
Union-find

Review

 Spanning trees

o Edge-centric algorithm: O(ev)

o Vertex-centric algorithm: O(v + e)

 Minimum spanning trees

o Kruskal’s algorithm: O(ev)

o Prim’s algorithm: O(v + e log e) Clear winner

Clear winner

0

1

3

4

2

1

Review

Kruskal’s Algorithm

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(v)

2. For each edge (u,v) in G e times

o are u and v already connected in T? O(v)

yes: discard the edge

no: add it to T O(1)

o Stop once T has v-1 edges

 Can we do better?

O(ev)

Today’s lecture

0

1

3

4

2

2

Towards Union-find

3

Opportunities for Improvement

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(v)

2. For each edge (u,v) in G e times

o are u and v already connected in T? O(v)

yes: discard the edge

no: add it to T O(1)

o Stop once T has v-1 edges

O(n log n) is the complexity of the problem of sorting n elements:

no (sequential) algorithm can do better

4

Opportunities for Improvement

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(v)

2. For each edge (u,v) in G e times

o are u and v already connected in T? O(v)

yes: discard the edge

no: add it to T O(1)

o Stop once T has v-1 edges

In general, there is no way around

examining every edge in G

5

Opportunities for Improvement

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(v)

2. For each edge (u,v) in G e times

o are u and v already connected in T? O(v)

yes: discard the edge

no: add it to T O(1)

o Stop once T has v-1 edges

 Can we check that u and v are connected

in less than O(v) time?

Everything else

is O(1)

6

Checking Connectivity

o are u and v already connected in T? O(v)

 We use BFS or DFS to check connectivity

oO(v) is the complexity of the problem of checking connectivity on

a tree

no algorithm can do better than O(v)

 BFS and DFS assume u and v are vertices we know

nothing about

o arbitrary vertices in an arbitrary tree

… but we put them in T in an earlier iteration

owe know a lot about them!

7

Checking Connectivity

o are u and v already connected in T? O(v)

Let’s reframe the question as

Are u and v in the same connected component?

 If we have an efficient way to know

o in what connected components u and v are, and

o if these connected components are the same

we have an efficient way to check if u and v are connected

8

Identifying Connected Components

 We are looking for an efficient way to know

o in what connected components u and v are, and

o if these connected components are the same

Idea:

 Appoint a canonical representative for each component
 some vertex that represents the whole connected component

 Arrange that we can easily find the canonical

representative of (the connected component of) any vertex

9

Kruskal’s Algorithm Revisited

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G

o are u and v already connected in T?

find their canonical representatives, and

check if they are equal

yes: discard the edge

no: add it to T

merge the two connected component by taking their union, and

appoint a new canonical representative for the merged component

o Stop once T has v-1 edges

10

Union-find

o are u and v already connected in T?

find their canonical representatives and

and check if they are equal

yes: discard the edge

no: add it to T

merge the two connected component by taking their union, and

appoint a new canonical representative for the merged component

 This algorithm is called union-find

 Let’s implement it

… in better than O(v) complexity

11

Equivalences

12

Connectedness, Algebraically

 “u and v are connected” is a relation between vertices

o let’s write it u ### v

 As a relation, what properties does it have?

o reflexivity: u ### u

o symmetry: if u ### v, then v ### u

o transitivity: if u ### v and v ### w, then u ### w

 It is an equivalence relation

 A connected component is then an equivalence class

Every vertex is connected to itself
(by a path of length 0)

If u is connected to v,

then v is connected to u
(by the reverse path)

If u is connected to v

and v is connected to w,

then v is connected to v
(by the combined path)

13

Checking Equivalence

 Given any equivalence relation, we can use union-find to

check if two elements x and y are equivalent

o find the canonical representatives of x and y and

check if they are equal

 For this, we need to represent the equivalence relation in

such a way we can use union-find

o appoint a canonical representative for every equivalence class

o provide an easy way to find the canonical representative of any

element

How to do this?

14

Basic Union-find

15

Back to the Edge-centric Algorithm

 Recall the edge-centric algorithm for unweighted graphs

o instrumented to use union-find

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G

o are u and v already connected in T?

find their canonical representatives, and

check if they are equal

yes: discard the edge

no: add it to T

merge the two connected component by taking their union, and

appoint a new canonical representative for the merged component

o Stop once T has v-1 edges

This is Kruskal’s algorithm without

the preliminary edge-sorting step

16

Example

 We will use it to compute a spanning tree for this graph

considering the

edges in this order

0

1

2

5

4

3

Edges

(4, 5)

(3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

17

The Union-find Data Structure

 We start with

a forest of

isolated vertices

 We need a data structure to keep track of the canonical

representative of every vertex

o an array UF with a position for every vertex

UF[v] contains the canonical representative of v

 or a way to get to it

o this is the union-find data structure

 Initially, every vertex is its own canonical representative

0 1 2 3 4 5

0 1 2 3 4 5

0

1

2

5

4

3

0 1 2 3 4 5

UF:

UF[v] = v

18

Initial Configuration

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4

0

1

2

5

4

3

Edges

(4, 5)

(3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1) We will consider

this edge next

The spanning tree

so far

The union-find

data structure

at this point

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

19

First Step

o the canonical representative of 4 is 4

o the canonical representative of 5 is 5

o 4 ≠ 5, so we add (4, 5) to the tree

0 1 2 3 4 5

0 1 2 3 4 5

0

1

2

5

4

3

Edges

(4, 5)

(3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

We consider this edge

20

First Step

 4 and 5 are now in the same connected component

owhich one should we appoint as the new canonical representative?

o either of them will do

 let’s pick 4

0 1 2 3 4 5

0 1 2 3 4 5

Edges

 (4, 5)

(3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

0

1

2

5

4

3

21

First Step

 4 and 5 are now in the same connected component

owhich one should we appoint as the new canonical representative?

o either of them will do

 let’s pick 4

Edges

 (4, 5)

(3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

0

1

2

5

4

3

22

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4

Updated union-find

data structure

Second Step

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

o the canonical representative of 3 is 3

o the canonical representative of 5 is 4

o 3 ≠ 4, so we add (3, 5) to the tree

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4

0

1

2

5

4

3

Edges

 (4, 5)

(3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)
We consider this edge

Chasing canonical representatives

in an array is fine for computers

but it’s hard for humans.

Let’s visualize the union-find data

structure in a more intuitive way
23

Second Step

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

 This visualizes the union-find data

structure in a more intuitive way

o there is an edge from u to v if

UF[u] = v

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

(3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

This is a directed graph

24

Second Step

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges
 Who should the new

canonical representative be?

o 5?

 this forces us to change UF[4] and UF[5]

 and possibly many more in a larger graph

We want to pick one of the old representatives

o 3?

This will do

o 4?

This would do too

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

 (3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

25

Third Step

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

 (3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

 1 and 2 are their own

canonical

representatives

owe add the edge (1,2)

owe appoint 1 as the new

canonical representative

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4

Note that 4 is not the

canonical representative

of 5: but it’s way to get to it

26

Fourth Step

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

 (3, 5)

 (1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

 3 and 4 have the same

canonical representative
3

owe discard the edge (3,4)

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4

27

Fifth Step

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

 (3, 5)

 (1, 2)

 (3, 4)

(2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

o the canonical

representative of 2 is 1

o the canonical representative of 3 is 3

o so we add the edge (2,3)

 The new canonical representative

is one among 1 and 3

o let’s pick 1

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4

28

Sixth Step

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

 (3, 5)

 (1, 2)

 (3, 4)

 (2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

o 0 is its own canonical

representative

o the canonical representative of 2 is 1

o so we add the edge (0,2)

 The new canonical representative

is one among 0 and 1

o let’s pick 0

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 1 1 3 3 4

0 1 1 1 3 4

0 3 1 0 3 4

Note that this edge is not in G29

Last Step

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

 (3, 5)

 (1, 2)

 (3, 4)

 (2, 3)

 (0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

 We don’t need to consider (0,1)

o T already has v-1 edges

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 1 1 3 3 4

0 1 1 1 3 4

0 0 1 1 3 4

30

Final Configuration

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 1 1 3 3 4

0 1 1 1 3 4

0 0 1 1 3 4

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

 (3, 5)

 (1, 2)

 (3, 4)

 (2, 3)

 (0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

31

Complexity

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(v)

2. For each edge (u,v) in G e times

o are u and v already connected in T?

find the canonical representative of u

find the canonical representative of v

check if they are equal

yes: discard the edge

no: add it to T

merge the two connected component

appoint a new canonical representative

o Stop once T has v-1 edges

This was O(1)

This was O(v)

32

Complexity of Union-find

 Finding the canonical representative of a vertex

o in the worst case, we have to go through all the vertices

oO(v)

 Merging two connected components and appointing the

new canonical representative

o a single array write

oO(1)

33

Complexity

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(v)

2. For each edge (u,v) in G e times

o are u and v already connected in T? O(v)

find the canonical representative of u

find the canonical representative of v

check if they are equal

yes: discard the edge

no: add it to T O(1)

merge the two connected component

appoint a new canonical representative

o Stop once T has v-1 edges

O(ev)

This was O(v)

This was O(1)

34

Complexity

 By swapping BFS or DFS with union find,

the complexity of Kruskal’s algorithm remains O(ev)

o no gain

 Can we do better?

35

Height Tracking

36

About the Visualization Graph

 The graph visualization of the

union-find data structure is a

directed tree
 not a binary tree in general

o the edges point from child to parent

 towards the root

o the root is the canonical representative

oWe find a canonical representative by going

from a vertex to the root of the tree it is in

 The cost is the height of the tree

oO(v) in general

o but O(log v) if the tree is balanced

0

1

2

5

4

3

Half-way through, this

is a directed forest

This tree

has height 4

37

Merging Trees

 Finding a canonical representative

costs O(log v) on a balanced

visualization tree

 Can we arrange so that it grows

balanced as we construct it?

owhen we merge trees by taking their union

 When picking the new canonical representative, we can

arrange so that the merged tree remains shallow

whenever possible

0

1

2

5

4

3

Each tree represents a connected component

Will this be enough

to ensure that is its

balanced?

38

Merging Trees

 When picking the new canonical representative, arrange so

that the merged tree remains shallow whenever possible

0

1

2

5

4

3

Here we were about

to merge 1 and 3

0

1

2

5

4

3

0

1

2

5

4

3

The resulting

height is 3
The resulting

height is 4

This is what we did39

Height Tracking

 When picking the new canonical representative, arrange so

that the merged tree remains shallow whenever possible

 We want to merge shorter trees into taller trees

o then the height does not change

 If the trees have the same height, we can merge them

either way

o the height will grow by 1 no matter what

 This strategy is called height tracking

40

Tracking the Height

 We now need to track the height of each tree

oHow do we do that?

 Update the union-find data structure so that each position

stores both the parent in the tree and the height
using a struct

or two arrays

 Can we do better?

41

Tracking the Height

 Observations

owe need the height only when reaching the root

 that’s when we need to decide which way to merge the trees

o the root has no parent

a canonical representative points to itself

 Idea: store the parent in a child node and the height in the

roots

0

1

2

5

4

3

0 1 2 3 4 5

1 2 1 3 3 4

But how do we know

if a position contains

a parent or a height?

42

Tracking the Height

 Store the parent in a child node and the height in the roots

o but how do we know if a position contains a parent or a height?

 We need to be able to recognize a root when we see one

o add a flag

a single bit is enough

make the roots store the height as a negative numbers

0

1

2

5

4

3

0 1 2 3 4 5

-1 -2 1 -3 3 4

The tree

rooted at 3 has

height 3

That’s the sign bit

The parent

of 2 is 1

43

Example

 Let’s run Kruskal’s algorithm

o using union-find with height tracking to

check if two vertices are connected

on the road network example

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Sorted

edges

G-H

C-E

C-I

D-E

C-D

D-I

F-H

B-E

A-I

F-J

A-C

B-C

H-J

A-H

F-I

C-H

A-B

The edges are in

the same order as

in the last lecture

The resulting

spanning tree

will be the same

44

45

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

G-H

C-E

C-I

D-E

C-D

D-I

F-H

B-E

A-I

F-J

A-C

B-C

H-J

A-H

F-I

C-H

A-B

We
have a
choice

46

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

C-E

C-I

D-E

C-D

D-I

F-H

B-E

A-I

F-J

A-C

B-C

H-J

A-H

F-I

C-H

A-B

We
have a
choice

47

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

 C-E

C-I

D-E

C-D

D-I

F-H

B-E

A-I

F-J

A-C

B-C

H-J

A-H

F-I

C-H

A-B

48

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

 C-E

 C-I

D-E

C-D

D-I

F-H

B-E

A-I

F-J

A-C

B-C

H-J

A-H

F-I

C-H

A-B

49

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

 C-E

 C-I

 D-E

C-D

D-I

F-H

B-E

A-I

F-J

A-C

B-C

H-J

A-H

F-I

C-H

A-B

50

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

 C-E

 C-I

 D-E

 C-D

D-I

F-H

B-E

A-I

F-J

A-C

B-C

H-J

A-H

F-I

C-H

A-B

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

51

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

 C-E

 C-I

 D-E

 C-D

 D-I

F-H

B-E

A-I

F-J

A-C

B-C

H-J

A-H

F-I

C-H

A-B

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

52

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

 C-E

 C-I

 D-E

 C-D

 D-I

 F-H

B-E

A-I

F-J

A-C

B-C

H-J

A-H

F-I

C-H

A-B

53

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

 C-E

 C-I

 D-E

 C-D

 D-I

 F-H

 B-E

A-I

F-J

A-C

B-C

H-J

A-H

F-I

C-H

A-B

54

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

 C-E

 C-I

 D-E

 C-D

 D-I

 F-H

 B-E

 A-I

F-J

A-C

B-C

H-J

A-H

F-I

C-H

A-B

55

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

 C-E

 C-I

 D-E

 C-D

 D-I

 F-H

 B-E

 A-I

 F-J

A-C

B-C

H-J

A-H

F-I

C-H

A-B

56

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

 C-E

 C-I

 D-E

 C-D

 D-I

 F-H

 B-E

 A-I

 F-J

 A-C

B-C

H-J

A-H

F-I

C-H

A-B

57

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

 C-E

 C-I

 D-E

 C-D

 D-I

 F-H

 B-E

 A-I

 F-J

 A-C

 B-C

H-J

A-H

F-I

C-H

A-B

58

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

 C-E

 C-I

 D-E

 C-D

 D-I

 F-H

 B-E

 A-I

 F-J

 A-C

 B-C

 H-J

A-H

F-I

C-H

A-B

We
have a
choice

59

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

 C-E

 C-I

 D-E

 C-D

 D-I

 F-H

 B-E

 A-I

 F-J

 A-C

 B-C

 H-J

 A-H

F-I

C-H

A-B

60

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted

edges

 G-H

 C-E

 C-I

 D-E

 C-D

 D-I

 F-H

 B-E

 A-I

 F-J

 A-C

 B-C

 H-J

 A-H

F-I

C-H

A-B

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Complexity

 Does union-find with height tracking produce a balanced

tree?

 It fees like it does

oWe always merge smaller trees into bigger trees

 the tree becomes bushier but the height doesn’t change

o The height grows only when merging trees of the same height

 kind of like balanced binary trees

 Let’s turn this into a mathematical property

61

The Height Property

Property

A tree T of height h has at least 2h-1 vertices

Proof

By induction on h

o Base case: h = 1

Then, T consists of a single vertex

and indeed 21-1 = 20 = 1

62

The Height Property

Proof

By induction on h

o Inductive case: h > 1

Then, T was obtained by merging two trees T1 and T2 of height h1 and h2

By inductive hypothesis,

 T1 has at least 2h1-1 vertices, and

 T2 has at least 2h2-1 vertices

We need to consider 3 subcases

 Subcase h1 > h2:

 Then we merged T2 into T1 and h = h1

 T has at least 2h1-1 + 2h2-1 vertices, which is more than 2h1-1 vertices

 Subcase h2 > h1: (similar)

 Subcase h1 = h2:

 Then we either merge T1 into T2 or T2 into T1 to obtain T and h = h1+1

 T has at least 2h1-1 + 2h2-1 = 2h1-1 + 2h1-1 = 2h1 = 2(h1+1)-1 vertices

 Thus T has at least 2h-1 vertices

63

Complexity

 A tree T of height h has at least 2h-1 vertices

Then,

 A tree T with v vertices has height at most log v + 1

Thus,

 The longest path to the root has length O(log v)

o T is balanced

64

This is if we have a single tree

But what if we have a forest?
(like half-way through union-find)

Complexity

 During union-find with height tracking

owe have a forest of trees

o each tree Ti with vi vertices has height at most log vi + 1

o so, each tree has height at most log v + 1

 Finding the canonical representative of a vertex costs

O(log v)

65

The total number

of vertices

Complexity

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(v)

2. For each edge (u,v) in G e times

o are u and v already connected in T? O(log v)

find the canonical representative of u

find the canonical representative of v

check if they are equal

yes: discard the edge

no: add it to T O(1)

merge the two connected component

appoint a new canonical representative

o Stop once T has v-1 edges

O(v + e log ev)

This was O(v)

This was O(1)

66

Comparing Spanning Tree Algorithms

 Spanning trees

o Edge-centric algorithm: O(v + e log v)

o Vertex-centric algorithm: O(v + e)

 Minimum spanning trees

o Kruskal’s algorithm: O(v + e log ev)

o Prim’s algorithm: O(v + e log e)

 Union-find does not buy us anything

o but it is useful for checking equivalence

 independently of spanning trees

Same

Clear winner

Same in common graphs

67

Path Compression

68

Complexity of Union-find

 Finding a canonical representative costs O(log v)

 Can we do better?

o As we follow a path to the root,

point all the intermediate nodes to the root

o This is called path compression

2

3

4

1

After looking

for the canonical

representative of 1
2

3

4

1

69

Example

0

1

2

5

4

3

0

1

2

5

4

3

 Earlier example

owith edge (0,5) added

 This is where we were

after adding (2,3)

 We are adding (0,5) next

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 1 1 3 3 4

0 1 1 1 3 4

0 3 1 0 3 4

Edges

 (4, 5)

 (3, 5)

 (1, 2)

 (3, 4)

 (2, 3)

(0, 5)

(0, 2)

(0, 1)

70

Example

0

1

2

5

4

3

0

1

2

5

4

3

 We are adding (0,5)

o the canonical representative of 0 is 0

o the canonical representative of 5 is 1

 to find it we go through 5, 4 and 3

 repoint 5 and 4 them to 1

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 1 1 3 3 4

0 1 1 1 3 4

0 3 1 0 3 4

Edges

 (4, 5)

 (3, 5)

 (1, 2)

 (3, 4)

 (2, 3)

(0, 5)

(0, 2)

(0, 1)

71

Example

0

1

2

5

4

3

0

1

2

5

4

3

 We added (0,5)

owe already have 5 edges

owe ignore the remaining edges

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 1 1 3 3 4

0 1 1 1 3 4

0 0 1 1 1 1

Edges

 (4, 5)

 (3, 5)

 (1, 2)

 (3, 4)

 (2, 3)

 (0, 5)

(0, 2)

(0, 1)

72

The Ackermann Function

 The Ackermann function grows very very fast
A(0) = 1

A(1) = 3

A(2) = 7

A(3) = 61

A(4) > number of atoms in the universe

 The inverse of the Ackermann function, A-1(n), grows very

very slowly

Ack(0, n) = n+1

Ack(m, 0) = Ack(m-1, 1) if m > 0

Ack(m, n) = Ack(m-1, Ack(m, n-1)) if m, n > 0

A(n) = Ack(n, n)

Wilhelm Ackermann

That’s the function such that

A-1(A(n)) = n

73

Complexity of Path Compression

 The cost of finding the canonical representative of a vertex

using union-find with path compression is

O(A-1(v)) amortized

o That a hair above O(1)

74

That’s All, Folks

75

