Union-find

Review

® Spanning trees
O Edge-centric algorithm: O(ev)
O Vertex-centric algorithm: O(v + e) — Clear winner

® Minimum spanning trees
O Kruskal's algorithm: O(ev)
O Prim’s algorithm: O(V + e log &) ———Clear winner

Review

Kruskal’s Algorithm

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(V)
2. For each edge (u,v) In G e times
O are u and v already connected in T? O(v)
» yes: discard the edge
»no:additto T O(1)

O Stop once T has v-1 edges

O(ev)

® Can we do better? <oday’s lecture

Towards Union-find

Opportunities for Improvement

0. Sort the edges of G by increasing weight O(e log e)
1.
2.

Y VY

O(n log n) is the complexity of the problem of sorting n elements:
no (sequential) algorithm can do better

Opportunities for Improvement

0.
1.

2. For each edge (u,v) In G e times

O
>
>

O

In general, there is no way around
examining every edge in G

Opportunities for Improvement

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the Isolated vertices of G O(V)
2. For each edge (u.v) In G e times
<o are u and v already connected in T? o) >
» yes: discard the edge
»no.additto T O(1)
O Stop once T has v-1 edges N

Everything else
is O(1)

® Can we check that u and v are connected
In less than O(v) time?

Checking Connectivity

<o are u and v already connected in T? oK) >

® \We use BFS or DFS to check connectivity

O O(v) Is the complexity of the problem of checking connectivity on
a tree

» no algorithm can do better than O(v)

® BFS and DFS assume u and v are vertices we know
nothing about

O arbitrary vertices Iin an arbitrary tree

. but we put them in T Iin an earlier iteration
O we know a lot about them!

Checking Connectivity

<o are u and v already connected in T? oK) >

Let’s reframe the question as

Are u and v in the same connected component?

® If we have an efficient way to know
O In what connected components u and v are, and
O If these connected components are the same

we have an efficient way to check if u and v are connected

ldentifying Connected Components

® \We are looking for an efficient way to know
O In what connected components u and v are, and
O If these connected components are the same

ldea:

® Appoint a canonical representative for each component
» some vertex that represents the whole connected component

® Arrange that we can easily find the canonical
representative of (the connected component of) any vertex

/\

10

Kruskal's Algorithm Revisited

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight
1. Start T with the isolated vertices of G

2. For each edge (u,v) In G
O are u and v already connected in T?

find their canonical representatives, and

check if they are equal

» yes: discard the edge

»no:additto T
merge the two connected component by taking their union, and
appoint a new canonical representative for the merged component

O Stop once T has v-1 edges

11

Union-find

O are u and v already connected in T?

eir canonical representatives and
and check if they are equal

» yes: discard the edge
»no:additto T

merge the two connected component by taking thend
appoint a new canonical representative for the merged component

® This algorithm is called union-find

® [et’s implement it
... In better than O(v) complexity

12

Equivalences

Connectedness, Algebraically

® “u and v are connected” Is a relation between vertices
O let's write it u ### v

® As a relation, what properties does it have?

o Every vertex is connected to itself
O reflexivity: u ### U - (by a path of length 0)

If uis connected to v,

O symmetry: |If u ### v, then v ### U |”‘€” v is connected to u

(by the reverse path)

C .. i Ifui ted t
o transitivity: if u ### v and v ### w, then U ### W < and v is conmected tow,

then v is connected to v
(by the combined path)

® |t is an equivalence relation

® A connected component is then an equivalence class

14

Checking Equivalence

® Given any equivalence relation, we can use union-find to
check if two elements x and y are equivalent

O find the canonical representatives of x and y and
check if they are equal

® For this, we need to represent the equivalence relation In
such a way we can use union-find

O appoint a canonical representative for every equivalence class
O provide an easy way to find the canonical representative of any

element A

How to do this?

15

Basic Union-find

16

Back to the Edge-centric Algorithm

® Recall the edge-centric algorithm for unweighted graphs
O Instrumented to use union-find

Given a graph G, construct a spanning tree T for It

1. Start T with the i1solated vertices of G

2. For each edge (u,v) In G

_ This is Kruskal’s algorithm without
O are u and v already connected Iin T? the preliminary edge-sorting step
find their canonical representatives, and

check if they are equal

» yes: discard the edge

»no.additto T
merge the two connected component by taking their union, and
appoint a new canonical representative for the merged component

O Stop once T has v-1 edges

17

Example

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives
and check if they are equal
» yes: discard the edge
» no: merge the two connected component,
and appoint a new canonical representative

O Stop once T has v-1 edges

® \We will use it to compute a spanning tree for this graph

considering the
edges In this order

Edges

(4, 5)
(3. 5)
(1, 2)
(3, 4)
(2, 3)
0, 2)
0, 1)

The Union-find Data Structure

® \\Ve start with © ©,
a forest of 2 3
ISolated vertices
(D) (4)

® \e need a data structure to keep track of the canonical
representative of every vertex

O an array UF with a position for every vertex

» UF[v] contains the canonical representative of v
= oraway to getto it 0 1 2 3

O this Is the union-find data structure UF:

® Initially, every vertex is its own canonical representative

1 2 3 4) iUF[V] = v

0 1 2 3 4 S

18

{
(L. Start T with the isolated vertices of G}

2. For eathretye(tov)me—

o find their canonical representatives

I nltlal Configuration and check if they are equal

» yes: discard the edge
» no: merge the two connected component,
and appoint a new canonical representative

O Stop once T has v-1 edges

Edges 0o 1

0 1 2 3 Z S

0., 1) W

We will consider
this edge next

The spanning tree
so far

The union-find
data structure
at this point

20

First Step

Edges

(4, 5)
/ 3,5)
1, 2)
3, 4)
2. 3)
0. 2)

We consider this edge

0., 1)

1 [with the isolated of G

2. For each edge (u,v) in G
o find their canonical representatives
and check if they are equal
> yesTui
» no: merge the two connected component,

and appoint a new canonical representative
O Stop once T has v-1 edges

1

0 1 2 3 Z S

O the canonical representative of 4 is 4
O the canonical representative of 5is 5

04 # 5, so we add (4, 5) to the tree

21

First Step

Edges

v (4, 9)
(3, 5)
(1, 2)
(3. 4)
(2, 3)
(0, 2)
0., 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives
and check if they are equal

> : e edge
» no: merge the two connected compom
and appoint a new canonical represew
O Stop e5

D

1

0 1 2 3 Z S

® 4 and 5 are now In the same connected component
O which one should we appoint as the new canonical representative?

O elther of them will do
> let’s pick 4

22

First Step

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives
and check if they are equal

D

> : e edge
» no: merge the two connected compom
and appoint a new canonical represew
O Stop e5

Edges

v (4, 9)
(3, 5)
(1, 2)
(3. 4)
(2, 3)
(0, 2)
0., 1)

Updated union-find
data structure

® 4 and 5 are now In the same connected component
O which one should we appoint as the new canonical representative?

O elther of them will do
> let’s pick 4

23

@ @ 3. 5) 0| 1|2 |3]| 4] 4

@ (@) 2. 3)

=

. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives
S e CO n d Ste p and check if they are equal
» yes: discard the edge
» no: merge the two connected component,
and appoint a new canonical representative
O Stop once T has v-1 edges

Edges o 1 2 3 4 5

v (4, 5)

® @ 7 w2

(3. 4)

0, 2)
0, 1)

We consider this edge

O the canonical representative of 3 is 3

O the canonical representative of 5 is 4 Chasing canonical representatives
In an array is fine for computers
O 3 #4, sowe add (3, 5) to the tree but it's hard for humans.

Let’s visualize the union-find data
structure in a more intuitive way

=

. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives
S e CO n d Ste p and check if they are equal
» yes: discard the edge
» no: merge the two connected component,
and appoint a new canonical representative
O Stop once T has v-1 edges

Edges o 1 2 3 4 5

v (4, 5)

@ @ 3. 5) 0|l 1|2 |3]| 4] 4
2 () (1,2)

O
(3, 4)
® © o .
(0, 2)

0, 1) Q

® This visualizes the union-find data
structure In a more Intuitive way

O there is an edge fromu to v If
UF[u] = v

This is a directed graph

25

Second Step

® \Who should the new

=

. Start T with the isolated vertices of G
. For each edge (u,v) in G

o find their canonical representatives
and check if they are equal
» yes: discard the edge
» no: merge the two connected component,
and appoint a new canonical representative
O Stop once T has v-1 edges

canonical representative be? | Edges

® v (4, 5)
)

v (3, 5)

@ (1, 2)

(3,4)
@ @ 2. 3)
0,2)
0 5? ©.1)

» this forces us to change UF[4] and UF[5]

O and possibly many more in a larger graph

» We want to pick one of the old representatives

o 37
» This will do
0 47?
» This would do too

26

Third Step

© @/@
@
@ (@)

® 1 and 2 are their own
canonical
representatives
O we add the edge (1,2)

O we appoint 1 as the new
canonical representative

=

. Start T with the isolated vertices of G
. For each edge (u,v) in G

o find their canonical representatives
and check if they are equal
» yes: discard the edge
» no: merge the two connected component,
and appoint a new canonical representative
O Stop once T has v-1 edges

Edges

v (4, 5)
v (3, 5)
(1, 2)
(3. 4)
(2, 3)
0, 2)
0, 1)

Note that 4 is not the
()| canonical representative
of 5: but it’'s way to get to it

Fourth Step

7

® 3 and 4 have the same

canonical representative
>3

O we discard the edge (3,4)

27

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G

o find their canonical representatives
and check if thev are equal
» yes: discard the edge
€ e (wWo connected component,
and appoint a new canonical representative

O Stop once T has v-1 edges

Edges

v (4, 9)
v (3, 9)
v (1, 2)
(3. 4)
(2, 3)
0, 2)
0, 1)

O

Fifth Step

Edges

v (4, 5)

©] 7 (3, 5)
@/@ \ 7 (1,2)
" x (3, 4)

© (2, 3)

o the canonical (0, 2)
representative of 2 is 1 (0, 1)

O the canonical representative of 31s 3

O so we add the edge (2,3)

® The new canonical representative
IS one among 1 and 3

O let’s pick 1

28

=

. Start T with the isolated vertices of G
. For each edge (u,v) in G

o find their canonical representatives
and check if they are equal
» yes: discard the edge
» no: merge the two connected component,
and appoint a new canonical representative
O Stop once T has v-1 edges

1 2 3 4 5

29

Sixth Step

Edges

v (4, 9)
v (3, 9)
v (1,2
* (3, 4)
(2, 3)

o 0 is its own canonical 0, 2)
representative (0, 1)

O the canonical representative of 21s 1

O so we add the edge (0,2)

he new canonical representative
IS one among 0 and 1

O let’s pick O

=

. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives
and check if they are equal
» yes: discard the edge
» no: merge the two connected component,
and appoint a new canonical representative
O Stop once T has v-1 edges

0 1 2 3 4 5

Note that this edge is not in G

30

Last Step

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
O find their canonical representatives

and check if they are equal
» yes: discard the edge
» no: merge the two connected component,

lcal representative
Stop once T has v-1 edges

Edges

v (4, 9)
v (3, 9)
v (1,2
* (3, 4)
(2, 3)
v (0, 2)

0, 1)

0 1 2 3 4 5

® \We don't need to consider (0,1)

O T already has v-1 edges

31

Final Configuration

=

. Start T with the isolated vertices of G
. For each edge (u,v) in G

O find their canonical representatives
and check if they are equal
» yes: discard the edge
» no: merge the two connected component,
and appoint a new canonical representative

O Stop once T has v-1 edges

Edges

v (4, 9)
v (3, 9)
v (1,2
* (3, 4)
(2, 3)
v (0, 2)

5

1 2 3 4 5

32

Complexity

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)
1. Start T with the isolated vertices of G O(V)
2. For each edge (u,v) In G e times

O are u and v already connected in T?
find the canonical representative of u\ms was OW)

find the canonical representative of v
check if they are equal
» yes: discard the edge

»no:additto T
merge the two connected COM

appoint a new canonical representative | This was O(1)

O Stop once T has v-1 edges

33

Complexity of Union-find

® Finding the canonical representative of a vertex

O In the worst case, we have to go through all the vertices
O O(V)

® Merging two connected components and appointing the
new canonical representative

O a single array write
o O(1)

34

Complexity

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)
1. Start T with the isolated vertices of G O(V)
2. For each edge (u,v) In G e times

O are u and v already connected in T? O(Vv)
ne canonical representative of u\ms was OW)

find t
find t
chec
> yes
> NO:

merge the two connected COM

app
O Stop

ne canonical representative of v

K If they are equal
. discard the edge
additto T O(1)

oint a new canonical representative | This was O(1)

once T has v-1 edges

O(ev)

35

Complexity

® By swapping BFS or DFS with union find,

the complexity of Kruskal's algorithm remains O(ev)
O no gain

® Can we do better?

36

Height Tracking

37

About the Visualization Graph

® The graph visualization of the
union-find data structure Is a
directed tree

d not a binary tree in general
O the edges point from child to parent
» towards the root
O the root is the canonical representative

O We find a canonical representative by going
from a vertex to the root of the tree it is In

Half-way through, this
IS a directed forest

This tree

® The cost is the height of the tree [has height 4
O O(V) In general
O but O(log v) If the tree Is balanced

38

Merging Trees

® Finding a canonical representative
costs O(log v) on a balanced
visualization tree

® Can we arrange so that it grows
balanced as we construct it?

O when we merge trees by taking their union

Each tree represents a connected component

® \When picking the new canonical representative, we can
arrange so that the merged tree remains shallow

whenever possible x

Will this be enough
to ensure that is its
balanced?

Merging Trees

® \When picking the new canonical representative, arrange so
that the merged tree remains shallow whenever possible

Here we were about
to merge 1 and 3

20)
@
: O N Z The resultin
The resulting @‘?{é@ 74) S, height is 3g
height is 4 N %
o

39 This is what we did

40

Height Tracking

® \When picking the new canonical representative, arrange so
that the merged tree remains shallow whenever possible

® \We want to merge shorter trees into taller trees
O then the height does not change

® If the trees have the same height, we can merge them
either way

O the height will grow by 1 no matter what

® This strategy Is called height tracking

41

Tracking the Height

® \We now need to track the height of each tree
O How do we do that?

® Update the union-find data structure so that each position

stores both the parent in the tree and the height

» using a struct
» Oor two arrays

® Can we do better?

42

Tracking the Height

® Observations

O we need the height only when reaching the root
» that’'s when we need to decide which way to merge the trees

O the root has no parent
» a canonical representative points to itself

® |dea: store the parent in a child node and the height in the
roots

But how do we know
If a position contains
a parent or a height?

Tracking the Height

® Store the parent in a child node and the height in the roots
O but how do we know If a position contains a parent or a height?

® \We need to be able to recognize a root when we see one

O add a flag
» a single bit is enough

» make the roots store the height as a negative numbers

43

/That’s the sign bit

0 1 3 4 5
-1 -2 -3 3 4
The parent The tree
of2is 1 rooted at 3 has

height 3

44

Example

® | et's run Kruskal's algorithm

O using union-find with height tracking to

The edges are in
the same order as
In the last lecture

/

check if two vertices are connected

on the road network example

The resulting
spanning tree
will be the same

Juarez

Galveston

Atlanta

Sorted
edges

G-H
C-E
C-I
D-E
C-D
D-|
F-H
B-E
A-l
F-J
A-C
B-C
H-J
A-H
F-|
C-H
A-B

Boston

Indianapolis

Atlanta

Juarez
Houston

Galveston

Boston
Detroit :ie
Indianapolis .
P . Columbus
Fort Wor‘th . Atlanta
Juarez
Houston
. Galveston

45

Sorted
edges

G-H
C-E
C-I
D-E
C-D
D-I
F-H
B-E
Al
F-J
A-C
B-C
H-J
A-H
F-I
C-H
A-B

A B CDETFGH I J
0 1 2 3 4 5 6 7 8 9
T T T T T T

We
have a
choice

Indianapolis

Juarez
Houston

Galveston

Boston

Atlanta

Indianapolis @ ®

Fort Worth

Juarez
Houston
Galveston

46

Boston
Detroit :ie
Columbus
. Atlanta

Sorted
edges

v G-H
C-E
C-I
D-E
C-D
D-|
F-H
B-E
A-l
F-J
A-C
B-C
H-J
A-H
F-|
C-H
A-B

A B C D E F G I
0 1 2 3 4 5 6 8 9
T T T O O 1 -1

We
have a
choice

Indianapolis

Juarez
Houston

Boston

Atlanta

Galveston
Boston
Detroit Erie
Indianapolis
P . Columbus
Fort Worth . Atlanta

Juarez
Houston
Galveston

a7

Sorted
edges

v G-H

v C-E
C-I
D-E
C-D
D-|
F-H
B-E
A-|
F-J
A-C
B-C
H-J
A-H
F-|
C-H
A-B

A B D E F G I
0 1 3 4 5 6 8 9
1 -1 A]-2]-1]-2 1 -1

Boston

Indianapolis

Atlanta

Juarez
Houston

Galveston
Boston
Detroit Erie
Indianapolis
Columbus
Fort Worth . Atlanta

Juarez
Houston
Galveston

48

Sorted
edges

v G-H
v C-E
v C-l
D-E
C-D
D-I
F-H
B-E
A-l
F-J
A-C
B-C
H-J
A-H
=
C-H
A-B

A B D E F G J
0 1 3 4 5 6 9
-11(-1 -11-21-1]-2 -1

Boston

Indianapolis

Atlanta

Juarez
Houston

Galveston
Boston
Detroit Erie
Indianapolis
Columbus
Fort Worth . Atlanta

Juarez
Houston
Galveston

49

Sorted
edges

v G-H
v C-E
v C-l
v D-E
C-D
D-I
F-H
B-E
Al
F-J
A-C
B-C
H-J
A-H
F-l
C-H
A-B

A B E F G J
0 1 4 5 6 9
-11(-1 2 1-11-2 -1

Boston

Indianapolis

Atlanta

Juarez
Houston

1
Galveston
Boston
Detroit Erie
Indianapolis
Columbus
Fort Worth . Atlanta

Juarez
Houston
Galveston

50

Sorted
edges

v G-H
v C-E
v C-l
v D-E
x C-D
D-I
F-H
B-E
A-l
F-J
A-C
B-C
H-J
A-H
=
C-H
A-B

A B E F G J
0 1 4 5 6 9
1-1 2]-1|-2 -1

Boston

Detroit 2

Indianapolis

Atlanta

Juarez
Houston

Galveston

Boston

Detroit Erie

Indianapolis
Columbus

Fort Worth . Atlanta

Juarez
Houston
Galveston

51

Sorted
edges

v G-H
v C-E
v C-l
v D-E
x C-D
x D-I
F-H
B-E
A-l
F-J
A-C
B-C
H-J
A-H
F-l
C-H
A-B

A B E F G J
0 1 4 5 6 9
-11(-1 2 1-1]-2 -1

Boston

Detroit 2

Indianapolis

Atlanta

Juarez
Houston

Galveston

Boston
Detroit Erie
Indianapolis
Columbus
Fort Worth . Atlanta
Juarez
ouston
Galveston

52

Sorted
edges

v G-H
v C-E
v C-l
v D-E
x C-D
x D-I
v F-H
B-E
A-l
F-J
A-C
B-C
H-J
A-H
F-l
C-H
A-B

A B E G J
0 1 4 6 9
-11(-1 -2 -2 -1

Boston

Detroit 2

Indianapolis

Atlanta

Juarez
Houston

Galveston

Boston
Detroit Erie
Indianapolis
Columbus
Fort Worth . Atlanta
Juarez
ouston
Galveston

53

Sorted
edges

v G-H
v C-E
v C-l
v D-E
x C-D
x D-|
v F-H
v B-E
A-l
==
A-C
B-C
H-J
A-H
F-|
C-H
A-B

A E G J
0 4 6 9
-1 -2 -2 -1

Boston

Sorted
edges

v G-H
v C-E
v C-l
v D-E
x C-D
D-I

Indianapolis

Atlanta

Juarez
Houston

Galveston

F-H
B-E
A-|

F-J

A-C
B-C
H-J
A-H

Boston

D N N N

Detroit

Indianapolis

Fort Worth Atlanta

Juarez F_|
ouston

Galveston C-H
A-B

54

Juarez

Houston

Galveston

Indianapolis

Atlanta

Boston

Jusrez

55

Fort Worth

Indianapolis

ouston

Galveston

Detroit

Atlanta

Boston

Sorted
edges

v G-H
v C-E
v C-l
v D-E
x C-D
D-I
F-H
B-E
A-l
F-J
A-C
B-C
H-J
A-H
F-I
C-H
A-B

N N X N\ X%

A C D E G
o 1 2 3 4 6
4 (414 |4)-2 -2

Juarez

Houston

Galveston

Indianapolis

Atlanta

Boston

Jusrez

56

Fort Worth

Indianapolis

ouston

Galveston

Detroit

Atlanta

Boston

Sorted
edges

v G-H
v C-E
v C-l
v D-E
x C-D
D-I
F-H
B-E
A-l
F-J
x A-C
B-C
H-J
A-H
F-I
C-H
A-B

N N X N\ X%

Boston

Indianapolis

Atlanta

Juarez
Houston

Galveston

Boston

Erie

Detroit

Indianapolis

Fort Worth Atlanta

Jusrez
ouston

Galveston

57

Sorted
edges

v
v
v
v

X

N N X N\ X%

G-H
C-E
C-I
D-E
C-D
D-I
F-H
B-E
A-l
F-J
A-C
B-C
H-J
A-H
F-I
C-H
A-B

Boston

Detroit 2

Indianapolis

Atlanta

—
~—_
—
—

Houston

Galveston

Boston

Detroit

Indianapolis

Fort Worth Atlanta

Jusrez
ouston

Galveston

58

Sorted
edges

v
v
v
v

X

N N X N\ X%

G-H
C-E
C-I
D-E
C-D
D-I
F-H
B-E
A-l
F-J
A-C
B-C
H-J
A-H
F-I
C-H
A-B

We
have a
choice

Boston

Indianapolis

Atlanta

Houston

Galveston

Boston

Erie

Detroit

Indianapolis

Fort Worth Atlanta

Jusrez
ouston

Galveston

59

Sorted
edges

v
v
v
v

X

X XN XN N ¥

G-H
C-E
C-|
D-E
C-D
D-|
F-H
B-E
A-|
F-J
A-C
B-C
H-J
A-H
F-|
C-H
A-B

Boston

Indianapolis

Atlanta

Houston

Galveston

Boston

Erie

Detroit

Indianapolis

Fort Worth Atlanta

Jusrez
ouston

Galveston

60

Sorted
edges

v G-H
v C-E
v C-l
v D-E
x C-D
x D-I
v F-H
v B-E
v Al
v F-J
x A-C
x B-C
x H-J
v AH

F

c-H

A-B

61

Complexity

® Does union-find with height tracking produce a balanced
tree?

® |t fees like It does

O We always merge smaller trees into bigger trees
» the tree becomes bushier but the height doesn’t change

O The height grows only when merging trees of the same height
» kind of like balanced binary trees

® Let's turn this into a mathematical property

62

The Height Property

Property
A tree T of height h has at least 2" vertices

Proof
By induction on h

O Base case: h=1

» Then, T consists of a single vertex
»and indeed 211 =20=1

63

The Height Property

Proof
By induction on h

O Inductive case: h> 1

» Then, T was obtained by merging two trees T1 and T2 of height h1l and h2

» By inductive hypothesis,
Q T1 has at least 2"1-1 vertices, and
Q T2 has at least 2"2-1 vertices

» We need to consider 3 subcases

O Subcase hl > h2:
» Then we merged T2 into T1 and h=h1l
» T has at least 21-1 + 2h2-1 yertices, which is more than 2"-1 vertices

O Subcase h2 > h1: (similar)

QO Subcase hl = h2:
* Then we either merge Tl into T2 or T2 into T1 to obtain T and h = h1+1
»= T has at least 21-1 + 2h2-1 = 2hl-1 4 2hl-1 = 2hl = 2(h1+1)-1 yertices
= Thus T has at least 21 vertices

Complexity

® A tree T of height h has at least 2"1 vertices

hen,
® A tree T with v vertices has height at mostlogv + 1

Thus,

® The longest path to the root has length O(log v)
O T Is balanced

This is if we have a single tree N

But what if we have a forest?
(like half-way through union-find)

Complexity

® During union-find with height tracking
O we have a forest of trees
O each tree T, with v; vertices has height at most log v, + 1
O S0, each tree has height at most logv + 1

AN

The total number
of vertices

® Finding the canonical representative of a vertex costs
O(log v)

Complexity

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)
1. Start T with the isolated vertices of G O(V)
2. For each edge (u,v) In G e times

O are u and v already connected in T- O(log v)
find the canonical representative of u This was O(V)

find the canonical representative of v
check if they are equal

» yes: discard the edge

»no.additto T O(1)
merge the two connected component —————-—
appoint a new canonical representative | This was O(1)

O Stop once T has v-1 edges

O(v + elog ev)

Comparing Spanning Tree Algorithms

® Spanning trees
O Edge-centric algorithm: O(v + e log v)
O Vertex-centric algorithm: O(v + e) — Clear winner

® Minimum spanning trees
O Kruskal's algorithm: O(v + e log ev)

O Prim'’s algorithm: O(v + e log €) ——Same in common graphs

® Union-find does not buy us anything

O but it is useful for checking equivalence
» iIndependently of spanning trees

67

68

Path Compression

69

Complexity of Union-find
® Finding a canonical representative costs O(log v)

® Can we do better?

O As we follow a path to the root,
point all the intermediate nodes to the root

After looking
for the canonical
representative of 1

O This is called path compression

Example

Edges o 1 2 3 4 5

v (4, 9)
v (3, 9)
v (1,2
* (3, 4)
(2, 3)
(0, 5)
0, 2)
0, 1)

® Earlier example
O with edge (0,5) added

® This Is where we were
after adding (2,3)

® \We are adding (0,5) next

70

71

® \We are adding (0,5)

O the canonical representative of 0 i1s O

O the canonical representative of 5is 1
» to find it we go through 5, 4 and 3
» repoint 5 and 4 themto 1

Example

Edges

v (4, 9)
v (3, 9)
v (1,2
* (3, 4)
(2, 3)
(0, 5)
0, 2)
0, 1)

® \We added (0,5) O

O we already have 5 edges
O we ignore the remaining edges

72

73

The Ackermann Function

"~ Ack(0, n) = n+1

A(n) = Ack(n, n)

< Ack(m, 0) = Ack(m-1, 1) ifm>0

Ack(m, n) = Ack(m-1, Ack(m, n-1)) fm,n>0

® The Ackermann function grows very very fast

»A0) =1

»A(l1) =3

> A(2) =7

» A(3) =61

» A(4) > number of atoms in the universe

very slowly

he inverse of the Ackermann function, A(n), grows very

HEDZAN

That’s the function such that
A1(A(n)) =n

74

Complexity of Path Compression

® The cost of finding the canonical representative of a vertex
using union-find with path compression is

O(A1(v)) amortized

O That a hair above O(1)

That’s All, Folks

