Union-find

Review

• Spanning trees

o Edge-centric algorithm: O(ev)

 \circ Vertex-centric algorithm: $O(v + e)$ — Clear winner

• Minimum spanning trees o Kruskal's algorithm: O(ev) \circ Prim's algorithm: $O(v + e log e)$ Clear winner

Review

Kruskal's Algorithm

Given a graph G, construct a **minimum spanning tree** T for it

- 0. Sort the edges of G by increasing weight $O(e \log e)$
- 1. Start T with the isolated vertices of G $O(v)$
- 2. For each edge (u,v) in G imes
	- \circ *are u and v already connected in T?* $O(v)$
		- **yes**: discard the edge
		- \triangleright no: add it to T $O(1)$
	- o Stop once T has v-1 edges

Can we do better?

O(ev)

Towards Union-find

Opportunities for Improvement

Given a graph G, construct a minimum spanning tree T for it

Opportunities for Improvement

Given a graph G, construct a minimum spanning tree T for it

- **0.** Sort the edges of G by increasing weight O(e log e)
- 1. Start T with the isolated vertices of G $O(V)$

2. For each edge (u,v) in G imes

o *are u and v already connected in T?* O(v) \triangleright yes: discard \vert be edge \triangleright no: add it to $O(1)$ o Stop once 7 S v-1 edges In general, there is no way around examining every edge in G

Opportunities for Improvement

Given a graph G, construct a minimum spanning tree T for it

 Can we check that u and v are connected in less than O(v) time?

Checking Connectivity

o are u and v already connected in T? $O(v)$

-
- We use BFS or DFS to check connectivity
	- o O(v) is the complexity of the **problem** of checking connectivity on a tree

 \triangleright no algorithm can do better than $O(v)$

 BFS and DFS assume u and v are **vertices we know nothing about**

o arbitrary vertices in an arbitrary tree

but **we** put them in T in an earlier iteration o we know a lot about them!

Checking Connectivity

o *are u and v already connected in T?* O(v)

Let's reframe the question as

Are u and v in the same connected component?

• If we have an efficient way to know o in what connected components u and v are, and o if these connected components are the same we have an efficient way to check if u and v are connected

Identifying Connected Components

• We are looking for an efficient way to know o in what connected components u and v are, and o if these connected components are the same

Idea:

- Appoint a **canonical representative** for each component \triangleright some vertex that represents the whole connected component
- Arrange that we can easily find the canonical representative of (the connected component of) any vertex

Kruskal's Algorithm Revisited

Given a graph G, construct a minimum spanning tree T for it

- 0. Sort the edges of G by increasing weight
- 1. Start T with the isolated vertices of G
- 2. For each edge (u,v) in G
	- o *are u and v already connected in T?*

find their canonical representatives, and check if they are equal

- **yes**: discard the edge
- **no**: add it to T

merge the two connected component by taking their union, and appoint a new canonical representative for the merged component

o Stop once T has v-1 edges

Union-find

o *are u and v already connected in T? find their canonical representatives and and check if they are equal* **yes**: discard the edge **no**: add it to T merge the two connected component by taking their union, and appoint a new canonical representative for the merged component

- This algorithm is called **union-find**
- *Let's implement it … in better than O(v) complexity*

Equivalences

Connectedness, Algebraically

- *"u and v are connected"* is a relation between vertices \circ let's write it u ### v
- As a relation, what properties does it have?

- **•** It is an **equivalence relation**
- A connected component is then an **equivalence class**

Checking Equivalence

- Given any equivalence relation, we can use union-find to check if two elements x and y are equivalent o find the canonical representatives of x and y and check if they are equal
- For this, we need to represent the equivalence relation in such a way we can use union-find
	- o appoint a canonical representative for every equivalence class
	- o provide an easy way to find the canonical representative of any element

Basic Union-find

Back to the Edge-centric Algorithm

• Recall the edge-centric algorithm for unweighted graphs o instrumented to use union-find

Given a graph G, construct a spanning tree T for it

- 1. Start T with the isolated vertices of G
- 2. For each edge (u,v) in G
	- o *are u and v already connected in T? find their canonical representatives, and check if they are equal*
		- **yes**: discard the edge
		- **no**: add it to T

merge the two connected component by taking their union, and appoint a new canonical representative for the merged component

o Stop once T has v-1 edges

This is Kruskal's algorithm without the preliminary edge-sorting step

Example

- 1. Start T with the isolated vertices of G
- 2. For each edge (u,v) in G
	- o *find their canonical representatives and check if they are equal*
		- **yes**: discard the edge
		- **no**: merge the two connected component, and appoint a new canonical representative
	- o Stop once T has v-1 edges
- We will use it to compute a spanning tree for this graph

considering the edges in this order

The Union-find Data Structure

● We start with a forest of isolated vertices

 We need a data structure to keep track of the canonical representative of every vertex

o an *array* UF with a position for every vertex

 \triangleright UF[v] contains the canonical representative of v

• or a way to get to it

o this is the **union-find data structure**

 $UF[v] = v$

• Initially, every vertex is its own canonical representative

o the canonical representative of 4 is 4 o the canonical representative of 5 is 5 \circ 4 \neq 5, so we add (4, 5) to the tree

● 4 and 5 are now in the same connected component o which one should we appoint as the new canonical representative? o either of them will do \triangleright let's pick 4

● 4 and 5 are now in the same connected component o which one should we appoint as the new canonical representative? o either of them will do \triangleright let's pick 4

1. Start T with the isolated vertices of G

Who should the new and the stop once Thas v-1 edges canonical representative be? **Edges**

1. Start T with the isolated vertices of G 2. For each edge (u,v) in G o *find their canonical representatives and check if they are equal* **yes**: discard the edge **no**: merge the two connected component, and appoint a new canonical representative

o 5?

 \triangleright this forces us to change UF[4] and UF[5]

 \Box and possibly many more in a larger graph

 \triangleright We want to pick one of the old representatives

o 3?

 \triangleright This will do

 \circ 4?

 \triangleright This would do too

- 1 and 2 are their own canonical representatives
	- \circ we add the edge (1,2)
	- o we appoint 1 as the new canonical representative

Sixth Step $\overline{0}$ 1 $\left(2\right)$ 5 4 3 $\left(0 \right)$ 1 2 5 4 3 **Edges** $(4, 5)$ $(3, 5)$ $(1, 2)$ $x(3, 4)$ $(2, 3)$ **(0, 2)** (0, 1) 2. For each edge (u,v) in G o *find their canonical representatives and check if they are equal* **yes**: discard the edge **no**: merge the two connected component, and appoint a new canonical representative o Stop once T has v-1 edges o 0 is its own canonical representative o the canonical representative of 2 is 1 \circ so we add the edge $(0,2)$ • The new canonical representative is one among 0 and 1 o let's pick 0 0 1 2 3 4 5 0 1 2 3 4 5 0 | 1 | 2 | 3 | 4 | **4** 0 1 2 3 **3** 4 0 | 1 | **1** | 3 | 3 | 4 0 1 1 1 3 3 4 0 1 1 **1** 3 4 0 **0** 3 4 θ

1. Start T with the isolated vertices of G

Final Configuration

- 1. Start T with the isolated vertices of G
- 2. For each edge (u,v) in G
	- o *find their canonical representatives and check if they are equal*

yes: discard the edge

 no: merge the two connected component, and appoint a new canonical representative

o Stop once T has v-1 edges

Complexity

Given a graph G, construct a **minimum spanning tree** T for it

0. Sort the edges of G by increasing weight $O(e \log e)$ 1. Start T with the isolated vertices of G $O(V)$ 2. For each edge (u,v) in G imes o *are u and v already connected in T? find the canonical representative of u find the canonical representative of v check if they are equal* **yes**: discard the edge **no**: add it to T This was O(v)

This was O(1)

- merge the two connected component appoint a new canonical representative
- o Stop once T has v-1 edges

Complexity of Union-find

- Finding the canonical representative of a vertex \circ in the worst case, we have to go through all the vertices \circ O(v)
- Merging two connected components and appointing the new canonical representative o a single array write \circ O(1)

Complexity

Given a graph G, construct a **minimum spanning tree** T for it

Complexity

 By swapping BFS or DFS with union find, the complexity of Kruskal's algorithm remains O(ev) o no gain

Can we do better?
Height Tracking

About the Visualization Graph

- The graph visualization of the union-find data structure is a **directed tree**
	- \Box not a binary tree in general
	- o the edges point from child to parent
		- \triangleright towards the root
	- o the root is the canonical representative
	- o We find a canonical representative by going from a vertex to the root of the tree it is in
- The cost is the **height** of the tree \circ O(v) in general

o but O(log v) if the tree is **balanced**

This tree has height 4

0

2

1

Half-way through, this is a **directed forest**

5

4

3

Merging Trees

- Finding a canonical representative costs O(log v) on a balanced visualization tree
- Can we arrange so that it grows balanced as we construct it?

o when we merge trees by taking their union

Each tree represents a connected component

• When picking the new canonical representative, we can arrange so that the merged tree remains shallow whenever possible

> *Will this be enough to ensure that is its balanced?*

Merging Trees

 When picking the new canonical representative, arrange so that the merged tree remains shallow whenever possible

Height Tracking

- When picking the new canonical representative, arrange so that the merged tree remains shallow whenever possible
- We want to **merge shorter trees into taller trees** o then the height does not change
- If the trees have the same height, we can merge them either way o the height will grow by 1 no matter what
- This strategy is called **height tracking**

Tracking the Height

- We now need to track the height of each tree o How do we do that?
- Update the union-find data structure so that each position stores both the parent in the tree and the height
	- using a struct
	- or *two* arrays
- *Can we do better?*

Tracking the Height

• Observations

o we need the height only when reaching the root

 \triangleright that's when we need to decide which way to merge the trees

o the root has no parent

 \triangleright a canonical representative points to itself

 \bullet Idea: store the parent in a child node and the height in the roots

Tracking the Height

- Store the parent in a child node and the height in the roots o but how do we know if a position contains a parent or a height?
- We need to be able to recognize a root when we see one o add a flag
	- \triangleright a single bit is enough

That's the sign bit

make the roots store the height as a **negative** numbers

Example

A-B

J

9

- 1

- 1

- 1

- 1

- 1

- 1

- 1

- 1

- 1

- 1

6

6

6

- Does union-find with height tracking produce a balanced tree?
- It fees like it does

o We always merge smaller trees into bigger trees \triangleright the tree becomes bushier but the height doesn't change o The height grows only when merging trees of the same height

- \triangleright kind of like balanced binary trees
- Let's turn this into a mathematical property

The Height Property

Property

A tree T of height h has at least 2^{h-1} vertices

Proof

By induction on h

 \circ Base case: $h = 1$

 \triangleright Then, T consists of a single vertex

 \ge and indeed 2¹⁻¹ = 2⁰ = 1

The Height Property

Proof

By induction on h

- \circ Inductive case: h > 1
	- \triangleright Then, T was obtained by merging two trees T1 and T2 of height h1 and h2
	- \triangleright By inductive hypothesis,
		- \Box T1 has at least 2^{h1-1} vertices, and
		- \Box T2 has at least 2^{h2-1} vertices
	- We need to consider 3 subcases
		- \Box Subcase h1 > h2:
			- \blacksquare Then we merged T2 into T1 and h = h1
			- T has at least 2^{h1-1} + 2^{h2-1} vertices, which is more than 2^{h1-1} vertices
		- \Box Subcase h2 > h1: (similar)
		- \Box Subcase h1 = h2:
			- Then we either merge T1 into T2 or T2 into T1 to obtain T and $h = h1+1$
			- \bullet T has at least $2^{h1-1} + 2^{h2-1} = 2^{h1-1} + 2^{h1-1} = 2^{h1} = 2^{(h1+1)-1}$ vertices
			- \blacksquare Thus T has at least 2^{h-1} vertices

● A tree T of height h has at least 2^{h-1} vertices

Then,

A tree T with v vertices has height **at most** log v + 1

Thus,

• The longest path to the root has length O(log v) o T is balanced

- During union-find with height tracking
	- o we have a forest of trees
	- \circ each tree T_i with v_i vertices has height at most log v_i + 1
	- o so, each tree has height **at most** log v + 1

The total number

of vertices

Given a graph G, construct a **minimum spanning tree** T for it

Comparing Spanning Tree Algorithms

• Spanning trees

 \circ Edge-centric algorithm: $O(v + e log v)$

 \circ Vertex-centric algorithm: $O(v + e)$ — \equiv Clear winner

• Minimum spanning trees o Kruskal's algorithm: O(v + e log ev) \circ Prim's algorithm: $O(v + e log e)$ — Same Same in common graphs

• Union-find does not buy us anything o but it is useful for checking equivalence \triangleright independently of spanning trees

Path Compression

Complexity of Union-find

Finding a canonical representative costs O(log v)

Can we do better?

 \circ As we follow a path to the root, point all the intermediate nodes to the root

o This is called **path compression**

Example

- Earlier example \circ with edge $(0,5)$ added
- **This is where we were** after adding (2,3)
- We are adding (0,5) next

Example

Edges $(4, 5)$ $(3, 5)$ $(1, 2)$ \times (3, 4) $(2, 3)$ **(0, 5)** (0, 2) (0, 1)

0
1
1

 $\left(0\right)$

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 $\left(2\right)$

5

—

4

4

 $\overline{4}$

 $5¹$

o the canonical representative of 0 is 0

- o the canonical representative of 5 is 1
	- \triangleright to find it we go through 5, 4 and 3
	- \triangleright repoint 5 and 4 them to 1
Example

 \bullet We added $(0,5)$

o we already have 5 edges o we ignore the remaining edges

The Ackermann Function

$$
\begin{cases}\n\text{ack}(0, n) = n+1 \\
\text{ack}(m, 0) = \text{ack}(m-1, 1) & \text{if } m > 0 \\
\text{ack}(m, n) = \text{ack}(m-1, \text{ack}(m, n-1)) & \text{if } m, n > 0\n\end{cases}
$$

 $A(n) = Ack(n, n)$

• The Ackermann function grows very very fast

$$
\ge A(0) = 1
$$

$$
\ge A(1) = 3
$$

$$
\triangleright A(2) = 7
$$

$$
\triangleright A(3) = 61
$$

 \triangleright A(4) > number of atoms in the universe

 The inverse of the Ackermann function, A-1 (n), grows **very very slowly**

That's the function such that $A^{-1}(A(n)) = n$

Wilhelm Ackermann

Complexity of Path Compression

• The cost of finding the canonical representative of a vertex using union-find with path compression is **O(A-1 (v)) amortized**

 \circ That a hair above $O(1)$

That's All, Folks