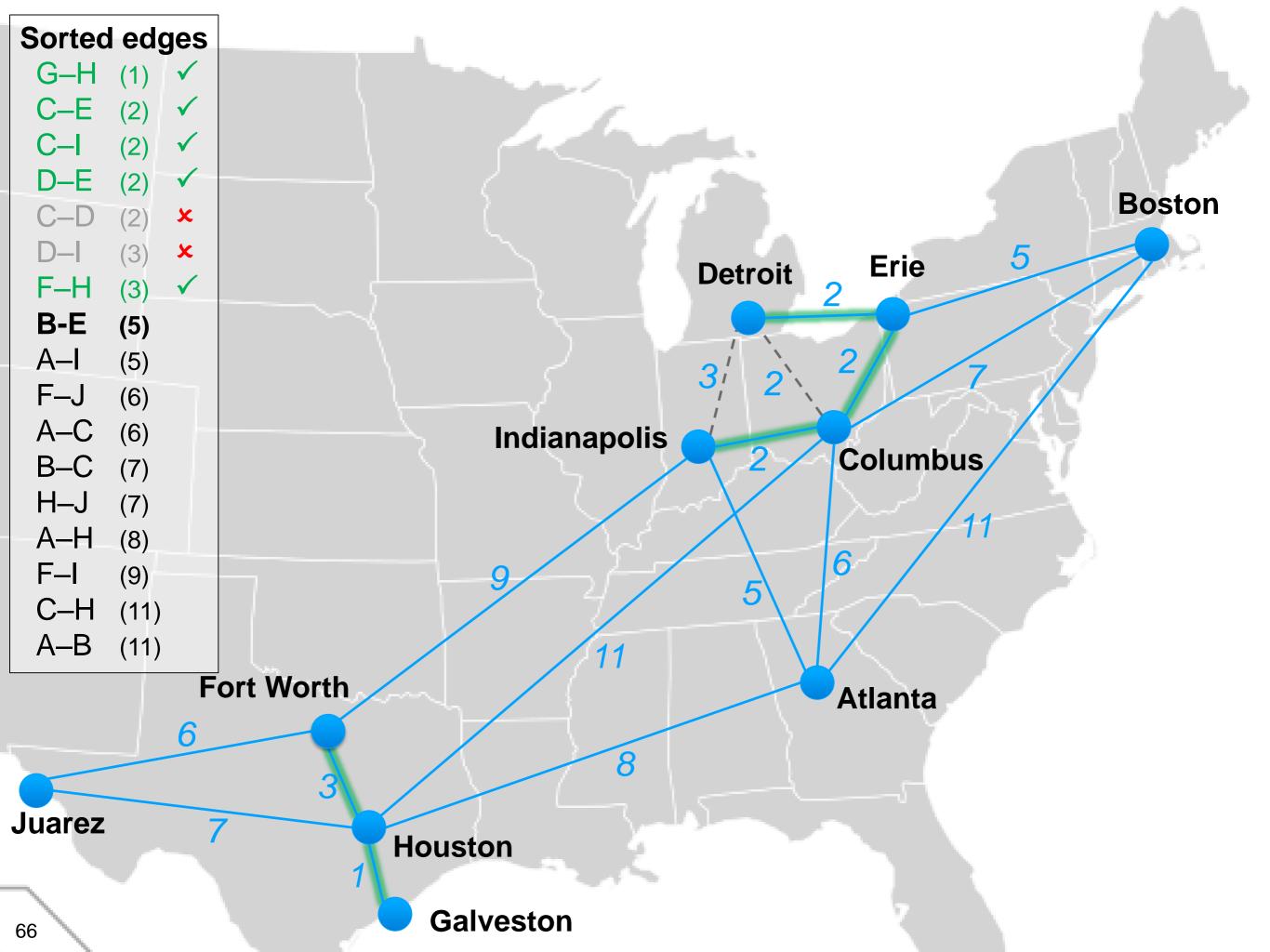
```
O(1)
```

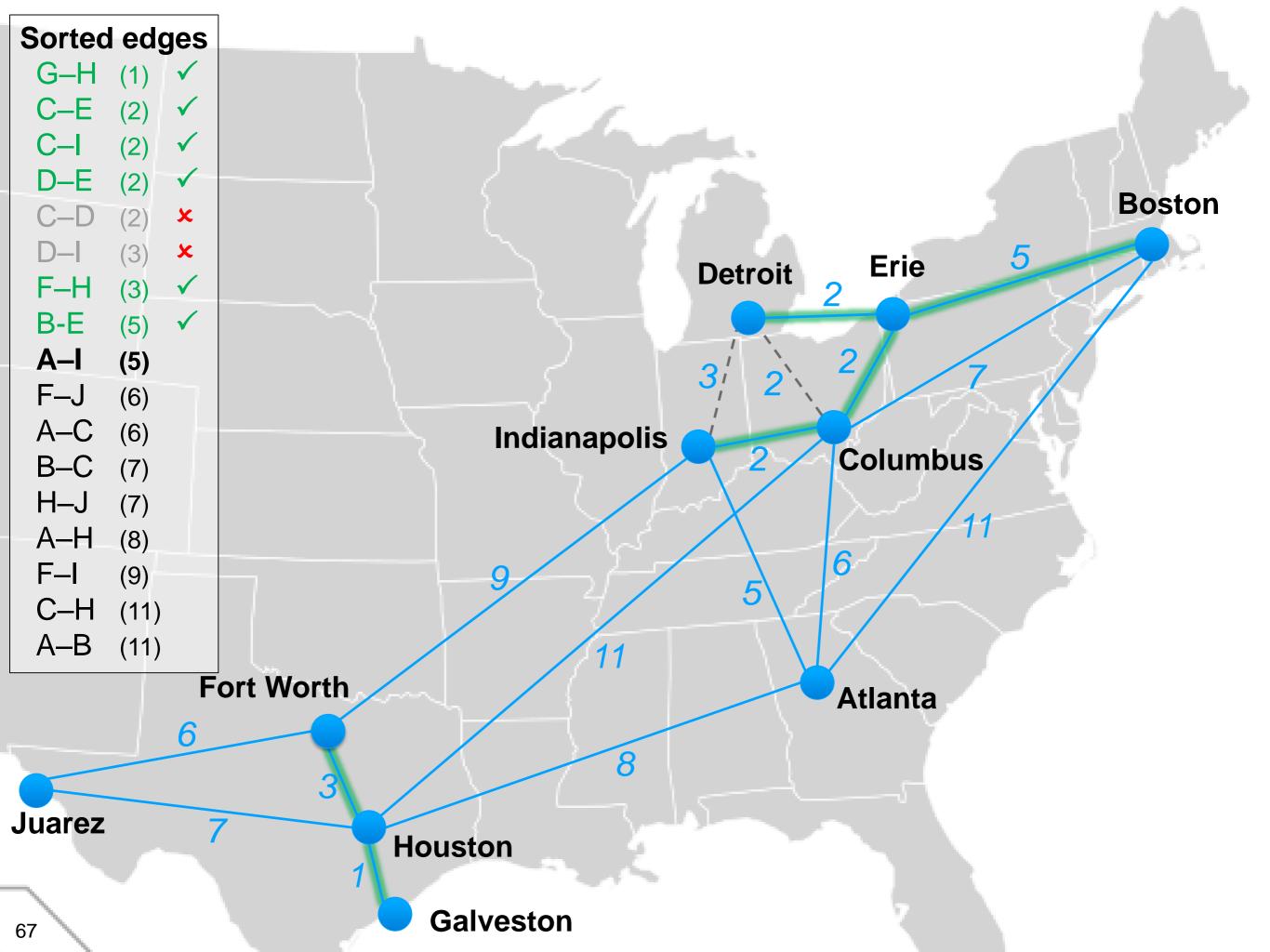


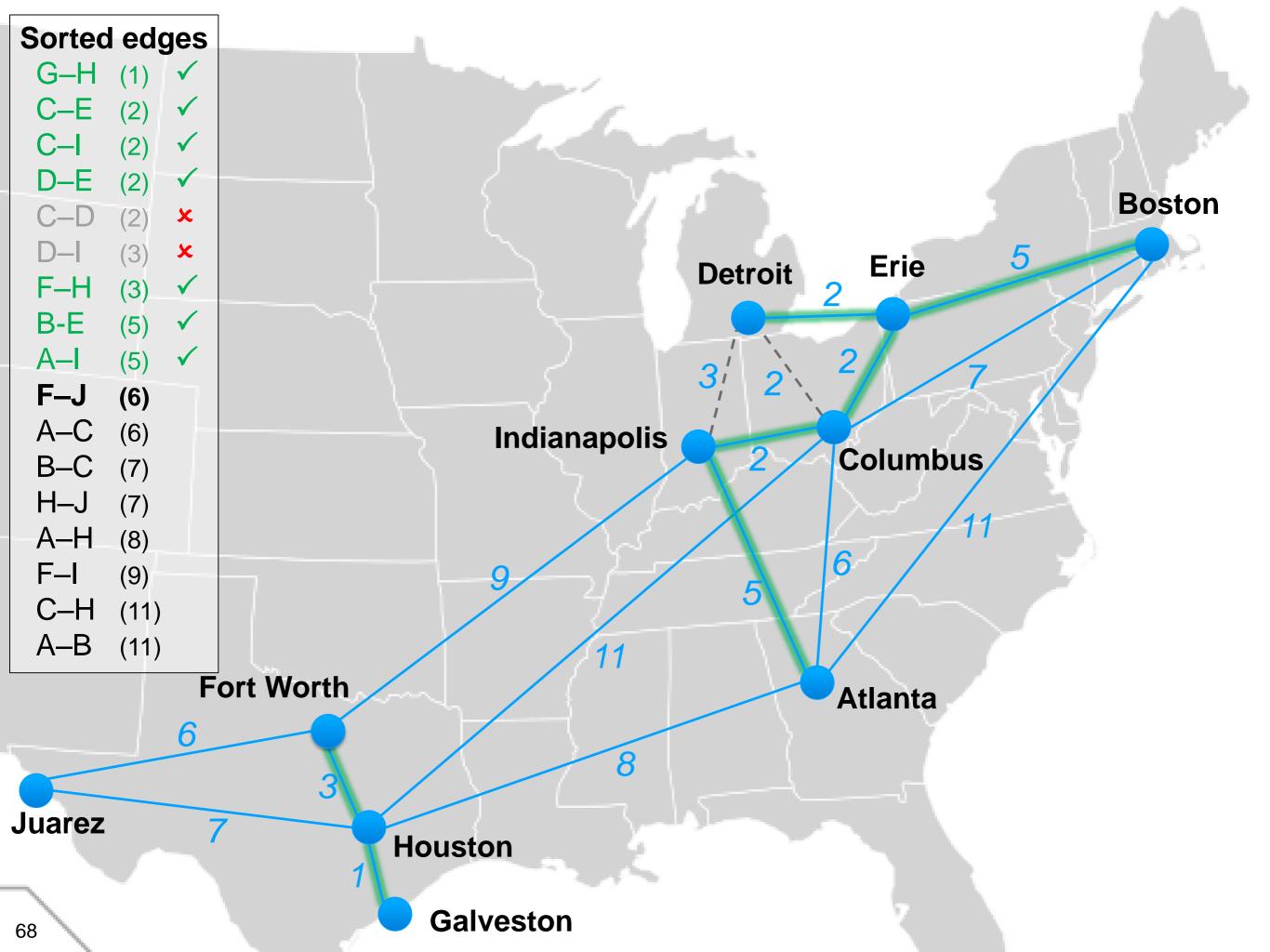


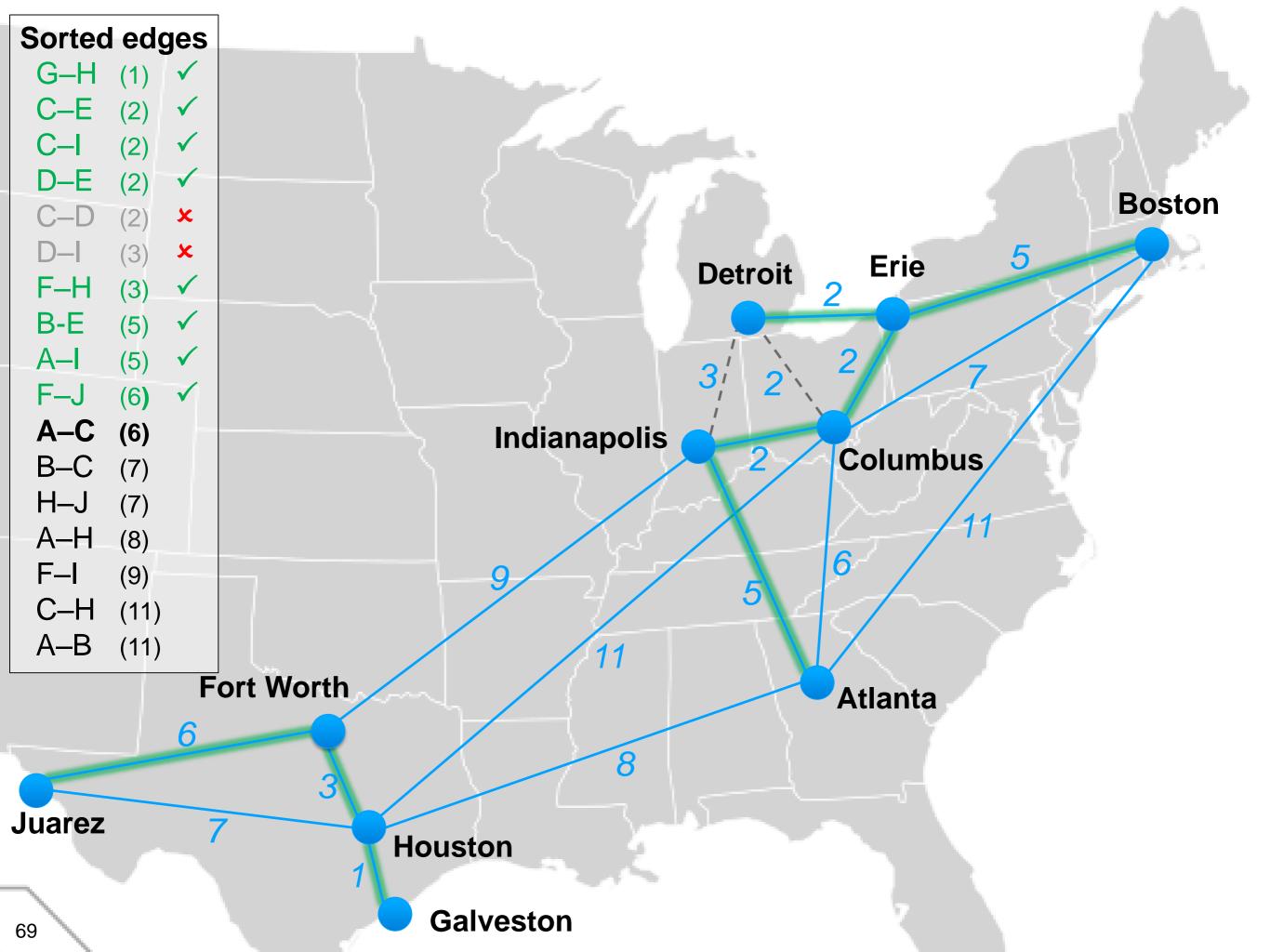


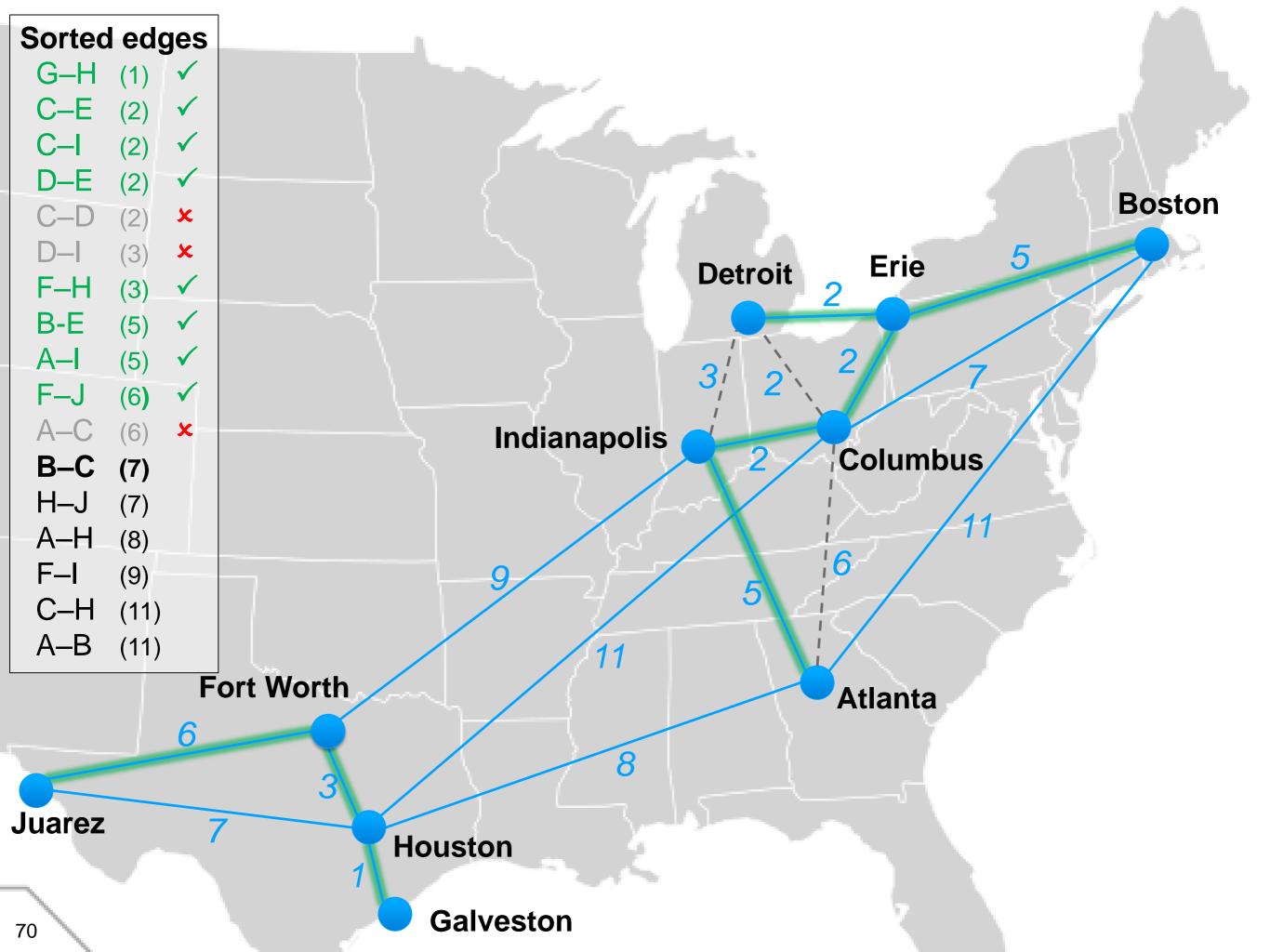


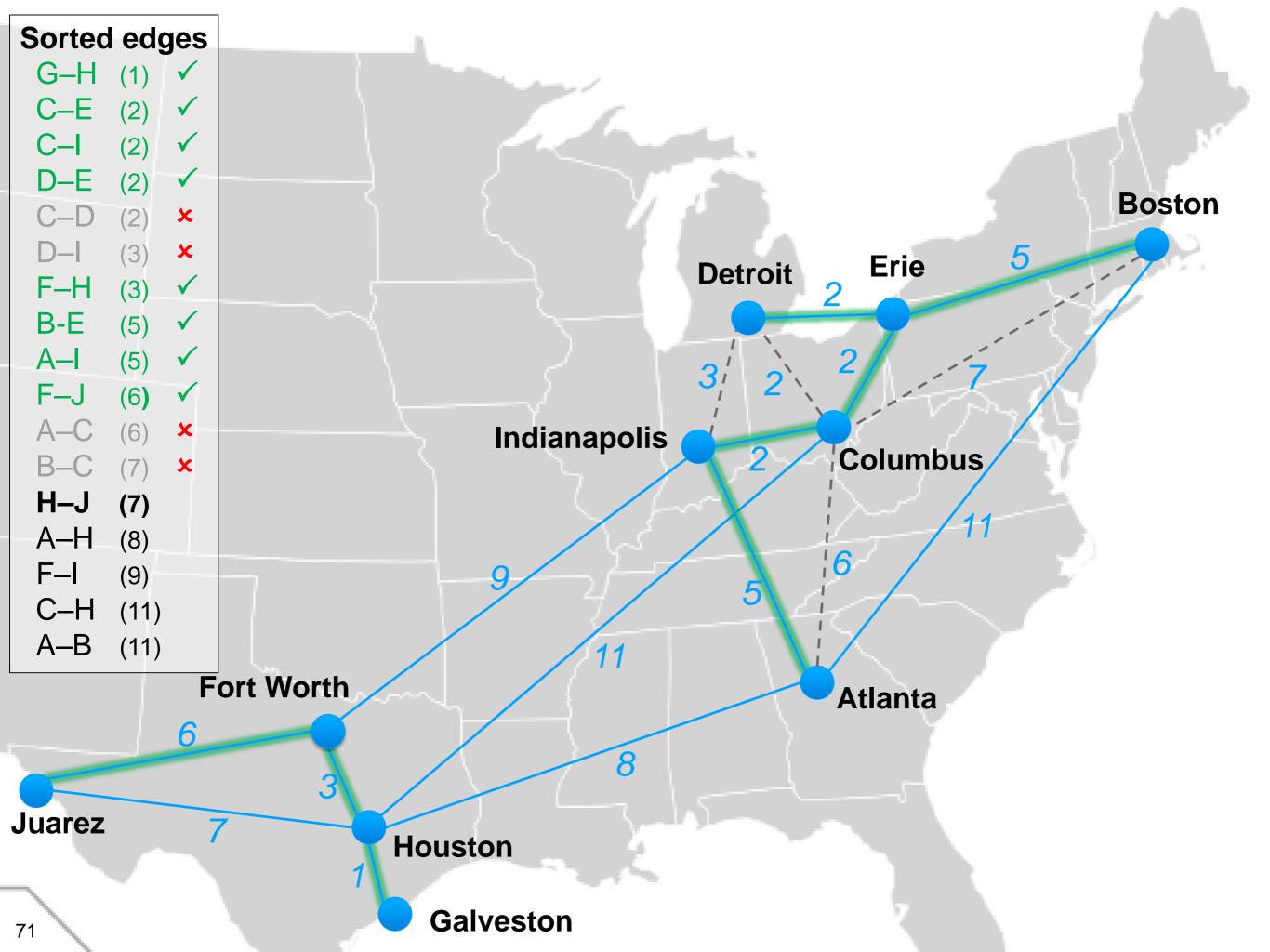


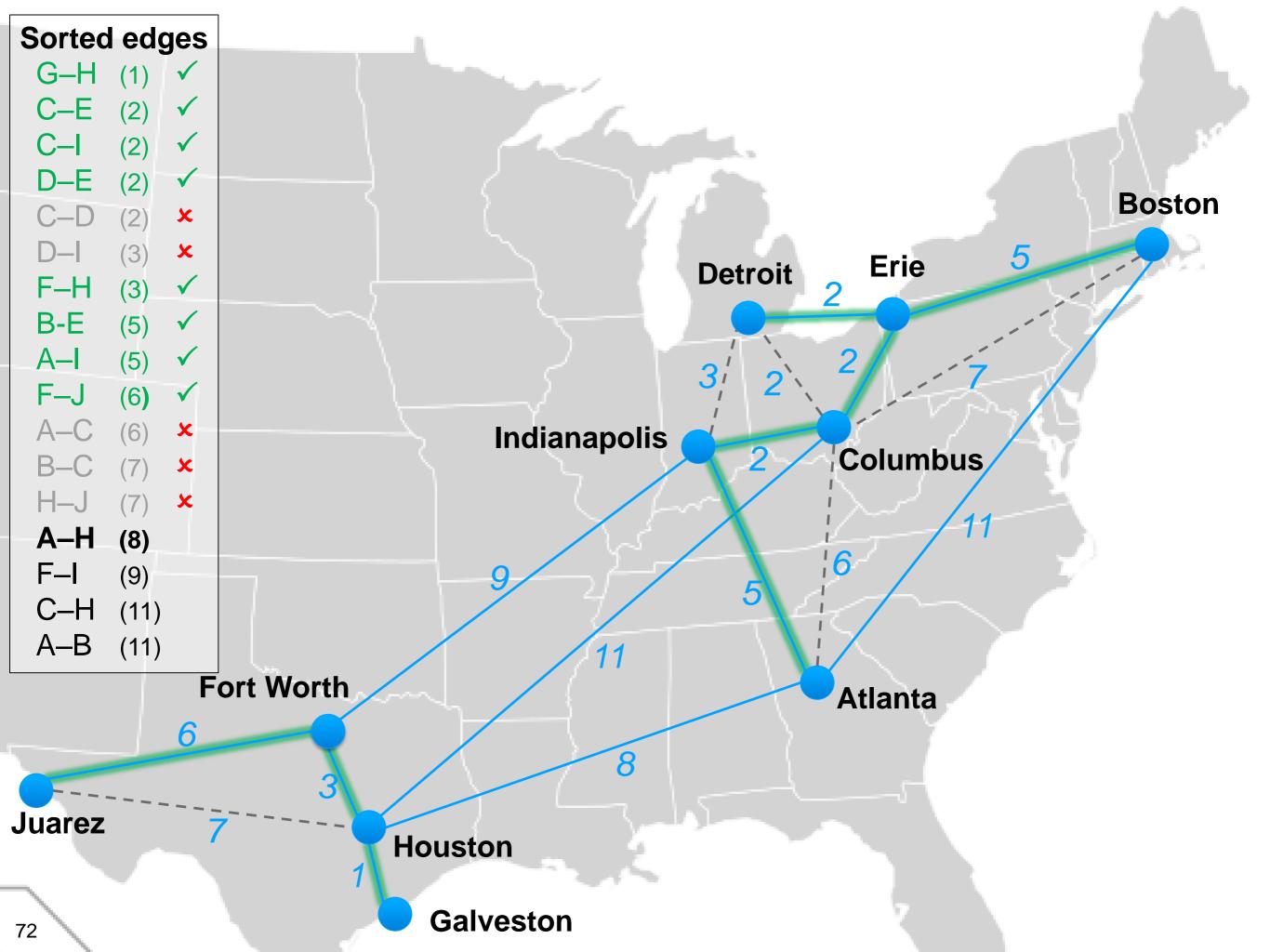


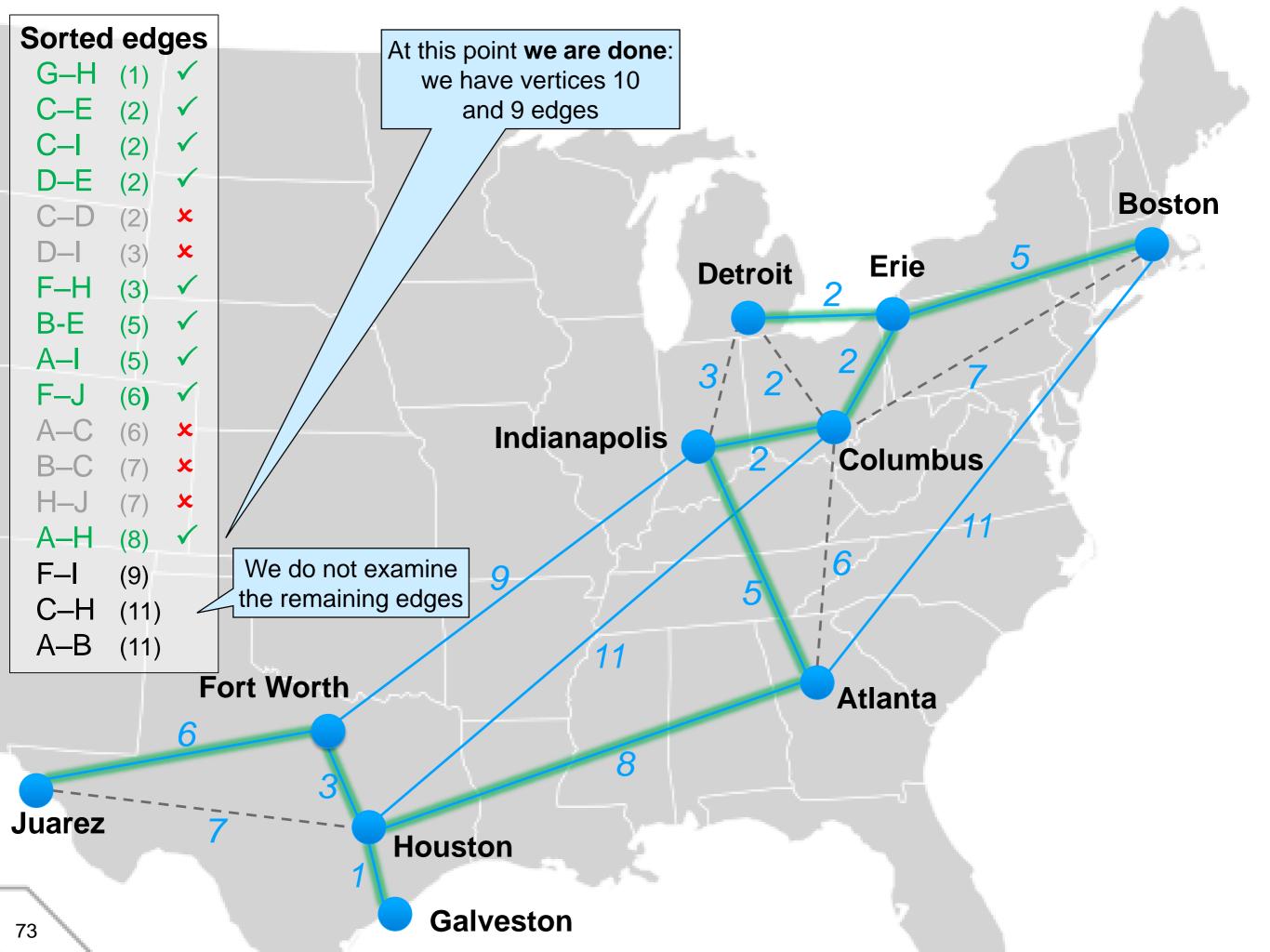












Prim's Algorithm

Prim's Algorithm

Robert Prim

 In the vertex-centric algorithm, use a priority queue with lower-weight edges having higher priority

Given a graph G, construct a spanning tree T for it

- 1. Pick an arbitrary vertex start in G and put it in T
 - \circ mark start

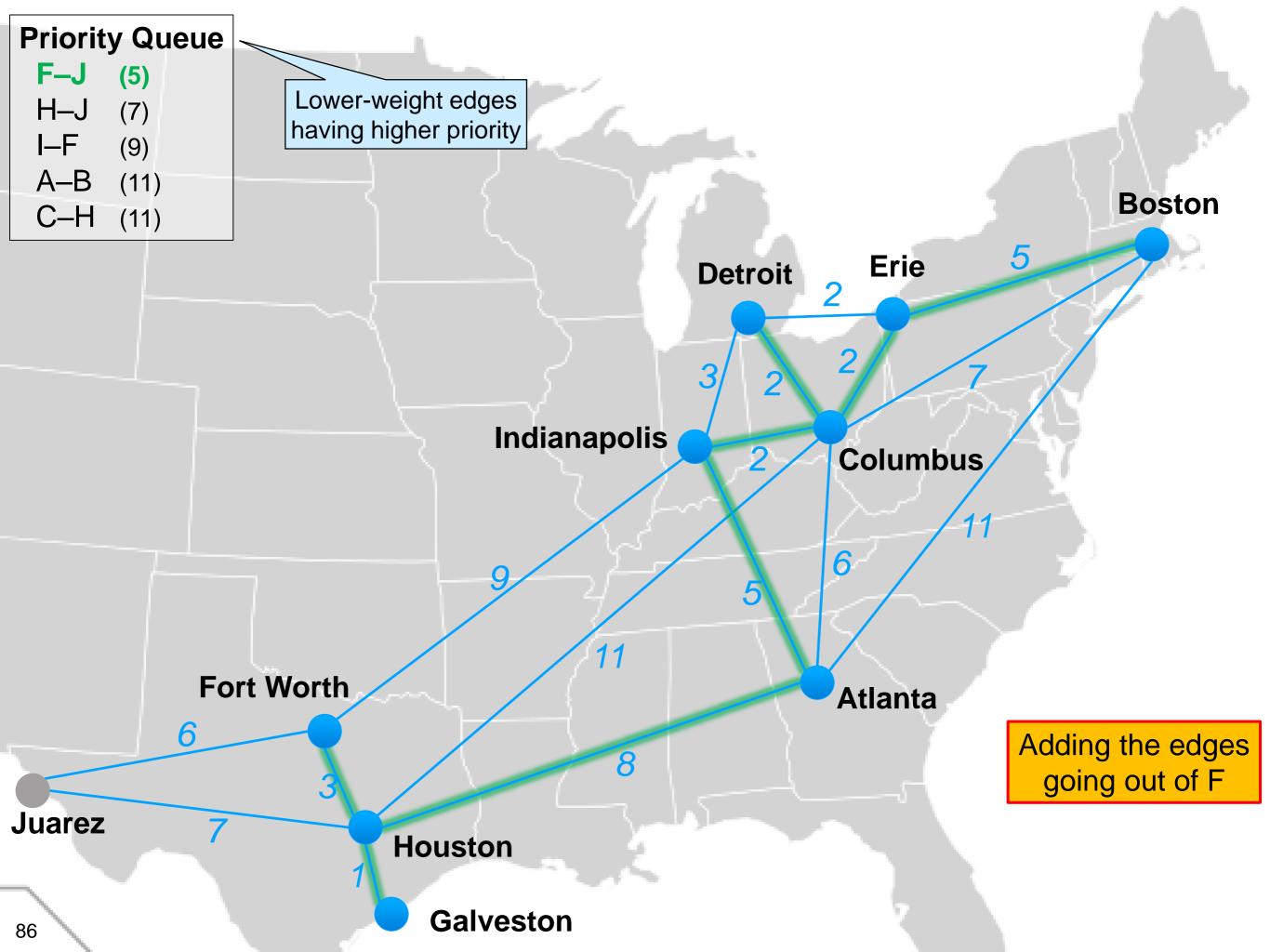
add all edges (start,w) in G to a priority queue

- 2. Repeat until the priority queue is empty
 - o pick an edge (u,v) from the priority queue
 - \succ if **v** is marked, discard it
 - add (u,v) to T

> mark v

- > add to the priority queue all edges (v,w) in G such that w is unmarked
- \odot stop once T has v-1 edges
- 3. If T has fewer than v-1 edges
 - \circ add an arbitrary unmarked vertex and continue with (1)







Complexity

 At most, Prim's algorithm puts every edge of G in the priority queue

> once from each endpoint

that's 2e steps

- 1. Pick an arbitrary vertex **start** in G and put it in T o mark **start**
 - o add all edges (start,w) in G to a priority queue
- 2. Repeat until the priority queue is empty
 - \odot pick an edge (u,v) from the priority queue
 - if v is marked, discard it
 - > add (u,v) to T
 - mark v
 - add to the priority queue all edges (v,w) in G such that w is unmarked
 - \odot stop once T has v-1 edges
- 3. If T has fewer than v-1 edges
 - o add an arbitrary unmarked vertex and continue with (1)
- At each step, the most expensive operation is adding/removing edges to/from the priority queue
 O(log e)
- Eventually adds all v vertices
 O(v)
- The complexity of Prim's algorithm is **O(v + e log e)**

Summary

• Spanning trees

Edge-centric algorithm: O(ev)

○ Vertex-centric algorithm: O(v + e) _____Clear winner

Minimum spanning trees
 Kruskal's algorithm: O(ev)
 Prim's algorithm: O(v + e log e) — Clear winner

