
Union-find



Review

 Spanning trees

o Edge-centric algorithm: O(ev)

o Vertex-centric algorithm: O(v + e)

 Minimum spanning trees

o Kruskal’s algorithm: O(ev)

o Prim’s algorithm: O(v + e log e) Clear winner

Clear winner
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Review

Kruskal’s Algorithm

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(v)

2. For each edge (u,v) in G e times

o are u and v already connected in T? O(v)

yes: discard the edge

no: add it to T O(1)

o Stop once T has v-1 edges

 Can we do better?

O(ev)

Today’s lecture

0

1

3

4

2

2



Towards Union-find
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Opportunities for Improvement

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(v)

2. For each edge (u,v) in G e times

o are u and v already connected in T? O(v)

yes: discard the edge

no: add it to T O(1)

o Stop once T has v-1 edges

O(n log n) is the complexity of the problem of sorting n elements:

no (sequential) algorithm can do better
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Opportunities for Improvement

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(v)

2. For each edge (u,v) in G e times

o are u and v already connected in T? O(v)

yes: discard the edge

no: add it to T O(1)

o Stop once T has v-1 edges

In general, there is no way around

examining every edge in G
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Opportunities for Improvement

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(v)

2. For each edge (u,v) in G e times

o are u and v already connected in T? O(v)

yes: discard the edge

no: add it to T O(1)

o Stop once T has v-1 edges

 Can we check that u and v are connected

in less than O(v) time?

Everything else

is O(1)
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Checking Connectivity

o are u and v already connected in T? O(v)

 We use BFS or DFS to check connectivity

oO(v) is the complexity of the problem of checking connectivity on 

a tree

no algorithm can do better than O(v)

 BFS and DFS assume u and v are vertices we know 

nothing about

o arbitrary vertices in an arbitrary tree

…  but we put them in T in an earlier iteration

owe know a lot about them!
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Checking Connectivity

o are u and v already connected in T? O(v)

Let’s reframe the question as

Are u and v in the same connected component?

 If we have an efficient way to know

o in what connected components u and v are, and

o if these connected components are the same

we have an efficient way to check if u and v are connected
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Identifying Connected Components

 We are looking for an efficient way to know

o in what connected components u and v are, and

o if these connected components are the same

Idea:

 Appoint a canonical representative for each component
 some vertex that represents the whole connected component

 Arrange that we can easily find the canonical 

representative of (the connected component of) any vertex
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Kruskal’s Algorithm Revisited

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G

o are u and v already connected in T?

find their canonical representatives, and

check if they are equal

yes: discard the edge

no: add it to T

merge the two connected component by taking their union, and

appoint a new canonical representative for the merged component

o Stop once T has v-1 edges
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Union-find

o are u and v already connected in T?

find their canonical representatives and 

and check if they are equal

yes: discard the edge

no: add it to T

merge the two connected component by taking their union, and

appoint a new canonical representative for the merged component

 This algorithm is called union-find

 Let’s implement it

… in better than O(v) complexity
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Equivalences
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Connectedness, Algebraically

 “u and v are connected” is a relation between vertices

o let’s write it u ### v

 As a relation, what properties does it have?

o reflexivity: u ### u

o symmetry: if u ### v, then v ### u

o transitivity: if u ### v and v ### w, then u ### w

 It is an equivalence relation

 A connected component is then an equivalence class

Every vertex is connected to itself
(by a path of length 0)

If u is connected to v,

then v is connected to u
(by the reverse path)

If u is connected to v

and v is connected to w,

then v is connected to v
(by the combined path)
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Checking Equivalence

 Given any equivalence relation, we can use union-find to 

check if two elements x and y are equivalent

o find the canonical representatives of x and y and

check if they are equal

 For this, we need to represent the equivalence relation in 

such a way we can use union-find

o appoint a canonical representative for every equivalence class

o provide an easy way to find the canonical representative of any 

element

How to do this?
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Basic Union-find
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Back to the Edge-centric Algorithm

 Recall the edge-centric algorithm for unweighted graphs

o instrumented to use union-find

Given a graph G, construct a spanning tree T for it

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G

o are u and v already connected in T?

find their canonical representatives, and

check if they are equal

yes: discard the edge

no: add it to T

merge the two connected component by taking their union, and

appoint a new canonical representative for the merged component

o Stop once T has v-1 edges

This is Kruskal’s algorithm without

the preliminary edge-sorting step
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Example

 We will use it to compute a spanning tree for this graph

considering the

edges in this order

0

1

2

5

4

3

Edges

(4, 5)

(3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges
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The Union-find Data Structure

 We start with

a forest of

isolated vertices

 We need a data structure to keep track of the canonical 

representative of every vertex

o an array UF with a position for every vertex

UF[v] contains the canonical representative of v

 or a way to get to it

o this is the union-find data structure

 Initially, every vertex is its own canonical representative

0 1 2 3 4 5

0 1 2 3 4 5

0

1

2

5

4

3

0 1 2 3 4 5

UF:

UF[v] = v
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Initial Configuration

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4

0

1

2

5

4

3

Edges

(4, 5)

(3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1) We will consider

this edge next

The spanning tree

so far

The union-find

data structure

at this point

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges
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First Step

o the canonical representative of 4 is 4

o the canonical representative of 5 is 5

o 4 ≠ 5, so we add (4, 5) to the tree

0 1 2 3 4 5

0 1 2 3 4 5

0

1

2

5

4

3

Edges

(4, 5)

(3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

We consider this edge
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First Step

 4 and 5 are now in the same connected component

owhich one should we appoint as the new canonical representative?

o either of them will do

 let’s pick 4

0 1 2 3 4 5

0 1 2 3 4 5

Edges

 (4, 5)

(3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

0

1

2

5

4

3
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First Step

 4 and 5 are now in the same connected component

owhich one should we appoint as the new canonical representative?

o either of them will do

 let’s pick 4

Edges

 (4, 5)

(3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

0

1

2

5

4

3
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0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4

Updated union-find

data structure



Second Step

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

o the canonical representative of 3 is 3

o the canonical representative of 5 is 4

o 3 ≠ 4, so we add (3, 5) to the tree

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4

0

1

2

5

4

3

Edges

 (4, 5)

(3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)
We consider this edge

Chasing canonical representatives

in an array is fine for computers

but it’s hard for humans.

Let’s visualize the union-find data

structure in a more intuitive way
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Second Step

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

 This visualizes the union-find data

structure in a more intuitive way

o there is an edge from u to v if

UF[u] = v

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

(3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

This is a directed graph
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Second Step

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges
 Who should the new

canonical representative be?

o 5?

 this forces us to change UF[4] and UF[5]

 and possibly many more in a larger graph

We want to pick one of the old representatives

o 3?

This will do

o 4?

This would do too

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

 (3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)
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Third Step

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

 (3, 5)

(1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

 1 and 2 are their own

canonical

representatives

owe add the edge (1,2)

owe appoint 1 as the new

canonical representative

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4

Note that 4 is not the

canonical representative

of 5: but it’s way to get to it
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Fourth Step

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

 (3, 5)

 (1, 2)

(3, 4)

(2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

 3 and 4 have the same

canonical representative
3

owe discard the edge (3,4)

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4
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Fifth Step

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

 (3, 5)

 (1, 2)

 (3, 4)

(2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

o the canonical

representative of 2 is 1

o the canonical representative of 3 is 3

o so we add the edge (2,3)

 The new canonical representative

is one among 1 and 3

o let’s pick 1

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 1 1 3 3 4

0 3 1 3 3 4

0 3 1 0 3 4
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Sixth Step

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

 (3, 5)

 (1, 2)

 (3, 4)

 (2, 3)

(0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

o 0 is its own canonical

representative

o the canonical representative of 2 is 1

o so we add the edge (0,2)

 The new canonical representative

is one among 0 and 1

o let’s pick 0

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 1 1 3 3 4

0 1 1 1 3 4

0 3 1 0 3 4

Note that this edge is not in G29



Last Step

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

 (3, 5)

 (1, 2)

 (3, 4)

 (2, 3)

 (0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges

 We don’t need to consider (0,1)

o T already has v-1 edges

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 1 1 3 3 4

0 1 1 1 3 4

0 0 1 1 3 4
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Final Configuration

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 1 1 3 3 4

0 1 1 1 3 4

0 0 1 1 3 4

0

1

2

5

4

3

0

1

2

5

4

3

Edges

 (4, 5)

 (3, 5)

 (1, 2)

 (3, 4)

 (2, 3)

 (0, 2)

(0, 1)

1. Start T with the isolated vertices of G

2. For each edge (u,v) in G
o find their canonical representatives

and check if they are equal
 yes: discard the edge

 no: merge the two connected component,

and appoint a new canonical representative

o Stop once T has v-1 edges
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Complexity

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(v)

2. For each edge (u,v) in G e times

o are u and v already connected in T?

find the canonical representative of u

find the canonical representative of v

check if they are equal

yes: discard the edge

no: add it to T

merge the two connected component

appoint a new canonical representative

o Stop once T has v-1 edges

This was O(1)

This was O(v)
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Complexity of Union-find

 Finding the canonical representative of a vertex

o in the worst case, we have to go through all the vertices

oO(v)

 Merging two connected components and appointing the 

new canonical representative

o a single array write

oO(1)
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Complexity

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(v)

2. For each edge (u,v) in G e times

o are u and v already connected in T? O(v)

find the canonical representative of u

find the canonical representative of v

check if they are equal

yes: discard the edge

no: add it to T O(1)

merge the two connected component

appoint a new canonical representative

o Stop once T has v-1 edges

O(ev)

This was O(v)

This was O(1)
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Complexity

 By swapping BFS or DFS with union find,

the complexity of Kruskal’s algorithm remains O(ev)

o no gain

 Can we do better?
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Height Tracking

36



About the Visualization Graph

 The graph visualization of the

union-find data structure is a

directed tree
 not a binary tree in general

o the edges point from child to parent

 towards the root

o the root is the canonical representative

oWe find a canonical representative by going

from a vertex to the root of the tree it is in

 The cost is the height of the tree

oO(v) in general

o but O(log v) if the tree is balanced

0

1

2

5

4

3

Half-way through, this

is a directed forest

This tree

has height 4
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Merging Trees

 Finding a canonical representative

costs O(log v) on a balanced

visualization tree

 Can we arrange so that it grows

balanced as we construct it?

owhen we merge trees by taking their union

 When picking the new canonical representative, we can 

arrange so that the merged tree remains shallow 

whenever possible

0

1

2

5

4

3

Each tree represents a connected component

Will this be enough

to ensure that is its

balanced?
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Merging Trees

 When picking the new canonical representative, arrange so 

that the merged tree remains shallow whenever possible

0

1

2

5

4

3

Here we were about

to merge 1 and 3

0

1

2

5

4

3

0

1

2

5

4

3

The resulting

height is 3
The resulting

height is 4

This is what we did39



Height Tracking

 When picking the new canonical representative, arrange so 

that the merged tree remains shallow whenever possible

 We want to merge shorter trees into taller trees

o then the height does not change

 If the trees have the same height, we can merge them 

either way

o the height will grow by 1 no matter what

 This strategy is called height tracking
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Tracking the Height

 We now need to track the height of each tree

oHow do we do that?

 Update the union-find data structure so that each position 

stores both the parent in the tree and the height
using a struct

or two arrays

 Can we do better?
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Tracking the Height

 Observations

owe need the height only when reaching the root

 that’s when we need to decide which way to merge the trees

o the root has no parent

a canonical representative points to itself

 Idea: store the parent in a child node and the height in the 

roots

0

1

2

5

4

3

0 1 2 3 4 5

1 2 1 3 3 4

But how do we know

if a position contains

a parent or a height?
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Tracking the Height

 Store the parent in a child node and the height in the roots

o but how do we know if a position contains a parent or a height?

 We need to be able to recognize a root when we see one

o add a flag

a single bit is enough

make the roots store the height as a negative numbers

0

1

2

5

4

3

0 1 2 3 4 5

-1 -2 1 -3 3 4

The tree

rooted at 3 has

height 3

That’s the sign bit

The parent

of 2 is 1
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Example

 Let’s run Kruskal’s algorithm

o using union-find with height tracking to

check if two vertices are connected

on the road network example

Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Sorted 

edges

G-H

C-E

C-I

D-E

C-D

D-I

F-H

B-E

A-I

F-J

A-C

B-C

H-J

A-H

F-I

C-H

A-B

The edges are in

the same order as

in the last lecture

The resulting

spanning tree

will be the same
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Juarez

Fort Worth

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

6

7

3

9

11

1

8

5
6

11

2

2

2
3 7

5

2 Columbus

Juarez

Fort Worth

Columbus

Erie

Boston

Indianapolis

Detroit

Atlanta

Houston

Galveston

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 -1 -1

-1 -1 4 -1 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 -1 -2 6 4 -1

-1 -1 4 4 -2 6 -2 6 4 -1

-1 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 -1

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 -2 6 -2 6 4 6

4 4 4 4 6 6 -3 6 4 6

Sorted 

edges

G-H

C-E

C-I

D-E

C-D

D-I

F-H

B-E

A-I

F-J

A-C

B-C

H-J

A-H

F-I

C-H

A-B

We
have a
choice
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Juarez

Fort Worth

Erie

Boston

Indianapolis
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Complexity

 Does union-find with height tracking produce a balanced 

tree?

 It fees like it does

oWe always merge smaller trees into bigger trees

 the tree becomes bushier but the height doesn’t change

o The height grows only when merging trees of the same height

 kind of like balanced binary trees

 Let’s turn this into a mathematical property
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The Height Property

Property

A tree T of height h has at least 2h-1 vertices

Proof

By induction on h

o Base case: h = 1

Then, T consists of a single vertex

and indeed 21-1 = 20 = 1
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The Height Property

Proof

By induction on h

o Inductive case: h > 1

Then, T was obtained by merging two trees T1 and T2 of height h1 and h2

By inductive hypothesis,

 T1 has at least 2h1-1 vertices, and

 T2 has at least 2h2-1 vertices 

We need to consider 3 subcases

 Subcase h1 > h2:

 Then we merged T2 into T1 and h = h1

 T has at least 2h1-1 + 2h2-1 vertices, which is more than 2h1-1 vertices

 Subcase h2 > h1: (similar)

 Subcase h1 = h2:

 Then we either merge T1 into T2 or T2 into T1 to obtain T and h = h1+1

 T has at least 2h1-1 + 2h2-1 = 2h1-1 + 2h1-1 = 2h1 = 2(h1+1)-1 vertices

 Thus T has at least 2h-1 vertices
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Complexity

 A tree T of height h has at least 2h-1 vertices

Then,

 A tree T with v vertices has height at most log v + 1

Thus,

 The longest path to the root has length O(log v)

o T is balanced
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This is if we have a single tree

But what if we have a forest?
(like half-way through union-find)



Complexity

 During union-find with height tracking

owe have a forest of trees

o each tree Ti with vi vertices has height at most log vi + 1

o so, each tree has height at most log v + 1

 Finding the canonical representative of a vertex costs 

O(log v)
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Complexity

Given a graph G, construct a minimum spanning tree T for it

0. Sort the edges of G by increasing weight O(e log e)

1. Start T with the isolated vertices of G O(v)

2. For each edge (u,v) in G e times

o are u and v already connected in T? O(log v)

find the canonical representative of u

find the canonical representative of v

check if they are equal

yes: discard the edge

no: add it to T O(1)

merge the two connected component

appoint a new canonical representative

o Stop once T has v-1 edges

O(v + e log ev)

This was O(v)

This was O(1)
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Comparing Spanning Tree Algorithms

 Spanning trees

o Edge-centric algorithm: O(v + e log v)

o Vertex-centric algorithm: O(v + e)

 Minimum spanning trees

o Kruskal’s algorithm: O(v + e log ev)

o Prim’s algorithm: O(v + e log e)

 Union-find does not buy us anything

o but it is useful for checking equivalence

 independently of spanning trees

Same

Clear winner

Same in common graphs
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Path Compression
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Complexity of Union-find

 Finding a canonical representative costs O(log v)

 Can we do better?

o As we follow a path to the root,

point all the intermediate nodes to the root

o This is called path compression

2

3

4

1

After looking

for the canonical

representative of 1
2

3

4

1
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Example

0

1

2

5

4

3

0

1

2

5

4

3

 Earlier example

owith edge (0,5) added 

 This is where we were

after adding (2,3)

 We are adding (0,5) next

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 1 1 3 3 4

0 1 1 1 3 4

0 3 1 0 3 4

Edges

 (4, 5)

 (3, 5)

 (1, 2)

 (3, 4)

 (2, 3)

(0, 5)

(0, 2)

(0, 1)
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Example

0

1

2

5

4

3

0

1

2

5

4

3

 We are adding (0,5)

o the canonical representative of 0 is 0

o the canonical representative of 5 is 1

 to find it we go through 5, 4 and 3

 repoint 5 and 4 them to 1

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 1 1 3 3 4

0 1 1 1 3 4

0 3 1 0 3 4

Edges

 (4, 5)

 (3, 5)

 (1, 2)

 (3, 4)

 (2, 3)

(0, 5)

(0, 2)

(0, 1)
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Example

0

1

2

5

4

3

0

1

2

5

4

3

 We added (0,5)

owe already have 5 edges

owe ignore the remaining edges

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 4

0 1 2 3 3 4

0 1 1 3 3 4

0 1 1 3 3 4

0 1 1 1 3 4

0 0 1 1 1 1

Edges

 (4, 5)

 (3, 5)

 (1, 2)

 (3, 4)

 (2, 3)

 (0, 5)

(0, 2)

(0, 1)
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The Ackermann Function

 The Ackermann function grows very very fast
A(0) = 1

A(1) = 3

A(2) = 7

A(3) = 61

A(4) > number of atoms in the universe

 The inverse of the Ackermann function, A-1(n), grows very 

very slowly

Ack(0, n) = n+1

Ack(m, 0) = Ack(m-1, 1) if m > 0

Ack(m, n) = Ack(m-1, Ack(m, n-1)) if m, n > 0

A(n)  =  Ack(n, n)

Wilhelm Ackermann

That’s the function such that

A-1(A(n)) = n
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Complexity of Path Compression

 The cost of finding the canonical representative of a vertex 

using union-find with path compression is

O(A-1(v)) amortized

o That a hair above O(1)
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That’s All, Folks
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