
Lecture 6
Binary Search

15-122: Principles of Imperative Computation (Spring 2019)
Frank Pfenning

One of the fundamental and recurring problems in computer science is to
find elements in collections, such as elements in sets. An important algo-
rithm for this problem is binary search. We use binary search to look for an
integer in a sorted array to exemplify it. We started in a previous lecture by
discussing linear search and giving some background on the problem. This
lecture clearly illustrates the power of order in algorithm design: if an array
is sorted we can search through it very efficiently, much more efficiently
than when it is not ordered.

We will also once again see the importance of loop invariants in writing
correct code. Here is a note by Jon Bentley about binary search:

I’ve assigned [binary search] in courses at Bell Labs and IBM. Profes-
sional programmers had a couple of hours to convert [its] description
into a program in the language of their choice; a high-level pseudo-code
was fine. At the end of the specified time, almost all the programmers
reported that they had correct code for the task. We would then take
thirty minutes to examine their code, which the programmers did with
test cases. In several classes and with over a hundred programmers,
the results varied little: ninety percent of the programmers found bugs
in their programs (and I wasn’t always convinced of the correctness of
the code in which no bugs were found).

I was amazed: given ample time, only about ten percent of profes-
sional programmers were able to get this small program right. But
they aren’t the only ones to find this task difficult: in the history in
Section 6.2.1 of his Sorting and Searching, Knuth points out that
while the first binary search was published in 1946, the first published
binary search without bugs did not appear until 1962.

—Jon Bentley, Programming Pearls (1st edition), pp.35–36
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I contend that what these programmers are missing is the understanding
of how to use loop invariants in composing their programs. They help
us to make assumptions explicit and clarify the reasons why a particular
program is correct. Part of the magic of pre- and post-conditions as well as
loop invariants and assertions is that they localize reasoning. Rather than
having to look at the whole program, or the whole function, we can focus
on individual statements tracking properties via the loop invariants and
assertions.

The learning goals for this lecture are as follows:

Computational Thinking: Obtaining an exponential speed-up by parti-
tioning the problem space — a prelude to a more general technique
called divide-and-conquer.

Algorithms and Data Structures: Binary search.

Programming: Using loop invariants as a design tool for programs.

1 Binary Search

Can we do better than searching through the array linearly? If you don’t
know the answer already it might be surprising that, yes, we can do signif-
icantly better! Perhaps almost equally surprising is that the code is almost
as short! However, this will require the array to be sorted.

Before we write the code, let us describe the algorithm. We start search-
ing for x by examining the middle element of the sorted array. If it is smaller
than x, then x must be in the upper half of the array (if it is there at all); if
it is greater than x, then x must be in the lower half. Now we continue by
restricting our attention to either the upper or lower half, again finding the
middle element and proceeding as before.

We stop if we either find x, or if the size of the subarray shrinks to zero,
in which case x cannot be in the array.

Before we write a program to implement this algorithm, let us analyze
the running time. Assume for the moment that the size of the array is a
power of 2, say 2k. Each time around the loop, when we examine the mid-
dle element, we cut the size of the subarrays we look at in half. So before
the first iteration the size of the subarray of interest is 2k. After the first
iteration (i.e., just before the second), it is of size 2k−1, then 2k−2, etc. After
k iterations it will be 2k−k = 1, so we stop after the next iteration. Al-
together we can have at most k + 1 iterations. Within each iteration, we
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perform a constant amount of work: computing the midpoint, and a few
comparisons. So, overall, when given a size of array n we perform c×log2 n
operations (for some constant c).1

If the size n is not a power of 2, then we can round n up to the next
power of 2, and the reasoning above still applies. For example, if n = 13
we round it up to 16 = 24. The actual number of steps can only be smaller
than this bound, because some of the actual subintervals may be smaller
than the bound we obtained when rounding up n.

The logarithm grows much more slowly than the linear function that
we obtained when analyzing linear search. As before, suppose we double
the size of the input, n′ = 2× n. Then the number of operations will be c×
log(2×n) = c×(log 2+log n) = c×(1+log n) = c+c×log n. So the number of
operations increases only by a constant amount c when we double the size
of the input. Considering that the largest representable positive number in
32-bit two’s complement representation is 231 − 1 (about 2 billion) binary
search even for unreasonably large arrays will only traverse the loop 31
times!

2 Implementing Binary Search

The specification for binary search is the same as for linear search.

1 int binsearch(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 ;

We declare two variables, lo and hi, which hold the lower and upper end
of the subinterval in the array that we are considering. We start with lo
as 0 and hi as n, so the interval includes lo and excludes hi. This often
turns out to be a convenient choice when computing with arrays (but see
Exercise 1).

The for loop from linear search becomes a while loop, exiting when
the interval has size zero, that is, lo == hi. We can easily write the first

1In general in computer science, we are mostly interested in logarithm to the base 2
so we will just write logn for log to the base 2 from now on unless we are considering a
different base.
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loop invariant, relating lo and hi to each other and the overall bound of
the array.

1 int binsearch(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 { int lo = 0;
8 int hi = n;
9 while (lo < hi)

10 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
11 {

// ...??...
}
return -1;

}

In the body of the loop, we first compute the midpoint mid . By elemen-
tary arithmetic it is indeed between lo and hi .

Next in the loop body we check if A[mid ] = x. If so, we have found the
element and return mid .

1 int binsearch(int x, int[] A, int n)
// ... contract elided ...

7 { int lo = 0;
8 int hi = n;
9 while (lo < hi)

10 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
11 //@loop_invariant ...??...;
12 {
13 int mid = lo + (hi-lo)/2;
14 //@assert lo <= mid && mid < hi;
15 if (A[mid] == x) return mid;

// ...??...
}

return -1;
}

Now comes the hard part. What is the missing part of the invariant?
The first instinct might be to say that x should be in the interval from A[lo]
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to A[hi ]. But that may not even be true when the loop is entered the first
time.

Let’s consider a generic situation in the form of a picture and collect
some ideas about what might be appropriate loop invariants. Drawing
diagrams to reason about an algorithm and the code that we are trying
to construct is an extremely helpful general technique.

The red box around elements 2 through 5 marks the segment of the ar-
ray still under consideration. This means we have ruled out everything to
the right of (and including) hi and to the left of (and not including) lo. Ev-
erything to the left is ruled out, because those values have been recognized
to be strictly less than x, while the ones on the right are known to be strictly
greater than x, while the middle is still unexplored.

We can depict this as follows:

We can summarize this by stating that A[lo− 1] < x and A[hi ] > x. This
implies that x cannot be in the segments A[0..lo) and A[hi ..n) because the
array is sorted (so all array elements to the left of A[lo − 1] will also be less
than x and all array elements to the right of A[hi ] will also be greater than
x). For an alternative, see Exercise 2.

We can postulate these as invariants in the code.
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1 int binsearch(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 { int lo = 0;
8 int hi = n;
9 while (lo < hi)

10 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
11 //@loop_invariant A[lo-1] < x;
12 //@loop_invariant A[hi] > x;
13 {
14 int mid = lo + (hi-lo)/2;
15 if (A[mid] == x) return mid;

// ...??...
}
return -1;

}

Now a very powerful programming instinct should tell you something
is fishy. Can you spot the problem with the new invariants even before
writing any more code in the body of the loop?
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Whenever you access an element of an array, you must have good
reason to know that the access will be in bounds!

In the code we blithely wrote A[lo − 1] and A[hi ] because they were
in the middle of the array in our diagram. But initially (and potentially
through many iterations) this may not be the case. Fortunately, it is easy to
fix, following what we did for linear search. Consider the following picture
when we start the search.

In this case all elements of the array have to be considered candidates.
All elements strictly to the left of 0 (of which there are none) and to the right
of n (of which there are none) have been ruled out. As in linear search, we
can add this to the our invariant using disjunction.

1 int binsearch(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 { int lo = 0;
8 int hi = n;
9 while (lo < hi)

10 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
11 //@loop_invariant (lo == 0 || A[lo-1] < x);
12 //@loop_invariant (hi == n || A[hi] > x);
13 {
14 int mid = lo + (hi-lo)/2;
15 if (A[mid] == x) return mid;

// ...??...
}
return -1;

}
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At this point, let’s check if the loop invariant is strong enough to imply
the post-condition of the function. If we return from inside the loop because
A[mid ] = x we return mid , so A[\result] == x as required.

If we exit the loop because lo < hi is false, we know lo = hi , by the first
loop invariant. Now we have to distinguish some cases.

1. If A[lo − 1] < x and x < A[hi ], then x < A[lo] (since lo = hi ). Because
the array is sorted, x cannot be in it.

2. If lo = 0, then hi = 0. By the third loop invariant, then either n = 0
(and so the array has no elements and we must return−1), or A[hi ] =
A[lo] = A[0] > x. Because A is sorted, x cannot be in A if its first
element is already strictly greater than x.

3. If hi = n, then lo = n. By the second loop invariant, then either n = 0
(and so we must return −1), or A[n− 1] = A[hi − 1] = A[lo − 1] < x.
Because A is sorted, x cannot be in A if its last element is already
strictly less than x.

Notice that we could verify all this without even knowing the complete
program! As long as we can finish the loop to preserve the invariant and
terminate, we will have a correct implementation! This would again be a
good point for you to interrupt your reading and to try to complete the
loop, reasoning from the invariant.

We have already tested if A[mid ] = x. If not, then A[mid ] must be less or
greater than x. If it is less, then we can keep the upper end of the interval as
is, and set the lower end to mid+1. Now A[lo−1] < x (because A[mid ] < x
and lo = mid +1), and the condition on the upper end remains unchanged.

If A[mid ] > x we can set hi to mid and keep lo the same. We do not
need to test this last condition, because the fact that the tests A[mid ] = x
and A[mid ] < x both failed implies that A[mid ] > x. We note this in an
assertion.
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1 int binsearch(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (-1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/
7 { int lo = 0;
8 int hi = n;
9 while (lo < hi)

10 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
11 //@loop_invariant (lo == 0 || A[lo-1] < x);
12 //@loop_invariant (hi == n || A[hi] > x);
13 {
14 int mid = lo + (hi-lo)/2;
15 //@assert lo <= mid && mid < hi;
16 if (A[mid] == x) return mid;
17 else if (A[mid] < x) lo = mid+1;
18 else /*@assert(A[mid] > x);@*/
19 hi = mid;
20 }
21 return -1;
22 }
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Let’s set up the proof of the loop invariants more schematically.

Init: When the loop is first reached, we have lo = 0 and hi = n, so the first
loop invariant follows from the precondition to the function. Further-
more, the first disjunct in loop invariants two (lo == 0) and three
(hi == n) is satisfied.

Preservation: Assume the loop invariants are satisfied and we enter the
loop:

0 ≤ lo ≤ hi ≤ n (Inv 1)
(lo = 0 or A[lo − 1] < x) (Inv 2)
(hi = n or A[hi ] > x) (Inv 3)
lo < hi (loop condition)

We compute mid = lo+b(hi−lo)/2c. Now we distinguish three cases:

A[mid ] = x: In that case we exit the function, so we don’t need to
show preservation. We do have to show the post-condition, but
we already considered this earlier in the lecture.

A[mid ] < x: Then
lo′ = mid + 1
hi ′ = hi

The first loop invariant 0 ≤ lo′ ≤ hi ′ ≤ n follows from the for-
mula for mid , our assumptions, and elementary arithmetic.
For the second loop invariant, we calculate:

A[lo′ − 1] = A[(mid + 1)− 1] since lo′ = mid + 1
= A[mid ] by arithmetic
< x this case A[mid ] < x

The third loop invariant is preserved, since hi ′ = hi .

A[mid ] > x: Then
lo′ = lo
hi ′ = mid

Again, by elementary arithmetic, 0 ≤ lo′ ≤ hi ′ ≤ n.
The second loop invariant is preserved since lo′ = lo.
For the third loop invariant, we calculate

A[hi ′] = A[mid ] since hi ′ = mid
> x since we are in the case A[mid ] > x
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3 Termination

Does this function terminate? If the loop body executes, that is, lo < hi ,
then the interval from lo to hi is non-empty. Moreover, the intervals from
lo to mid and from mid + 1 to hi are both strictly smaller than the original
interval. Unless we find the element, the difference between hi and lo must
eventually become 0 and we exit the loop.

4 One More Observation

You might be tempted to calculate the midpoint with

13 int mid = (lo + hi)/2;

but that is in fact incorrect. Consider this change and try to find out why
this would introduce a bug.
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Were you able to see it? It’s subtle, but somewhat related to other prob-
lems we had. When we compute (lo + hi)/2; we could actually have an
overflow, if lo + hi > 231 − 1. This is somewhat unlikely in practice, since
231 = 2G, about 2 billion, so the array would have to have at least 1 billion
elements. This is not impossible, and, in fact, a bug like this in the Java
libraries2 was actually exposed.

Fortunately, the fix is simple: because lo < hi , we know that hi − lo > 0
and represents the size of the interval. So we can divide that in half and
add it to the lower end of the interval to get its midpoint.

13 int mid = lo + (hi-lo)/2; // as shown in binary search
14 //@assert lo <= mid && mid < hi;

Let us convince ourselves why the assert is correct. The division by two will
round to zero, down to 0 here, because hi − lo > 0. Thus, 0 ≤ (hi − lo)/2 <
hi − lo, because dividing a positive number by two will make it strictly
smaller. Hence,

mid = lo + (hi − lo)/2 < lo + (hi − lo) = hi

Since dividing positive numbers by two will still result in a non-negative
number, the first part of the assert is correct as well.

mid = lo + (hi − lo)/2 ≥ lo + 0 = lo

Other operations in this binary search take place on quantities bounded
from above by the int n and thus cannot overflow.

Why did we choose to look at the middle element and not another el-
ement at all? Because, whatever the outcome of our comparison to that
middle element may be, we maximize how much we have learned about
the contents of the array by doing this one comparison. If we find the ele-
ment, we are happy because we are done. If the middle element is smaller
than what we are looking for, however, we are happy as well, because we
have just learned that the lower half of the array has become irrelevant.
Similarly, if the middle element is bigger, then we have made substantial
progress by learning that we never need to look at the upper half of the
array anymore. There are other choices, however, where binary search will
also still work in essentially the same way.

2See Joshua Bloch’s Extra, Extra blog entry.

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
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5 Some Measurements

Algorithm design is an interesting mix of mathematics and an experimental
science. Our analysis above, albeit somewhat preliminary in nature, allow
us to make some predictions of running times of our implementations. We
start with linear search. We first set up a file to do some experiments. We
assume we have already tested our functions for correctness, so only tim-
ing is at stake. See the file search-time.c0 in the code directory for this
lecture. We compile this file, together with our implementation from this
lecture, with the cc0 command below. We can get an overall end-to-end
timing with the Unix time command. Note that we do not use the -d flag,
since that would dynamically check contracts and completely throw off our
timings.

% cc0 find.c0 find-time.c0
% time ./a.out

When running linear search 2000 times (1000 times with x in the array, and
1000 times with random x) on 218 elements (256 K elements) we get the
following answer

Timing 1000 times with 2^18 elements
0
4.602u 0.015s 0:04.63 99.5% 0+0k 0+0io 0pf+0w

which indicates 4.602 seconds of user time.
Running linear search 2000 times on random arrays of size 218, 219 and

220 we get the timings on our MacBook Pro

array size time (secs)
218 4.602
219 9.027
220 19.239

The running times are fairly close to doubling consistently. Due to mem-
ory locality effects and other overheads, for larger arrays we would expect
larger numbers.

Running the same experiments with binary search we get

array size time (secs)
218 0.020
219 0.039
220 0.077
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which is much, much faster but looks suspiciously linear as well.
Reconsidering the code we see that the time might increase linearly be-

cause we actually must iterate over the whole array in order to initialize it
with random elements!

We comment out the testing code to measure only the initialization
time, and we see that for 220 elements we measure 0.072 seconds, as com-
pared to 0.077 which is insignificant. Effectively, we have been measuring
the time to set up the random array, rather than to find elements in it with
binary search!

This is a vivid illustration of the power of divide-and-conquer. Loga-
rithmic running time for algorithms grow very slowly, a crucial difference
to linear-time algorithms when the data sizes become large.
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Exercises

Exercise 1. Rewrite the binary search function so that both lower and upper
bounds of the interval are inclusive. Make sure to rewrite the loop invariants
and the loop body appropriately, and prove the correctness of the new loop invari-
ants. Also explicitly prove termination by giving a measure that strictly decreases
each time around the loop and is bounded from below.

Exercise 2. Rewrite the invariants of the binary search function to use is_in(x, A, l, u)
which returns true if and only if there is an i such that x = A[i] for l ≤ i < u.
is_in assumes that 0 ≤ l ≤ u ≤ n where n is the length of the array.

Then prove the new loop invariants, and verify that they are strong enough to
imply the function’s post-condition.

Exercise 3. Binary search as presented here may not find the leftmost occurrence
of x in the array in case the occurrences are not unique. Given an example demon-
strating this.

Now change the binary search function and its loop invariants so that it will
always find the leftmost occurrence of x in the given array (if it is actually in the
array, −1 as before if it is not).

Prove the loop invariants and the post-conditions for this new version, and
verify termination.

Exercise 4. If you were to replace the midpoint computation by

int mid = (lo + hi)/2;

then which part of the contract will alert you to a flaw in your thinking? Why?
Give an example showing how the contracts can fail in that case.

Exercise 5. In lecture, we used design-by-invariant to construct the loop body
implementation from the loop invariant that we have identified before. We could
also have maintained the loop invariant by replacing the whole loop body just with

// .... loop_invariant elided ....
{
lo = lo;
hi = hi;

}

Prove the loop invariants for this loop body. What is wrong with this choice?
Which part of our proofs fail, thereby indicating why this loop body would not
implement binary search correctly?
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