
Spanning Trees

Review

 Graphs

o Vertices, edges, neighbors, paths, …

oDense, sparse

 Adjacency matrix

implementation

 Adjacency list

implementation

0

1

3

4

2

0

1

2

3

4

1 4

4

0 2 4

1 4 3

0 1 2

0 1 2 3 4

0

1

2

3

4

1

Review

 Graph search

oDetermine whether two vertices are connected

and possibly report a path that connects them

 Explore the graph by expanding the frontier

oDepth-first search

Charge ahead until we find the target vertex or hit a dead-end

 then backtrack

o Breadth-first search

Explore the graph level-by level

 Complexity

0

1

3

4

2

DFS BFS

Adjacency list O(v + e) O(v + e)

Adjacency matrix O(v2) O(v2)

Remember the vertices

to visit next a work list

in a stack

in a queue

2

Trees

3

Cycles

 A cycle is a path from a vertex to itself

o 0–1–4–0 is a cycle

o 0–1–0 is a cycle

o 0 is a cycle too

 A simple cycle is a cycle

with at least one edge and

without repeated edges

o 0–1–4–0 is a simple cycle

o 0–1–0 is not a simple cycle

o 0 is not a simple cycle either

0

1

3

4

2

these are trivial cyclesthese are trivial cycles

4

Simple Cycles

A cycle without repeated edges
and at least one edge

 Simple cycles are what forces us to use a mark array in

DFS and BFS

o After following edge (0,1) to go from 0 to 1,

it is easy to avoid using (0,1) to go back to 0

 remembering where we come from is trivial

o After following (0,1) and (1,4) to go from 0 to 4,

it is hard to know we shouldn’t use (0,4)

unless we mark visited vertices

 Graphs without simple cycles are convenient to work with

o no need for mark arrays

0

1

3

4

2

5

Trees

 A connected graph without simple cycles is called a tree

 The are many ways to define a tree

6

A Recursive Definition

We can also define trees recursively

A tree is

 a vertex by itself

 two trees connected by an edge

7

Another Recursive Definition

We can define trees recursively in several ways

A tree is

 a vertex by itself

 a tree connected to a vertex by an edge

8

The Edges of a Tree

 A tree is a connected graph with v vertices and v-1 edges

11 vertices

10 edges

9

The Paths of a Tree

 A tree is a connected graph with exactly one path between

any two vertices

10

The Edges of a Tree

 We can prove that these definitions are equivalent

o For example,

if we define a tree as a vertex by itself or a tree connected to a

vertex by an edge,

then if such a graph has v vertices it has v-1 edges

A vertex by itself

This graph has

• 1 vertex

• 0 = 1-1 edges

A tree connected to a vertex by an edge

Assume by induction hypothesis that T

has v vertices and v-1 edge.

Then, this graph has

• v+1 vertices

• v-1+1 = (v+1) - 1 edges

T

base case

recursive case

11

In Summary, a Tree is …

A. a connected graph with no simple cycles

B. (recursive definition #1)

o a vertex

o two trees connected by an edge

C. (recursive definition #2)

o a vertex

o a tree connected to a vertex by an edge

D. a connected graph with v vertices and v-1 edges

E. a connected graph with exactly 1 path between any two

vertices

12

Forest

 A forest is a bunch of trees

o a graph where each connected component is a tree

 Other definitions

o a forest is a connected graph with no simple cycles

o a graph with at most one path between any two vertices

 A forest with v vertices has at most v-1 edges

that was the definition of a tree

13

Reachability Problem on a Tree

 What is the cost of DFS or BSF on a tree?
assuming an adjacency list implementation

O(v) — always

oDFS and BFS cost O(v + e) in general

o in a tree, e = v-1

definition D

o so, the cost reduces to O(v)

A. a connected graph with no simple cycles

B. (recursive definition #1)
o a vertex

o two trees connected by an edge

C. (recursive definition #2)
o a vertex

o a tree connected to a vertex by an edge

D. a connected graph with v vertices and v-1 edges

E. a connected graph with exactly 1 path between

any two vertices
14

Are BSTs Trees?

 A binary search tree is a tree where every vertex has at

most 3 edges

o two children

o one parent

(plus there is the ordering invariant)

 Which node is the root?

o any vertex with at most 2 edges

 the root does not have a parent

Simply hoist the

graph by that node

15

Spanning Trees

16

Reaching Nodes Over and Over

 Some applications need to frequently reach a

connected vertex in a graph
diagnosis in communication networks

billing in power networks, ..

 We can use DFS or BFS

o but this is expensive: O(v + e) each query

o it may go through a different path for the same query each time

 We can remember the paths

o but this requires a lot of space

O(v2) in each vertex

 each vertex needs to remember v-1 paths

 each of these paths can contain up to v-1 vertices

O(v3) for the whole graph

0

1

3

4

2

17

Reaching Nodes Over and Over

 Some applications need to frequently reach a

connected vertex in a graph

o using DFS or BFS is too expensive

o remembering paths to all vertices is O(v2) in each vertex

Idea

 Factor out the common subpaths by superimposing a

tree on the graph

o provides a path from every vertex to every other vertex

o requires O(v) space in each vertex

O(v) total if we have a “path server” vertex

 This is a spanning tree

0

1

3

4

2

If the graph has more than one connected

component, we superimpose one spanning

tree on each connected component —

this is a spanning forest

18

Spanning Tree

 Factor out the common subpaths by superimposing

a tree (or forest) on the graph

Formally,

 A subgraph of a graph G is a graph with the same

vertices and a subset of its edges

 A spanning tree for G is a subgraph that

o has the same connectivity as G

o and is a tree

 A spanning forest for G is a subgraph that

o has the same connectivity as G

o and is a forest

0

1

3

4

2

a bunch of spanning trees

A graph has a spanning trees

only if it consists of a

single connected component

19

The Spanning Trees of a Graph

 Most graphs have

multiple spanning trees

 Here are some

 In general, any spanning tree will do

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

…

20

How to Compute a Spanning Tree?

Two classic algorithms

 The edge-centric algorithm

Start with a spanning forest of singleton trees

and add edges from the graph as long as they

don’t form a cycle

 The vertex-centric algorithm

Start with a single vertex in the tree

and add edges to vertices not in the tree

This leverages definition B
A tree is

• a vertex, or

• two trees connected by an edge

This leverages definition C
A tree is

• a vertex, or

• a trees connected to a vertex

by an edge

21

Edge-centric Algorithm

22

The Edge-centric Algorithm

Start with a spanning forest of singleton trees and add

edges from the graph as long as they don’t form a cycle

 Let’s run it on the example graph

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

(0,1)? (0,4)? (1,4)? (1,2)?

(1,2)? (2,3)?

0

1

3

4

2

(2,4)?

A spanning forest

of singleton nodes

The resulting

spanning tree
23

Towards an Actual Algorithm

Start with a spanning forest of singleton trees and add

edges from the graph as long as they don’t form a cycle

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G

o are u and v already connected in T?

yes: discard the edge

no: add it to T

If G has more than 1 connected

component, this will produce

a spanning forest

24

Towards an Actual Algorithm

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G

o are u and v already connected in T?

yes: discard the edge

no: add it to T

 Is there room for improvement?

o Stop as soon as we added v-1 edges in T

By definition D
A tree is a connected graph

v vertices and v-1 edges

25

The Edge-centric Algorithm

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G

o are u and v already connected in T?

yes: discard the edge

no: add it to T

o Stop once T has v-1 edges

 What is its complexity?

This won’t apply if G has more

than 1 connected component

26

Complexity

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G

o are u and v already connected in T?

yes: discard the edge

no: add it to T

o Stop once T has v-1 edges

O(v) This is just graph_new

Use DFS or BFS

on T for this

e times

O(v)

O(1) This is

graph_addedge

27

Complexity

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G

o are u and v already connected in T?

yes: discard the edge

no: add it to T

o Stop once T has v-1 edges

 We run DFS/BFS on T

o at most v-1 edges

o the cost is O(v)

not O(e)

O(v)

Use DFS or BFS

on T for this

e times

O(v)

O(1)

28

Complexity

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G

o are u and v already connected in T?

yes: discard the edge

no: add it to T

o Stop once T has v-1 edges

 Even if we end up adding at most v-1 edges, we may need

to go through all the edges in e

O(v)

e times

O(v)

O(1)

29

Complexity

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G

o are u and v already connected in T?

yes: discard the edge

no: add it to T

o Stop once T has v-1 edges

 The edge-centric algorithm has complexity O(ev)

O(v)

e times

O(v)

O(1)

30

Greedy Algorithms

 At each step, we choose a candidate edge to add to the

tree

 Which edge does not matter

owe will get a spanning tree in the end

possibly a different one for each choice

 Algorithms where we have to make a choice but the actual

choice does not matter are called greedy

31

Greedy Algorithms

 Algorithms where we have to make a choice but the actual

choice does not matter are called greedy

 DFS and BFS also involve making a choice
which vertex to examine next

o but if we don’t pick the right one we may not compute the correct

answer

owe need to remember the alternative choices

 in a work list

DFS and BFS are not greedy

 Greedy algorithms are great

o no need to remember alternatives

o but few problems have greedy algorithms that solve them

32

Intermission

33

How are

maze

screen-

savers

generated?

34

How to Create a Screensaver Maze?

Start with an n * m grid of

cells

Place a node in every cell and

an edge between adjacent cells

35

How to Create a Screensaver Maze?

Build a spanning tree for

this graph

Dissolve the cell walls where

its edges cross

36

How to Create a Screensaver Maze?

Pick a start and an end

along the perimeter

Get rid of the graph

end end

start start

37

How to Solve a Screensaver Maze?

end

start

end

start

Run DFS on the spanning

tree

The animation is DFS exploring

vertices and backtracking

38

What about Pipe Screensavers?

Same thing in

3 dimensions

39

Vertex-centric Algorithm

40

The Vertex-centric Algorithm

Start with a single vertex in the tree and

add edges to vertices not in the tree

 Let’s run it on the example graph

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

0

1

3

4

2

(0,1) (1,4) (1,2) (2,3)

Start with 0
The resulting

spanning tree

41

Towards an Algorithm

Start with a single vertex in the tree and add edges to vertices not

in the tree

Given a graph G, construct a spanning tree T for it

1. Pick an arbitrary vertex start in G and put it in T

2. Repeat until all vertices are in T

o find an edge (u,v) in G between a vertex u in T and

a vertex v not in T

o add (u,v) to T

 How do we find (u,v)?

oMark the vertices we add to T

o Keep track of their neighbors

Assume G has a

single connected

component

42

Towards an Actual Algorithm

Given a graph G, construct a spanning tree T for it

1. Pick an arbitrary vertex start in G and put it in T

omark start

o add all edges (start,w) in G to a work list

2. Repeat until the work list is empty

o pick an edge (u,v) from the work list

 if v is marked, discard it

add (u,v) to T

mark v

add to the work list all edges (v,w) in G such that w is unmarked

o stop once T has v-1 edges

Consider the neighbors of

the vertices added to T

Consider the neighbors of

the vertices added to T

Assume G has a

single connected

component

This is our early exit condition

43

Towards an Actual

Algorithm

 This looks just like

BSF and DFS

o depending on the work list

 The edges followed by BFS and DFS form a spanning

tree!

1. Pick an arbitrary vertex start in G and put it in T

omark start

o add all edges (start,w) in G to a work list

2. Repeat until the work list is empty

o pick an edge (u,v) from the work list

 if v is marked, discard it

 add (u,v) to T

 mark v

 add to the work list all edges (v,w) in G

such that w is unmarked

o stop once T has v-1 edges

44

Disconnected

Graphs

 If G has more than one

connected component,

this will find a spanning tree only for start’s component

 We need to repeat with a start vertex from each connected

component

1. Pick an arbitrary vertex start in G and put it in T

omark start

o add all edges (start,w) in G to a work list

2. Repeat until the work list is empty

o pick an edge (u,v) from the work list

 if v is marked, discard it

 add (u,v) to T

 mark v

 add to the work list all edges (v,w) in G

such that w is unmarked

o stop once T has v-1 edges

45

Disconnected Graphs

Given a graph G, construct a spanning forestT for it

1. Pick an arbitrary vertex start in G and put it in T

omark start

o add all edges (start,w) in G to a work list

2. Repeat until the work list is empty

o pick an edge (u,v) from the work list

 if v is marked, discard it

add (u,v) to T

mark v

add to the work list all edges (v,w) in G such that w is unmarked

o stop once T has v-1 edges

3. If T has fewer than v-1 edges

o add an arbitrary unmarked vertex and continue with (1)

46

Complexity

 The vertex-centric algorithm

has the same complexity as

DFS and BFS
 if we use a stack or a queue as

the work list

O(v + e)

1. Pick an arbitrary vertex start in G and put it in T

omark start

o add all edges (start,w) in G to a work list

2. Repeat until the work list is empty

o pick an edge (u,v) from the work list

 if v is marked, discard it

 add (u,v) to T

 mark v

 add to the work list all edges (v,w) in G

such that w is unmarked

o stop once T has v-1 edges

3. If T has fewer than v-1 edges

o add an arbitrary unmarked vertex and

continue with (1)

This too is a

greedy algorithm

47

Minimum Spanning Trees

48

Weighted Graphs

 A graph with measures associated with

the edges is a weighted graph

o the measures are called weights

o for us, they will be integers

 The weights represent some kind of

cost or value of using that edge
 time

distance

power, …

0

1

3

4

2

11

7

23

17

13
19

49

50

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

The weight of an edge is the

driving distance between the

cities, rounded to the next 100 miles

Minimum Spanning Tree

 Of all the spanning trees for a weighted graph, one with

the least total weight
 the sum of weights of all its edges

is called a minimum spanning tree

 A graph may have several minimum spanning trees

o if all the weights are the same,

every spanning tree is a

minimum spanning tree
They should be called

minimal spanning trees

51

Computing MSTs

 The algorithms for computing spanning trees are easily

adapted to minimum spanning trees

o The edge-centric algorithm for MSTs is called

Kruskal’s algorithm

o The vertex-centric algorithm for MSTs is called

Prim’s algorithm

52

Kruskal’s Algorithm

53

The Cycle Property

If C is a simple cycle in graph G, and e is an edge of

maximal weight in C, then there is some MST of G that

does not contain e

Proof

 Assume e is the edge (u,v) and T is a spanning tree

o either e is not in T, and we are done

o or e is in T

 if we remove e, we obtain two spanning trees T1 and T2

because e is part of a cycle in G, there is another

edge e’ we can add to connect T1 and T2

 let T’ be the resulting tree

 since e had maximal weight, the total weight of T’

is ≤ the total weight of T

T1

T2

u

v

e’e

54

The Cycle Property

If C is a simple cycle in graph G, and e is an edge of

maximal weight in C, then there is some MST of G that

does not contain e

 If we construct a spanning tree by adding the edges of

lowest weight that won’t create a simple cycle first, we will

obtain a minimum spanning tree

o This is the basic insight of Kruskal’s algorithm

55

Kruskal’s Algorithm

 Add a preliminary step to the

edge-centric algorithm:

sort the edges in increasing weight order

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G

o are u and v already connected in T?

yes: discard the edge

no: add it to T

o Stop once T has v-1 edges

Joseph Kruskal

56

Complexity of Kruskal’s Algorithm

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G

o are u and v already connected in T?

yes: discard the edge

no: add it to T

o Stop once T has v-1 edges

 Kruskal’s algorithm has complexity O(ev)

o That’s O(e log e + ev) above

o but log e O(v)

because e O(v2), so log e O(log v)

and log v O(v)

O(v)

e times

O(v)

O(1)

O(e log e)

Using mergesort

for example

57

58

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

from smallest to

largest weight

59

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

Next edge we examine

60

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

61

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

62

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

63

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

64

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

65

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

66

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

67

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

68

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

69

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

70

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

71

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

72

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

73

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Sorted edges

G–H (1)

C–E (2)

C–I (2)

D–E (2)

C–D (2)

D–I (3)

F–H (3)

B-E (5)

A–I (5)

F–J (6)

A–C (6)

B–C (7)

H–J (7)

A–H (8)

F–I (9)

C–H (11)

A–B (11)

At this point we are done:

we have vertices 10

and 9 edges

We do not examine

the remaining edges

Prim’s Algorithm

74

Prim’s Algorithm

 In the vertex-centric algorithm, use a priority queue

with lower-weight edges having higher priority

Given a graph G, construct a spanning tree T for it

1. Pick an arbitrary vertex start in G and put it in T

o mark start

o add all edges (start,w) in G to a priority queue

2. Repeat until the priority queue is empty

o pick an edge (u,v) from the priority queue

 if v is marked, discard it

 add (u,v) to T

 mark v

 add to the priority queue all edges (v,w) in G such that w is unmarked

o stop once T has v-1 edges

3. If T has fewer than v-1 edges

o add an arbitrary unmarked vertex and continue with (1)

Robert Prim

75

76

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Priority Queue

Lower-weight edges

having higher priority

Start vertex

77

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Priority Queue

A–I (5)

A–C (6)

A–H (8)

A–B (11)

Adding the edges

going out of A

Lower-weight edges

having higher priority

78

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Priority Queue

C–I (2)

D–I (3)

A–C (6)

A–H (8)

I–F (9)

A–B (11)

Lower-weight edges

having higher priority

Adding the edges

going out of I

We skip the edges

to marked vertices

79

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Priority Queue

C–D (2)

C–E (2)

D–I (3)

A–C (6)

B–C (7)

A–H (8)

I–F (9)

A–B (11)

C–H (11)

Lower-weight edges

having higher priority

Adding the edges

going out of C

80

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Priority Queue

C–E (2)

D–E (2)

D–I (3)

A–C (6)

B–C (7)

A–H (8)

I–F (9)

A–B (11)

C–H (11)

Lower-weight edges

having higher priority

Adding the edges

going out of D

81

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Priority Queue

D–E (2)

D–I (3)

B–E (5)

A–C (6)

B–C (7)

A–H (8)

I–F (9)

A–B (11)

C–H (11)

Lower-weight edges

having higher priority

Adding the edges

going out of E

The next 2 edges have

marked endpoints;

we skip them

82

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Priority Queue

B–E (5)

A–C (6)

B–C (7)

A–H (8)

I–F (9)

A–B (11)

C–H (11)

Lower-weight edges

having higher priority

83

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Priority Queue

A–C (6)

B–C (7)

A–H (8)

I–F (9)

A–B (11)

C–H (11)

Lower-weight edges

having higher priority

Adding the edges

going out of B

The next 2 edges have

marked endpoints;

we skip them

84

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Priority Queue

H–G (1)

F–H (3)

H–J (7)

I–F (9)

A–B (11)

C–H (11)

Lower-weight edges

having higher priority

Adding the edges

going out of H

85

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Priority Queue

F–H (3)

H–J (7)

I–F (9)

A–B (11)

C–H (11)

Lower-weight edges

having higher priority

Adding the edges

going out of G

86

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Priority Queue

F–J (5)

H–J (7)

I–F (9)

A–B (11)

C–H (11)

Lower-weight edges

having higher priority

Adding the edges

going out of F

87

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

23 7

5

2

Priority Queue

H–J (7)

I–F (9)

A–B (11)

C–H (11)

Lower-weight edges

having higher priority

At this point we are done:

there are 10 vertices

and 9 edges

Complexity

 At most, Prim’s algorithm

puts every edge of G in the

priority queue
once from each endpoint

that’s 2e steps

 At each step, the most expensive operation is

adding/removing edges to/from the priority queue

oO(log e)

 Eventually adds all v vertices

oO(v)

 The complexity of Prim’s algorithm is O(v + e log e)

1. Pick an arbitrary vertex start in G and put it in T

omark start

o add all edges (start,w) in G to a priority queue

2. Repeat until the priority queue is empty

o pick an edge (u,v) from the priority queue

 if v is marked, discard it

 add (u,v) to T

 mark v

 add to the priority queue all edges (v,w) in G

such that w is unmarked

o stop once T has v-1 edges

3. If T has fewer than v-1 edges

o add an arbitrary unmarked vertex and

continue with (1)

88

Summary

 Spanning trees

o Edge-centric algorithm: O(ev)

o Vertex-centric algorithm: O(v + e)

 Minimum spanning trees

o Kruskal’s algorithm: O(ev)

o Prim’s algorithm: O(v + e log e) Clear winner

Clear winner

But can we improve

Kruskal’s algorithm?

89

