Spanning Trees



Review

® Graphs
O Vertices, edges, neighbors, paths, ...
O Dense, sparse

® Adjacency matrix ~
Implementation V| |¥

N

® Adjacency list
Implementation

—— ——
S S

* *i®/?/?
v ¥ ¥ ¥ ¥
®
Y




Review

® Graph search

O Determine whether two vertices are connected
» and possibly report a path that connects them

Remember the vertices

® Explore the graph by expanding the frontier ——_to visit next a work list

O Depth-first search

» Charge ahead until we find the target vertex or hit a dead-end
» then backtrack

In a stack

O Breadth-first search
» Explore the graph level-by level

® Complexity

In a queue

DFS BFS
< Adjacency list O(v +e) O(v +e)

>

Adjacency matrix O(v?) O(v?)




Trees



Cycles

® A cycle is a path from a vertex to itself
0 0-1-4-0 Is acycle
o 0-1-0 IS a cycle
o0 IS a cycle too

® A simple cycleis a cycle
with at least one edge and

without repeated edges

O 0-1-4-0 s a simple cycle

o 0-1-0 IS not a simple cycle
o0 IS not a simple cycle either

these are trivial cycles
/. y




Simple Cycles

A cycle without repeated edges
» and at least one edge

® Simple cycles are what forces us to use a mark array in
DFS and BFS

O After following edge (0,1) to go from O to 1,
It Is easy to avoid using (0,1) to go back to O

» remembering where we come from is trivial

O After following (0,1) and (1,4) to go from 0O to 4,
it is hard to know we shouldn’t use (0,4)

> unless we mark visited vertices

® Graphs without simple cycles are convenient to work with
O no need for mark arrays



Trees

® A connected graph without simple cycles is called a tree

® The are many ways to define a tree



A Recursive Definition

We can also define trees recursively

A tree is

® a vertex by itself O

® two trees connected by an edge




Another Recursive Definition

We can define trees recursively in several ways

A tree is

® a vertex by itself O

® a tree connected to a vertex by an edge




The Edges of a Tree

® A tree is a connected graph with v vertices and v-1 edges

N

11 vertices
10 edges




10

The Paths of a Tree

® A tree is a connected graph with exactly one path between

any two vertices
- &

e
PN

/



The Edges of a Tree

® \We can prove that these definitions are equivalent

O For example,
If we define a tree as a vertex by itself or a tree connected to a
vertex by an edge,
then if such a graph has v vertices it has v-1 edges

A vertex by itself | A tree connected to a vertex by an edge
o A

'—‘N
This graph has

1 vertex Assume by induction hypothesis that T
0 =1-1edges |has v vertices and v-1 edge.

A
base cas% Then, this graph has
* v+1 vertices

recursive case ev-1+1 = (v+1) - 1 edges

11



12

In Summary, a Tree is ...

A. a connected graph with no simple cycles

B. (recursive definition #1)
O a vertex
O two trees connected by an edge

C. (recursive definition #2)
O a vertex
O a tree connected to a vertex by an edge

D. a connected graph with v vertices and v-1 edges

E. a connected graph with exactly 1 path between any two
vertices



Forest

® A forest is a bunch of trees
O a graph where each connected component is a tree

that was the definition of a tree

® Other definitions =

O a forest is a eennected graph with no simple cycles
O a graph with at most one path between any two vertices

® A forest with v vertices has at most v-1 edges

2R



14

Reachablility Problem on a Tree

® \What Is the cost of DFS or BSF on a tree?

» assuming an adjacency list implementation

O(v) — always

O DFS and BFS cost O(v + e) in general

O In atree, e = v-1
» definition D

O S0, the cost reduces to O(v)

A. a connected graph with no simple cycles

B. (recursive definition #1)

O a vertex

O two trees connected by an edge
C. (recursive definition #2)

O a vertex

D. a connected graph with v vertices and v-1 edges_

E. a connected grapn witit exacty 1 path between

any two vertices




Are BSTs Trees?

® A binary search tree Is a tree where every vertex has at
most 3 edges

O two children
O one parent

(plus there Is the ordering invariant)

® \Which node Is the root?

O any vertex with at most 2 edges
» the root does not have a parent

T~

Simply hoist the
graph by that node




16

Spanning Trees



17

Reaching Nodes Over and Over

® Some applications need to frequently reach a

connected vertex in a graph

» diagnosis in communication networks
» billing in power networks, ..

® \We can use DFS or BFS

O but this Is expensive: O(v + e) each query
O It may go through a different path for the same query each time

® \We can remember the paths

O but this requires a lot of space

» O(v?) in each vertex
Q each vertex needs to remember v-1 paths
Q each of these paths can contain up to v-1 vertices

» O(v3) for the whole graph




18

Reaching Nodes Over and Over

® Some applications need to frequently reach a
connected vertex in a graph

O using DFS or BFS is too expensive
O remembering paths to all vertices is O(v?) in each vertex

ldea

® Factor out the common subpaths by superimposing a
tree on the graph

O provides a path from every vertex to every other vertex

O requires O(v) space in each vertex
» O(v) total if we have a “path server” vertexk

@ ThIS iS a Span N | ng tree If the graph has more than one connected

component, we superimpose one spanning
tree on each connected component —
this is a spanning forest




19

Spanning Tree

® Factor out the common subpaths by superimposing

a tree (or forest) on the graph

Formally,

® A subgraph of a graph G is a graph with th
vertices and a subset of its edges

® A spanning tree for G is a subgraph that
O has the same connectivity as G

e Ssame

A graph has a spanning trees
only if it consists of a

O and Is a tree

® A spanning forest for G Is a subgraph that
O has the same connectivity as G

O and is a forest k

a bunch of spanning trees

 Single connected component




20

The Spanning Trees of a Graph

® Most graphs have
multiple spanning trees

® Here are some

® In general, any spanning tree will do



21

How to Compute a Spanning Tree?

Two classic algorithms

® The edge-centric algorithm

Start with a spanning forest of singleton trees
and add edges from the graph as long as they

don’t form a cycle

® The vertex-centric algorithm

Start with a single vertex in the tree
and add edges to vertices not in the tree

T~

This leverages definition B
Atree is

* a vertex, or

* two trees connected by an edge

S

This leverages definition C

Atree s

* a vertex, or

* a trees connected to a vertex
by an edge




22

Edge-centric Algorithm



The Edge-centric Algorithm

Start with a spanning forest of singleton trees and add
edges from the graph as long as they don’t form a cycle

® Let's run it on the example graph

© @
®

© @
/N

A spanning forest
of singleton nodes

23

© ©

@ | @

O @

) ®
(2

The resulting
spanning tree




24

Towards an Actual Algorithm

Start with a spanning forest of singleton trees and add
edges from the graph as long as they don’t form a cycle

Given a graph G, construct a spanning tree T for It

1. Start T with the Isolated vertices of G

2. For each edge (u,v) In G

O are u and v already connected in T?
» yes: discard the edge

»no:additto T X

If G has more than 1 connected
component, this will produce
a spanning forest




25

Towards an Actual Algorithm

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G

2. For each edge (u,v) In G

O are u and v already connected in T?

» yes: discard the edge
»no.additto T

® |s there room for improvement?
O Stop as soon as we added v-1 edgesin T

e

By definition D
A tree is a connected graph
v vertices and v-1 edges




26

The Edge-centric Algorithm

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G

2. For each edge (u,v) In G

O are u and v already connected in T?
» yes: discard the edge
»no:additto T

O Stop once T has v-1 edges >

® \What Is its complexity?

IThis won't apply if G has more
than 1 connected component




27

Complexity

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G

2. For each edge (u,v) In G

O are u and v already connected in T?

» yes: discard the edge
»no.additto T

O Stop once T has v-1 edges

O(v) %This IS just graph_new

O(V) Use DFS or BFS
on T for this

O(1) This is
graph_addedge




28

Complexity

Given a graph G, construct a spanning tree T for it

1. Start T with the Isolated vertices of G
2. For each edge (u,v) In G

O(v)

e times

<O are u and v already connected in T?

» yes: discard the edge
»no.additto T

O Stop once T has v-1 edges

® We run DFS/BFS on T

O at most v-1 edges

O the cost is O(v)
» not O(e)

O(V Use DFS or BFS
. on T for this

O(1)



29

Complexity

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G O(V)

2. For each edge (u,v) in G

O are u and v already connected in T? O(v)
» yes: discard the edge
>no:additto T O(1)

o Stop once T has v-1 edges >

® Even if we end up adding at most v-1 edges, we may need
to go through all the edges in e



30

Complexity

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G O(V)

2. For each edge (u,v) In G e times
O are u and v already connected in T? O(Vv)

» yes: discard the edge
»no:additto T O(1)

O Stop once T has v-1 edges

® The edge-centric algorithm has complexity O(ev)



31

Greedy Algorithms

® At each step, we choose a candidate edge to add to the
tree
® \Which edge does not matter

O we will get a spanning tree in the end
» possibly a different one for each choice

® Algorithms where we have to make a choice but the actual
choice does not matter are called greedy



32

Greedy Algorithms

® Algorithms where we have to make a choice but the actual
choice does not matter are called greedy

® DFS and BFS also involve making a choice
» which vertex to examine next

O but if we don'’t pick the right one we may not compute the correct
answer

O we need to remember the alternative choices
> In a work list

DFS and BFS are not greedy

® Greedy algorithms are great
O no need to remember alternatives
O but few problems have greedy algorithms that solve them



33

Intermission



How are
maze

screen-
savers
generated?




35

How to Create a Screensaver Maze?

Start with an n * m grid of Place a node in every cell and

cells an edge between adjacent cells
0000
10000
10000
0,000




How to Create a Screensaver Maze?

Build a spanning tree for Dissolve the cell walls where
this graph Its edges cross

-0 0101 @ 00010
-0 000 @ * 100
o olo o o ¢ ¢ ¢ ¢ o
o olo o e oo 0o




How to Create a Screensaver Maze?

Pick a start and an end Get rid of the graph
along the perimeter

start start
Q000
>0 009
e S S B \
o ¢ o 0o @

end end



How to Solve a Screensaver Maze?

Run DFS on the spanning
tree
start start

I

O_é\‘

end

=

The animation is DFS exploring
vertices and backtracking




What about Pipe Screensavers?

y Same thing In
3 dimensions




40

Vertex-centric Algorithm



41

The Vertex-centric Algorithm

Start with a single vertex in the tree and
add edges to vertices not in the tree

® Let's run it on the example graph

©@ @ ©® = © = ©

4 0,1) > 4 (1,4) > (1,2)> (4)
1 2

Start with O

The resulting
spanning tree




42

Towards an Algorithm

Start with a single vertex in the tree and add edges to vertices not
In the tree

Given a graph G, construct a spanning tree T for It

1.
2.

Pick an arbitrary vertex start in Gand putitin T

Repeat until all verticesare in T

O find an edge (u,v) in G between a vertex u in T and
avertexvnotinT

cadd (uyv)toT

Assume G has a
single connected

How do we find (u,v)? component

O Mark the verticeswe addto T
O Keep track of their neighbors



Towards an Actual Algorithm

Given a graph G, construct a spanning tree T for it

1. Pick an arbitrary vertex start in Gand putitin T
O mark start
O add all edges (start,w) in G to a work list

2. Repeat until the work list is empty Consider the neighbors of

the vertices added to T

O pick an edge (u,v) from the work list
» If v IS marked, discard it
»add (uv)toT
» mark v
» add to the work list all edges (v,w) in G such that w is unmarked

O stop once T has v-1 edges
\ This is our early exit condition

Assume G has a
single connected
component

43




44

Towards an Actual
Algorithm

® This looks just like
BSF and DFS

O depending on the work list

1. vertex startin Gand putitin T
O mark start
O add all edges (start,w) in G to a work list

2. Repeat until the work list is empty

O pick an edge (u,v) from the work list
» if v is marked, discard it
»add (u,v)toT
» mark v

» add to the work list all edges (v,w) in G
such that w is unmarked

O

® The edges followed by BFS and DFS form a spanning

tree!




45

Disconnected
Graphs

® If G has more than one
connected component,

1. Pick an arbitrary vertex start in G and putitin T
O mark start
O add all edges (start,w) in G to a work list

2. Repeat until the work list is empty

O pick an edge (u,v) from the work list
» if v is marked, discard it
»add (u,v)toT
» mark v

» add to the work list all edges (v,w) in G
such that w is unmarked

O stop once T has v-1 edges

this will find a spanning tree only for start’'s component

® \We need to repeat with a start vertex from each connected

component




Disconnected Graphs

Given a graph G, construct a spanning forestT for it

1. Pick an arbitrary vertex start in Gand putitin T

O mark start
O add all edges (start,w) in G to a work list

2. Repeat until the work list Is empty

O pick an edge (u,v) from the work list
» If v IS marked, discard it
»add (uv)toT
» mark v
» add to the work list all edges (v,w) in G such that w is unmarked

O St

. If T has fewer than v-1 edges
O add an arbitrary unmarked vertex and continue with (1)

46



47

Complexity

® The vertex-centric algorithm
has the same complexity as
DFS and BFS

» If we use a stack or a queue as
the work list

O(v +e)

1. Pick an arbitrary vertex start in G and putitin T
O mark start
O add all edges (start,w) in G to a work list

2. Repeat until the work list is empty

O pick an edge (u,v) from the work list
» if v is marked, discard it
»add (u,v)toT
» mark v

» add to the work list all edges (v,w) in G
such that w is unmarked

O stop once T has v-1 edges

3. If T has fewer than v-1 edges

O add an arbitrary unmarked vertex and
continue with (1)

Thistoo is a
greedy algorithm




48

Minimum Spanning Trees



Weighted Graphs

® A graph with measures associated with 0
the edges is a weighted graph

O the measures are called weights

17
O for us, they will be integers

13

23

® The weights represent some kind of @/

cost or value of using that edge
> time

» distance
» power, ...

49




The weight of an edge is the
driving distance between the

cities, rounded to the next 100 miles

50

Fort Worth

Ho

Indianapolis

uston

Galveston

Detroit

Erie

Atlanta

Boston




Minimum Spanning Tree

® Of all the spanning trees for a weighted graph, one with
the least total weight

Q the sum of weights of all its edges

IS called a minimum spanning tree

® A graph may have several minimum spanning trees
O If all the weights are the same,
every spanning tree is a k
minimum spanning tree

They should be called
minimal spanning trees




52

Computing MSTs

® The algorithms for computing spanning trees are easily
adapted to minimum spanning trees

O The edge-centric algorithm for MSTs is called
Kruskal’s algorithm

O The vertex-centric algorithm for MSTs Is called
Prim’s algorithm



53

Kruskal’s Algorithm



54

The Cycle Property

If C is a simple cycle in graph G, and e is an edge of
maximal weight in C, then there is some MST of G that
does not contain e

Proof

® Assume e Is the edge (u,v) and T Is a spanning tree
O elther eis notin T, and we are done /\
ooreisinT T \
> if we remove e, we obtain two spanning trees T, and T, u

» because e is part of a cycle in G, there is another
edge e’ we can add to connect T, and T, e

» let T' be the resulting tree /

» since e had maximal weight, the total weight of T
is < the total weight of T




55

The Cycle Property

If C is a simple cycle in graph G, and e is an edge of
maximal weight in C, then there is some MST of G that
does not contain e

® |f we construct a spanning tree by adding the edges of

lowest weight that won't create a simple cycle first, we will
obtain a minimum spanning tree

O This is the basic insight of Kruskal's algorithm



Kruskal's Algorithm

® Add a preliminary step to the
edge-centric algorithm:

sort the edges In increasing weight order

Given a graph G, construct a minimum spanning tree T for it

<__0. Sort the edges of G by increasing weight >
1. Start T with the isolated vertices of G

2. For each edge (u,v) In G

O are u and v already connected in T?
» yes: discard the edge
»no.additto T

O Stop once T has v-1 edges

56



57

Complexity of Kruskal's Algorithm

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight @e log e)

1. Start T with the isolated vertices of G O(v) k
2. For each edge (u,v) In G e imes  [Jaing mergesort
O are u and v already connected in T? O(v) for example
» yes: discard the edge
»no.additto T O(1)

O Stop once T has v-1 edges

® Kruskal's algorithm has complexity O(ev)
O That's O(e log e + ev) above

O butlog e € O(v)
» because e € O(v?), so log e € O(log V)
»and logv € O(v)



Sorted edges

G—H
C-E
C-I
D-E
C-D
D-|
F-H
B-E
A
F-J
A-C
B—C
H-J
A-H
=
C-H
A-B

(1)
(2)
(2)
(2)
(2)
(3)
(3)
(5)
(5)
(6)
(6)
(7)
(7)
(8)
9)
(11)
(11)

58

Fort Worth

T~

from smallest to
largest weight

Indianapolis

Houston

Galveston

Detroit

Erie

Atlanta

Boston




Sorted edges
G-H (1) ——
C-E (2
C-l (2
D-E (2
C-D (2) Boston

IEZ)—II—I g; Detroit Erie
B-E (5)
A—l (5
F-J (6)
A-C (6) Indianapolis
B-C (7
H-J (7)
A—H (8)
F—I  (9)
C-H (11)
A-B (11)

Next edge we examine

Fort Worth

Atlanta

Houston

59 Galveston



Sorted edges
G-H (1 v
C-E (2
C-l (2
D-E (2
C—D EZ; Boston

IEZ)—II—I 8 Detroit Erie
B-E (5)
A—l (5
F-J (6)
A-C (6) Indianapolis
B-C (7
H-J (7)
A—H (8)
F—I  (9)
C-H (11)
A-B (11)

Fort Worth

Atlanta

Houston

60 Galveston



Sorted edges
G-H 1) vV
C-E @ VYV
C-l (2

(D:_E g; Boston
D-l (3)
F-H (3)
B-E (5)
A-l (5
F-J (6)
A-C (6) Indianapolis
B-C (7)
H-J (7)
A—-H (8)
F-I  (9)
C-H 11)
A-B (11)

Detroit Erie

Fort Worth

Atlanta

Houston

61 Galveston



Sorted edges

G—H
C-E
o
D-E
C-D
D-I
F—H
B-E
Al
F-J
A—-C
B—C
H-J
A-H
=
C-H
A-B

1) v
2 v
2 v
(2)
(2)
(3)
(3)
(5)
(5)
(6)
(6)
(7)
(7)
(8)
(9)
(11)
(11)

62

Fort Worth

Indianapolis

Houston

Galveston

Atlanta

Boston




Sorted edges
G-H 1) vV
C-E @ VYV
C-l @ VYV
D-E ) vV
C-D (2

D-l (3)

F-H (3)
B-E (5
A-l (5)
F-J (6)
A-C (6)
B-C (7)
H-J (7)
A-H (8)
F-l (9
C-H (1)
A-B (11)

Fort Worth

63

Detroit

Indianapolis

Houston

Galveston

Erie

Atlanta

Boston




Sorted edges
G-H (1)
C-E (2
(2
-E (2

NN

D-1 (3)
F-H (3)
B-E (5)
A-l  (5)
F-J (6)
A-C (6)
B-C (7)
H-J (7)
A-H (8
F—l  (9)
C-H @1
A-B (11)

Fort Worth

64

Detroit

Indianapolis

Houston

Galveston

2

Erie

Atlanta

Boston




Sorted edges

G-H
C-E

(1)
(2)
(2)
(2)

(3)
(5)
(5)
(6)
(6)
(7)
(7)
(8)
9)
(11)
(11)

AR A NN NN

65

Fort Worth

Detroit

Indianapolis

Houston

Galveston

Erie

Atlanta

Boston




Sorted edges

G-H
C-E

(1)
(2)
(2)
(2)

AR I N N NN

(3)
(5)
(5)
(6)
(6)
(7)
(7)
(8)
9)
(11)
(11)

66

Fort Worth

Detroit

Indianapolis

Houston

Galveston

Erie

Atlanta

Boston




Sorted edges

G-H
C-E

(1)
(2)
(2)
(2)

(3)
(5)
(5)
(6)
(6)
(7)
(7)
(8)
9)
(11)
(11)

NN & & SN

67

Fort Worth

Detroit

Indianapolis

Houston

Galveston

Erie

Atlanta

Boston




Sorted edges

G-H
C-E
C-|
D-E
C-D
DI
F—H
B-E

A-l
F-J
A-C
B-C
H-J
A—H
F—I
C-H
A-B

(1)
(2)
(2)
(2)
(2)
(3)
(3)
(5)
(5)
(6)
(6)
(7)
(7)
(8)
9)
(11)
(11)

D NN NI I T N N NN

68

Fort Worth

Detroit Erie

Indianapolis

Atlanta

Houston

Galveston

11

Boston



Sorted edges
H (1)
E (2
(2
E (2
D (2
I (3)
H (3)
E (5
A-l (5
F-J (6)
A—-C (6)
B-C (7)
H-J (7)
A—-H (8)
F—1I  (9)
C-H 11)
A-B (11)

G-
C-
C-
D—
C—
D—
F
B-

AN NN KR N N N N

Fort Worth

69

Detroit Erie

Indianapolis

Atlanta

Houston

Galveston

11

Boston



Sorted edges

G-H
C-E
C-|
D-E
C-D
DI
F—H
B-E

A-l
F-J
A-C
B-C
H-J
A—H
F—I
C-H
A-B

(1)
(2)
(2)
(2)
(2)
(3)
(3)
(5)
(5)
(6)
(6)
(7)
(7)
(8)
9)
(11)
(11)

O N N U A N N NN

70

Fort Worth

Indianapolis

Houston

Galveston

Detroit

Erie

Atlanta

11

Boston




Sorted edges

G-H
C-E
C-|
D-E
C-D
DI
F—H
B-E

A-l
F-J
A-C
B-C
H-J
A—H
F—I

(1)
(2)
(2)
(2)
(2)
(3)
(3)
(5)
(5)
(6)
(6)
(7)
(7)
(8)
9)
(11)
(11)

AR A N N Y YK N N NN

71

Fort Worth

Indianapolis

Houston

Galveston

Detroit

Erie

Atlanta

11



Sorted edges
H (1)
E (2
(2
E (2
D (2
I (3)
H (3)
E (5
A-l (5
F-J (6)
A—-C (6)
B-C (7)
H-J (7)
A-H (8)
F—1I  (9)
C-H 11)
A-B (11)

G-
C-
C-
D—
C—
D—
F
B-

AR T N N U MR O N N NN

Fort Worth

Lo -
—_—
L -
—
—

72

Indianapolis

Houston

Galveston

Detroit

Erie

Atlanta

11




Sorted edges
G-H (1)
C-E (2
C-l (2
D-E (2

F-H @)
B-E (5
A-l  (5)
F-J (6)

AR T N N U MR O N N NN

T
I
&
-

F-I (9

C-H (11) _~the remaining edges

A-B (11)

Lo -
—_—
L -
—
—

73

At this point we are done:
we have vertices 10
and 9 edges

Indianapolis

We do not examine

Fort Worth

Houston

Galveston

Detroit

Erie

Atlanta




74

Prim’s Algorithm



75

Prim’'s Algorithm

Robert Prim

® In the vertex-centric algorithm, use a priority gueue
with lower-weight edges having higher priority

Given a graph G, construct a spanning tree T for it

1. Pick an arbitrary vertex startin Gand putitinT
O mark start

O add all edges (start,w) in G to @ority queu)

2. Repeat until theQriority queudis empty
O pick an edge (u,v) from the@)rity queu)

» if v is marked, discard it

»add (u,v)toT

» mark v

> add to theCpriority queudall edges (v,w) in G such that w is unmarked

O stop once T has v-1 edges

3. If T has fewer than v-1 edges
O add an arbitrary unmarked vertex and continue with (1)







Priority Queue

A-l (5 T~

A—-C (6) Lower-weight edges
having higher priority

A-H (8
A-B (11)
Boston
Detroit Erie O
2
3/ 2 2 !
Indianapolis :
: 2 Columbus
9
11
Fort Worth Atlanta
6 : Adding the edges
3 going out of A
Juarez 7
1- Houston

77 Galveston



Priority Queue
ol |
D=l (3 Lower-weight edges
) having higher priority

A-C (6)
A—-H (8)
-F () Boston
AB (W) Detroit Erie O
2
3/ 2 - !
Indianapolis .
2 Columbus
11
9 A |[°
11
Fort Worth Atlanta
6 : 3 Adding the edges
3 going out of |
Juarez 7 N\
Houston We skip the edges
1 to marked vertices

-3 Galveston



Priority Queue
C-D (2 T~
C-E (2 Lower-weight edges
D-1 (3 having higher priority
A-C (6)
B-C (7)
R ' Erie
-F (9 Detroit 5
A-B (11) .
C-H (11 3/ 5 5 -
Indi li
ndianapolis V L
11
9 - 6
11
Fort Worth NG
; 3
3
'Y l " Houston
1

79

Galveston

Boston

Adding the edges
going out of C




Priority Queue
C-E () T~
D-E (2) Lower-weight edges
D-1 (3 having higher priority
A-C (6)
B-C (7)
A-H (8)
I-F  (9)
A-B (11)
C-H (11)
9
Fort Worth
6
3
Juarez 7 .
1--‘ Houston

80

Galveston

11

Detroit

Erie
2

3

Indianapolis v

2

Atlanta

7

Columbus

11

Boston

Adding the edges
going out of D




Priority Queue
(2) T~

Detroit

Erie

2

3

2

7

Indianapolis
¥ V Columbus

D—-E
D-1 (3 Lower-weight edges
B—E (5) \\I having higher priority
A-C (6) The next 2 edges have
B-C (7) marked endpoints;
A-H (8) we skip them
-F  (9)
A-B (11)
C-H (11)
9
Fort Worth
6 "
3
Juarez 7 .
1-‘ Houston

81

Galveston

11

11

Atlanta

Boston

Adding the edges
going out of E




Priority Queue
B-E (5) T~
A-C (6) Lower-weight edges
having higher priority

B-C (@)
A—H (8)
A o Boston
A-B (11) | ! >
A8 W Detroit 5 rg
3 : /
Indianapolis V Columbus
11
9 5 .
11
Fort Worth Atlanta
3
Juarez [ |
1\/ Houston

82 Galveston



Priority Queue
A-C (6 T~
B—C §7; Lower-weight edges
A-H (8) \ having higher priority

I-F (9) \'The next 2 edges have
A-B (11) marked endpoints; Boston
C—H 11 we skip them | .

N Detroit Erie O

2

3
Indianapolis V
) 5
11
Fort Worth Atlanta
6 - 3 Adding the edges
2 going out of B

uae / - Houston

1
83 Galveston



Erie

2

Priority Queue
H-G (1) T~ e
F-H (3) Lower—welg te.ggs
H-J (7) having higher priority
-F  (9)
A-B (11)
C-H (11 |
v Detroit
3
Indianapolis V
9
Fort Worth
: 3
3
Juarez 7
A Houston

84

Galveston

2

Atlanta

Boston

Adding the edges
going out of H




Priority Queue x

Erie

2

F-H (3
H—J §7; Lower-weight edges
-F  (9) having higher priority
A-B (11)
C-H (1)
Detroit
3
Indianapolis V
9
Fort Worth
> 3
3
uae ! Houston
1

85

Galveston

2

Atlanta

Boston

Adding the edges
going out of G




Priority Queue x

Erie
2

F-J (5
H—J 8 Lower-weight edges
-F  (9) having higher priority
A-B (11)
C-H (1)
Detroit
3
Indianapolis V
9
Fort Worth
> 3
uae / Houston

86

1
Galveston

2

Atlanta

Boston

Adding the edges
going out of F




Priority Queue x

H-J (7)
I-F  (9)
A-B (11)
C-H 1)

Lower-weight edges
having higher priority

87

Indianapolis

Fort Worth

Houston

Galveston

Detroit

Boston

Erie

Atlanta

At this point we are done:
there are 10 vertices
and 9 edges




1. Pick an arbitrary vertex start in G and putitin T
O mark start

CO m p I eXIty O add all edges (start,w) in G to a priority queue

2. Repeat until the priority queue is empty
O pick an edge (u,v) from the priority queue
» if v is marked, discard it

® At most, Prim’s algorithm > add (u) to T
. » mark v

pUtS every Edge Of G N the » add to the priority queue all edges (v,w) in G

- - such that w is unmarked
prlOrlty queue O stop once T has v-1 edges

» once from each endpoint 3. If T has fewer than v-1 edges

) O add an arbitrary unmarked vertex and

that's 2e steps continue with (L)

® At each step, the most expensive operation Is
adding/removing edges to/from the priority queue

O O(log e)
® Eventually adds all v vertices
O O(V)

® The complexity of Prim’s algorithm is O(v + e log e)



89

Summary

® Spanning trees
O Edge-centric algorithm:

O Vertex-centric algorithm: O(v + e)

O(ev)

® Minimum spanning trees

O Kruskal's algorithm:
O Prim’s algorithm:

O(ev)

Clear winner

O(v + e log e) %Clear winner

VAN

But can we improve

Kruskal’s algorithm?




