
Lecture 18
Restoring Invariants

15-122: Principles of Imperative Computation (Spring 2019)
Frank Pfenning

In this lecture we will implement heaps and operations on them. The theme
of this lecture is reasoning with invariants that are partially violated, and
making sure they are restored before the completion of an operation. We
will only briefly review the algorithms for inserting and deleting the min-
imal node of the heap; you should read the notes for the previous lecture
on priority queues and keep them close at hand.

Computational Thinking: We convert ideas developed diagrammatically
in the last lecture into working code.

Algorithms and Data Structures: Temporarily violating and restoring in-
variants is a common theme in algorithms. It is a technique you need
to master.

Programming: We practice writing generic code involving arrays.

1 The Heap Structure

We use the following header struct to represent heaps.

typedef struct heap_header heap;
struct heap_header {
int limit; // limit = capacity+1
int next; // 1 <= next && next <= limit
elem[] data; // \length(data) == limit
has_higher_priority_fn* prior; // != NULL

};

LECTURE NOTES c© Carnegie Mellon University 2019

Lecture 18: Restoring Invariants 2

The field prior is provided by the client and tells us how to compare
elements.

// f(x,y) returns true if e1 has STRICTLY higher priority than e2
typedef bool has_higher_priority_fn(elem e1, elem e2);

Since the significant array elements start at 1, as explained in the previ-
ous lecture, the limitmust be one greater than the desired capacity. To pre-
vent overflows, we will also require that limit be less than int_max()/2.
The next index must be between 1 and limit, and the element array must
have exactly limit elements.

2 Minimal Heap Invariants

Before we implement the operations, we define a function that checks the
heap invariants. The shape invariant is automatically satisfied due to the
representation of heaps as arrays, but we need to carefully check the order-
ing invariants. It is crucial that no instance of the data structure that is not a
true heap will leak across the interface to the client, because the client may
then incorrectly call operations that require heaps with data structures that
are not.

First, we check that the heap is not NULL, that limit has acceptable
values, and that the length of the array matches the given limit. The latter
must be checked in an annotation, because, in C0 and C1, the length of
an array is not available to us at runtime except in contracts. Second, we
check that next is in range, between 1 and limit. Finally, we check that
the client-provided comparison is defined and non-NULL.

1 bool is_heap_safe(heap* H) {
2 return H != NULL
3 && (1 < H->limit && H->limit < int_max()/2)
4 && is_array_expected_length(H->data, H->limit)
5 && (1 <= H->next && H->next <= H->limit)
6 && H->prior != NULL;
7 }

This is not sufficient to know that we have a valid heap! The specification
function is_heap_safe is the minimal specification function we need to be
able to access the data structure; we want to make sure anything we pass
to the user additionally satisfies the ordering invariant.

This invariant acts as the precondition of some of our helper functions.
We first use the client’s function, accessible as H->prior, to express a more

Lecture 18: Restoring Invariants 3

useful concept for our implementation: that the element in index i can be
correctly placed as the parent of the element in index j in the heap.

9 bool ok_above(heap* H, int i, int j)
10 //@requires is_heap_safe(H);
11 //@requires 1 <= i && i < H->next;
12 //@requires 1 <= j && j < H->next;
13 {
14 return !(*H->prior)(H->data[j], H->data[i]);
15 }

This function returns true whenever the element at position i has priority
higher than or equal to the element at position j.

A second helper function that uses is_heap_safe swaps an element
with its parent:

17 void swap_up(heap* H, int child)
18 //@requires is_heap_safe(H);
19 //@requires 2 <= child && child < H->next;
20 //@requires !ok_above(H, child/2, child); // parent == child/2
21 //@ensures ok_above(H, child/2, child);
22 {
23 int parent = child/2;
24 elem tmp = H->data[child];
25 H->data[child] = H->data[parent];
26 H->data[parent] = tmp;
27 }

3 The Heap Ordering Invariant

It turns out to be simpler to specify the ordering invariant in the second
form seen in the last lecture, which stipulates that each node except the root
needs to be greater or equal to its parent. To check this we iterate through
the array and compare the priority of each node data[i] with its parent,
except for the root (i = 1) which has no parent.

29 bool is_heap_ordered(heap* H)
30 //@requires is_heap_safe(H);
31 {
32 for (int child = 2; child < H->next; child++)
33 //@loop_invariant 2 <= child;

Lecture 18: Restoring Invariants 4

34 {
35 int parent = child/2;
36 if (!ok_above(H, parent, child)) return false;
37 }
38

39 return true;
40 }
41

42 bool is_heap(heap* H) {
43 return is_heap_safe(H) && is_heap_ordered(H);
44 }

Observe that the loop starts at index 2, since the root of the heap is stored
at index 1.

4 Creating Heaps

We start with the simple code to test if a priority queue implemented as a
heap is empty or full, and to allocate a new (empty) heap. A heap is empty
if the next element to be inserted would be at index 1. A heap is full if the
next element to be inserted would be at index limit (the size of the array).

1 bool pq_empty(heap* H)
2 //@requires is_heap(H);
3 {
4 return H->next == 1;
5 }
6

7 bool pq_full(heap* H)
8 //@requires is_heap(H);
9 {

10 return H->next == H->limit;
11 }

To create a new heap, we allocate a struct and an array and set all the
right initial values.

13 heap* pq_new(int capacity, has_higher_priority_fn* prior)
14 //@requires 0 < capacity && capacity < int_max()/2 - 1;
15 //@requires prior != NULL;
16 //@ensures is_heap(\result) && pq_empty(\result);
17 {

Lecture 18: Restoring Invariants 5

18 heap* H = alloc(heap);
19 H->limit = capacity+1;
20 H->next = 1;
21 H->data = alloc_array(elem, H->limit);
22 H->prior = prior;
23 return H;
24 }

Note that H->data[0] is unused. We could have allocated an array of ex-
actly capacity at the cost of complicating our index operations. The pre-
condition capacity < int_max()/2 - 1 wards against overflows.

5 Insert and Sifting Up

The shape invariant tells us exactly where to insert the new element: at the
index H->next in the data array. Then we increment the next index.

26 void pq_add(heap* H, elem x)
27 //@requires is_heap(H) && !pq_full(H);
28 //@ensures is_heap(H);
29 {
30 H->data[H->next] = x;
31 (H->next)++; // basic invariants hold
32 // but ordering invariant may be violated
33 // ...
}

By inserting x in its specified place, we have, of course, violated the order-
ing invariant. We need to sift up the new element until we have restored
the invariant. The invariant is restored when the new element is bigger
than or equal to its parent or when we have reached the root. We still need
to sift up when the new element is less than its parent. This suggests the
following code:

33 int i = H->next - 1; // element we just added
34 while (i > 1 && !ok_above(H,i/2,i)) {
35 swap_up(H, i);
36 i = i/2;
37 }

Setting i = i/2 is moving up in the tree, to the place we just swapped the
new element to.

Lecture 18: Restoring Invariants 6

At this point, as always, we should ask why accesses to the elements
of the priority queue are safe. By short-circuiting of conjunction, we know
that i > 1 when we ask whether H->data[i/2] is okay above H->data[i].
But we need a loop invariant to make sure that it respects the upper bound.
The index i starts at H->next - 1, so it should always be strictly less that
H->next.

34 while (i > 1 && !ok_above(H,i/2,i))
35 //@loop_invariant 1 <= i && i < H->next;
36 {
37 swap_up(H, i);
38 i = i/2;
39 }

One small point regarding the loop invariant: we just incremented H->next,
so it must be strictly greater than 1 and therefore the invariant 1 ≤ i must
be satisfied.

But how do we know that swapping the element up the tree restores
the ordering invariant? We need an additional loop invariant which states
that H is a valid heap except at index i. Index i may be smaller than its
parent, but it still needs to be less than or equal to its children. We therefore
postulate a function is_heap_except_up and use it as a loop invariant.

34 while (i > 1 && !ok_above(H,i/2,i))
35 //@loop_invariant 1 <= i && i < H->next;
36 //@loop_invariant is_heap_except_up(H, i);

The next step is to write this function. We copy the is_heap_ordered func-
tion, but check a node against its parent only when it is different from the
distinguished element where the exception is allowed. The differences are
highlighted.

bool is_heap_except_up(heap* H , int i)

//@requires is_heap_safe(H);

//@requires 1 <= i && i < H->next;

{
for (int child = 2; child < H->next; child++)
//@loop_invariant 2 <= child;
{
int parent = child/2;

if (!(child == i ||

ok_above(H, parent, child))) return false;

Lecture 18: Restoring Invariants 7

}
return true;

}

We observe that is_heap_except_up(H, 1) is equivalent to is_heap(H).
That’s because the loop over child starts at 2, so the exception child 6= i is
always true.

Now we try to prove that this is indeed a loop invariant, and there-
fore our function is correct. Rather than using a lot of text, we verify this
properties on general diagrams. Other versions of this diagram are entirely
symmetric. On the left is the relevant part of the heap before the swap and
on the right is the relevant part of the heap after the swap. The relevant
nodes in the tree are labeled with their priority. Nodes that may be above
a or below c, c1, c2 and to the right of a are not shown. These do not enter
into the invariant discussion, since their relations between each other and
the shown nodes remain fixed. Also, if x is in the last row the constraints
regarding c1 and c2 are vacuous.

swap x up

We know the following properties on the left from which the properties
shown on the right follow as shown:

Current iteration

a ≤ b (1) order
b ≤ c (2) order
x ≤ c1 (3) order
x ≤ c2 (4) order

b > x (5) since we swap

Next iteration

a ? x allowed exception

x ≤ c from (5) and (2)
x ≤ b from (5)

b ≤ c1 ??
b ≤ c2 ??

(For this and similar examples, we’ll assume that we’re using a min-heap.)
Our invariant gives us no way to know that b ≤ c1 and b ≤ c2. We see that

Lecture 18: Restoring Invariants 8

simply stipulating the (temporary) invariant that every node is greater or
equal to its parent except for the one labeled x is not strong enough. It is
not necessarily preserved by a swap.

But we can strengthen it a bit. You might want to think about how
before you move on to the next page.

Lecture 18: Restoring Invariants 9

The strengthened invariant also requires that the children of the po-
tentially violating node x are greater or equal to their grandparent! Let’s
reconsider the diagrams.

swap x up

We have more assumptions on the left now ((6) and (7)), but we have also
two additional proof obligations on the right (a ≤ c and a ≤ b).

Current iteration

a ≤ b (1) order
b ≤ c (2) order
x ≤ c1 (3) order
x ≤ c2 (4) order

b > x (5) since we swap

b ≤ c1 (6) grandparent
b ≤ c2 (7) grandparent

Next iteration

a ? x allowed exception

a ≤ c from (1) and (2)
a ≤ b (1)

x ≤ c from (5) and (2)
x ≤ b from (5)
b ≤ c1 (6)
b ≤ c2 (7)

Success! We just need an additional function that checks this loop invariant:

bool grandparent_check(heap* H, int i)
//@requires is_heap_safe(H);
//@requires 1 <= i && i < H->next;
{
int left = 2*i;
int right = left + 1;
int grandparent = i/2;

if (i == 1) return true; // Reached the root
if (left >= H->next) return true; // No children
if (right == H->next) // Left child only
return ok_above(H, grandparent, left);

Lecture 18: Restoring Invariants 10

return right < H->next // Both children
&& ok_above(H, grandparent, left)
&& ok_above(H, grandparent, right);

}

Using this additional invariant, we have a loop that provably restores
the is_heap invariant.

34 while (i > 1 && !ok_above(H,i/2,i))
35 //@loop_invariant 1 <= i && i < H->next;
36 //@loop_invariant is_heap_except_up (H, i);
37 //@loop_invariant grandparent_check(H, i);
38 {
39 swap_up(H, i);
40 i = i/2;
41 }

Note that the strengthened loop invariants (or, rather, the strengthened
definition of what it means to be a heap except in one place) is not necessary
to show that the postcondition of pq_add (i.e., is_heap(H)) is implied.

Postcondition: If the loop exits, we know the loop invariants and the negated
loop guard are true:

1 ≤ i < next (LI 1)
is_heap_except_up(H, i) (LI 2)
Either i ≤ 1 or ok_above(H, i/2, i) Negated loop guard

We distinguish the two cases.

Case: i <= 1. Then i = 1 from (LI 1), and is_heap_except_up(H, 1).
As observed before, that is equivalent to is_heap(H).

Case: ok_above(H, i/2, i). Then the only possible index i where
is_heap_except_up(H, i) makes an exception and does not
check whether ok_above(H, i/2, i) is actually no exception,
and we have is_heap(H).

Lecture 18: Restoring Invariants 11

Overall, the function pq_add is as follows

26 void pq_add(heap* H, elem e)
27 //@requires is_heap(H) && !pq_full(H);
28 //@ensures is_heap(H);
29 {
30 H->data[H->next] = e;
31 (H->next)++;
32 /* H may no longer be a heap! */
33

34 int i = H->next - 1;
35 while(i > 1 && !ok_above(H,i/2,i))
36 //@loop_invariant 1 <= i && i < H->next;
37 //@loop_invariant is_heap_except_up(H, i);
38 //@loop_invariant grandparent_check(H, i);
39 {
40 swap_up(H, i);
41 i = i/2;
42 }
43 }

6 Deleting the Minimum and Sifting Down

Recall that deleting the minimum swaps the root with the last element in
the current heap and then applies the sifting down operation to restore the
invariant. As with insert, the operation itself is rather straightforward, al-
though there are a few subtleties. First, we have to check that H is a heap,
and that it is not empty. Then we save the minimal element, swap it with
the last element (at next-1), and delete the last element (now the element
that was previously at the root) from the heap by decrementing next.

80 elem pq_rem(heap* H)
81 //@requires is_heap(H) && !pq_empty(H);
82 //@ensures is_heap(H);
83 {
84 elem min = H->data[1];
85 (H->next)--;
86

87 if (H->next > 1) {
88 H->data[1] = H->data[H->next]; // Swap last element in

Lecture 18: Restoring Invariants 12

89 // Ordering invariant may be violated
90 sift_down(H);
91 }
92 return min;
93 }

Next we need to restore the heap invariant by sifting down from the root,
with sift_down(H). We only do this if there is at least one element left in
the heap.

But what is the precondition for the sifting down operation? Again, we
cannot express this using the functions we have already written. Instead,
we need a function is_heap_except_down(H, i) which verifies that the
heap invariant is satisfied in H , except possibly at i. This time, though,
it is between i and its children where things may go wrong, rather than
between i and its parent as in is_heap_except_up(H, i). In the pictures
below this would be at i = 1 on the left and i = 2 on the right.

We change the test accordingly.

/* Valid heap except at i, looking down the tree */
bool is_heap_except_down(heap* H, int i)
//@requires is_heap_safe(H);
//@requires 1 <= i && i < H->next;
{
for (int child = 2; child < H->next; child++)
//@loop_invariant 2 <= child;
{
int parent = child/2;
if (!(parent == i || ok_above(H, parent, child))) return false;

}
return true;

}

Lecture 18: Restoring Invariants 13

With this we can have the right invariant to write our sift_down func-
tion. The tricky part of this function is the nature of the loop. Our loop
index i starts at n (which actually will always be 1 when this function is
called). We have reached a leaf if 2i ≥ next because if there is no left child,
there cannot be a right one, either. So the outline of our function shapes up
as follows:

45 void sift_down(heap* H)
46 //@requires is_heap_safe(H);
47 //@requires H->next > 1 && is_heap_except_down(H, 1);
48 //@ensures is_heap(H);
49 {
50 int i = 1;
51

52 while (2*i < H->next)
53 //@loop_invariant 1 <= i && i < H->next;
54 //@loop_invariant is_heap_except_down(H, i);
55 //@loop_invariant grandparent_check(H, i);
56 // ...

We also have written down three loop invariants: the bounds for i, the
heap invariant (everywhere, except possibly at i, looking down), and the
grandparent check, which we anticipate from our previous problems.

We want to return from the function if we have restored the invariant,
that is if the element in index i is okay above all of his children. However,
there may be either 1 or 2 children (the loop guard checks that there will be
at least one). So we have to guard this access by a bounds check. Clearly,
when there is no right child, checking the left one is sufficient.

52 while (2*i < H->next)
53 //@loop_invariant 1 <= i && i < H->next;
54 //@loop_invariant is_heap_except_down(H, i);
55 //@loop_invariant grandparent_check(H, i);
56 {
57 int left = 2*i;
58 int right = left+1;
59

60 if (ok_above(H, i, left) // All good on the left, and
61 && (right >= H->next || // no right child or
62 ok_above(H, i, right))) // all good on the right too
63 return; // Nothing to do
64 // ...

Lecture 18: Restoring Invariants 14

If this test fails, we have to determine the smaller of the two children. If
there is no right child, we pick the left one, of course. Once we have found
the smaller one we swap the current one with the smaller one, and then
make the child the new current node i.

Here is the overall function:

45 void sift_down(heap* H)
46 //@requires is_heap_safe(H);
47 //@requires H->next > 1 && is_heap_except_down(H, 1);
48 //@ensures is_heap(H);
49 {
50 int i = 1;
51

52 while (2*i < H->next)
53 //@loop_invariant 1 <= i && i < H->next;
54 //@loop_invariant is_heap_except_down(H, i);
55 //@loop_invariant grandparent_check(H, i);
56 {
57 int left = 2*i;
58 int right = left+1;
59

60 if (ok_above(H, i, left) // All good on the left, and
61 && (right >= H->next || // no right child or
62 ok_above(H, i, right))) // all good on the right too
63 return; // Nothing to do!
64 if (right >= H->next || // No right child, or
65 ok_above(H, left, right)) { // left is smaller or equal
66 swap_up(H, left);
67 i = left;
68 } else { // right is smaller
69 //@assert right < H->next && ok_above(H, right, left);
70 swap_up(H, right);
71 i = right;
72 }
73 }
74

75 //@assert i < H->next && 2*i >= H->next;
76 //@assert is_heap_except_down(H, i);
77 return;
78 }

Lecture 18: Restoring Invariants 15

Before the second return, we know that is_heap_except_down(H,i) and
2i ≥ next . This means there is no node j in the heap such that j/2 = i
and the exception in is_heap_except_down will never apply. H is indeed
a heap.

At this point we should give a proof that is_heap_except_down is re-
ally an invariant. This is left as Exercise 4.

7 Heapsort

We rarely discuss testing in these notes, but it is useful to consider how to
write decent test cases. Mostly, we have been doing random testing, which
has some drawbacks but is often a tolerable first cut at giving the code a
workout. It is much more effective in languages that are type safe such as
C0, and even more effective when we dynamically check invariants along
the way.

In the example of heaps, one nice way to test the implementation is to
insert a random sequence of numbers, then repeatedly remove the minimal
element until the heap is empty. If we store the elements in an array in the
order we take them out of the heap, the array should be sorted when the
heap is empty! This is the idea behind heapsort. We first show the code,
using the random number generator we have used for several lectures now,
then analyze the complexity. As the priority function, we use int_lt(x,y)
which returns true if and only if x<y. The standard loop invariants have
been omitted for conciseness.

int main() {
int n = (1<<9)-1; // 1<<9 for -d; 1<<13 for timing
int num_tests = 10; // 10 for -d; 100 for timing
int seed = 0xc0c0ffee;
rand_t gen = init_rand(seed);
int[] A = alloc_array(int, n);
heap* H = pq_new(n, &int_lt);

print("Testing heap of size "); printint(n);
print(" "); printint(num_tests); print(" times\n");
for (int j = 0; j < num_tests; j++) {
for (int i = 0; i < n; i++) {
pq_add(H, rand(gen));

}
for (int i = 0; i < n; i++) {

Lecture 18: Restoring Invariants 16

A[i] = pq_rem(H);
}
assert(pq_empty(H)); // heap not empty
assert(is_sorted(A, 0, n)); // heapsort failed

}
print("Passed all tests!\n");
return 0;

}

Now for the complexity analysis. Inserting n elements into the heap
is bounded by O(n log n), since each of the n inserts is bounded by log n.
Then the n element deletions are also bounded by O(n log n), since each
of the n deletions is bounded by log n. So altogether we get O(2n log n) =
O(n log n). Heapsort is asymptotically as good as mergesort or as good as
the expected complexity of quicksort with random pivots.

The sketched algorithm uses O(n) auxiliary space, namely the heap.
One can use the same basic idea to do heapsort in place, using the unused
portion of the heap array to accumulate the sorted array.

Testing, including random testing, has many problems. In our context,
one of them is that it does not test the strength of the invariants. For ex-
ample, say we write no invariants whatsoever (the weakest possible form),
then compiling with or without dynamic checking will always yield the
same test results. We really should be testing the invariants themselves by
giving examples where they are not satisfied. However, we should not be
able to construct such instances of the data structure on the client side of the
interface. Furthermore, within the language we have no way to “capture”
an exception such as a failed assertion and continue computation.

8 Summary

We briefly summarize key points of how to deal with invariants that must
be temporarily violated and then restored.

1. Make sure you have a clear high-level understanding of why invari-
ants must be temporarily violated, and how they are restored.

2. Ensure that at the interface to the abstract type, only instances of the
data structure that satisfy the full invariants are being passed. Other-
wise, you should rethink all the invariants.

Lecture 18: Restoring Invariants 17

3. Write predicates that test whether the partial invariants hold for a
data structure. Usually, these will occur in the preconditions and
loop invariants for the functions that restore the invariants. This will
force you to be completely precise about the intermediate states of the
data structure, which should help you a lot in writing correct code for
restoring the full invariants.

Exercises

Exercise 1. Write a recursive version of is_heap_ordered.

Exercise 2. Write a recursive version of is_heap_except_up.

Exercise 3. Write a recursive version of is_heap_except_down.

Exercise 4. Give a diagrammatic proof for the invariant property of sifting down
for delete (called is_heap_except_down), along the lines of the one we gave for
sifting up for insert.

Exercise 5. Above, we separated out the sift down operation into its own function
sift_down. Do the same for sift up.

Exercise 6. Say we want to extend priority queues so that when inserting a new
element and the queue is full, we silently delete the element with the lowest priority
(= maximal key value) before adding the new element. Describe an algorithm,
analyze its asymptotic complexity, and provide its implementation.

Exercise 7. Using the invariants described in this lecture, write a function heapsort
which sorts a given array in place by first constructing a heap, element by element,
within the same array and then deconstructing the heap, element by element.
[Hint: It may be easier to sort the array in descending order and reverse in a last
pass or use so called max heaps where the maximal element is at the top.]

Exercise 8. Is the array H->data of a heap always sorted?

	The Heap Structure
	Minimal Heap Invariants
	The Heap Ordering Invariant
	Creating Heaps
	Insert and Sifting Up
	Deleting the Minimum and Sifting Down
	Heapsort
	Summary

