
Types in C

LAST
• C’s Memory Model

• Arrays and pointers
• Pointer casting
• Arrays on the stack
• Structs on the stack
• “Address of” operator

• Undefined behavior

TODAY
• Numbers in C
• Implementation-defined behavior
• Other C types

NEXT

C0 virtual machine

Revisiting last lecture

• Safety violations in C0 is typically undefined behavior in C.

• Pointers and arrays are the same.

• It is not possible to capture or check the length of arrays.

&: “Address of” operator

 In C, & can be used to get address of any value that has a memory address.

OS

OS

CODE

TEXT

HEAP

STACK

main …
hdict_lookup …
key_hash …
key_equiv …

"hamlet"
"rose"

2
4

0x735
73

0x73C
42

0xB4B

0xB4B
0x73C

H main
hdict_lookup

key_equiv

H
k

0i
0x73Ck1
0x735k2

Local
memory

Allocated
memory

read-only

read-only

restricted

restrictedint i = 42;
increment(&i);
printf("%d", i);

void increment(int *p){
 REQUIRES(p != NULL);
 *p = *p + 1;
}

prints 43.

&: “Address of” operator

Allocate a point structure on the stack, initialize the y coordinate and increment it
using increment.

struct point p;

void increment(int *p){
 REQUIRES(p != NULL);
 *p = *p + 1;
}

struct point {
 int x;
 int y;
};

p.x = 0;
increment(&p.x);

Transition to C

LOST GAINED

Contracts Preprocessor

Safety Explicit memory management

Garbage collection Tools: valgrind

Memory initialization Pointer arithmetics

Tools: Interpreter (coin) Stack allocated arrays and structs

Well-behaved arrays Generalized “address of”

Fully defined language

Strings

Size of int in C over time

70s 80s 90s now

Pointer size 8 16 32 64

int size 8 16 32 32

Implementation-defined behavior

Compiler is required to define the size of int
• The programmer can find it in <limits.h>

Undefined-behavior for integers

• Division/modulus by 0
• Shift by more than the size of the integer
• Overflow for signed types like int

Integer types in C

signed unsigned today C99 constraints
(signed)

signed char unsigned char 8 bits exactly 1 byte

short unsigned short 16 bits (-215, 215)

int unsigned int 32 bits (-215, 215)

long unsigned long 64 bits (-231, 231)

Fixed size integers (defined in <stdint.h>)

fixed-size signed today’s signed equivalent

int8_t signed char

int16_t short

int32_t int

int64_t long

Fixed size integers (defined in <stdint.h>

fixed-size unsigned today’s unsigned equivalent

uint8_t unsigned char

uint16_t unsigned short

uint32_t unsigned int

uint64_t unsigned long

size_t

• An unsigned integer type

• Preferred way to declare any arguments or variables that hold the size of an
object.

• The result of the sizeof operator is of this type, and functions such as malloc
accept arguments of this type to specify object sizes. On systems using the
GNU C Library, this will be unsigned int or unsigned long int.

Integer casting

• Changing integer types

int x = 3;
long y = (long) x;

long x = 3; // Implicitly cast
long y = (long)3; // Explicitly cast

Implicit casting is dangerous: long x = 1 << 40;

1 is 32 bits and we are shifting it by 40 bits, undefined behavior

• Literal number always has type int

Casting rules in C

• When casting signed to/from unsigned numbers of the
same size, bit pattern is preserved.

• When casting small to big number of same signedness,
value is preserved.

• When casting big to small number of the same
signedness, make sure the value will fit. Otherwise
undefined behavior.

Casting rules in C

• When casting signed to/from unsigned numbers of the
same size, bit pattern is preserved.

 signed char x = 3; // x is 3 (0x03)
 unsigned char y = (unsigned char)x; // y is 3 (0x03)

signed char a = -3; // a is -3 (0xFD)
unsigned char b = (unsigned char)a; // b is 253 (0xFD)

Casting rules in C

• When casting small to big number of same signedness,
value is preserved.

 signed char x = 3; // x is 3 (0x03)
 int y = (int)x; // y is 3 (0x00000003)

uses sign extension

signed char a = -3; // a is -3 (0xFD)
int b = (int)a; // b is -3 (0xFFFFFFFD)

Casting rules in C

• When casting signed to/from unsigned numbers of the
same size, bit pattern is preserved.

• When casting small to big number of same signedness,
value is preserved.

• When casting big to small number of the same
signedness, make sure the value will fit. Otherwise
undefined behavior.

Casting across both sign and size

unsigned char x = 0xF0; // x is 240
int y = (int)x;

Casting across both sign and size

unsigned char x = 0xF0;
int y = (int)x;

unsigned char 0xF0 = 240

unsigned int 0x000000F0

preserve value
cast to unsigned int cast to signed char

cast to signed int cast to signed int

preserve bit pattern

signed char 0xF0 = -16

preserve bit pattern preserve value

0xFFFFFFF0
= -16

0x000000F0
= 240

unsigned char x = 0xF0;
int y = (int)x;

KAYNAR3:code dilsun$./a.out
y1 is 240
y2 is -16

unsigned char x = 0xF0; // x is 240
int y1 = (int) (unsigned int) x;
printf("y1 is %d\n", y1);
int y2 = (int) (signed char) x;
printf("y2 is %d\n", y2);

Instead of

Write the steps explicitly

1. Write a C expression that evaluates to a pointer to the
element at index 6 of a 20-element int array A?

2. In a C executable compiled with -DDEBUG, contracts
are
_comments_macros_removed_executed_undefined_

3. True/False: C allows allocating structs on the stack.

4. What program do we use to find out-of-bound array
accesses in C code ? _gcc__cc0__valgrind__cpp__ls__

5. True/False: All safety violations in C0/C1 are
undefined behaviors in C.

Go to or
cs.cmu.edu/~15122/quiz

Floating point numbers

float x = 0.1;
float y = 2.0235E27;

double x = 0.1;
double y = 2.0235E27;

double precision

(10E20 / 10E10) * 10E10 != 10E20;

float x = 0.1;
for (float res = 0.0; res != 5.0; res += 0.1) {
 res += x;
 printf("res = %f\n", res);
}

infinite loop!

<float.h>

Enumarations

int WINTER = 0;
int SPRING = 1;
int SUMMER = 2;
int FALL = 3;

int season = FALL;
if (season == WINTER)
 printf("snow!\n");
else if (season == FALL)
 printf("leaves!\n");
else
 printf("sun!\n");

enum season_type {WINTER, SPRING, SUMMER, FALL};

enum season_type season = FALL;
if (season == WINTER)
 printf("snow!\n");
else if (season == FALL)
 printf("leaves!\n");
else
 printf("sun!\n");

Switch statements

enum season_type {WINTER, SPRING, SUMMER, FALL};

enum season_type season = FALL;
switch (season) {
 case WINTER:
 printf("snow!\n");
 break;
 case FALL:
 printf("leaves!\n");
 break;
 default:
 printf("sun!\n");
}

Replacing if/else if/…/else if/else with switch

Transition to C

LOST GAINED

Contracts Preprocessor

Safety Explicit memory management

Garbage collection Tools: valgrind

Memory initialization Pointer arithmetics

Tools: Interpreter (coin) Stack allocated arrays and structs

Well-behaved arrays Generalized “address of”

Fully defined language More numerical types

Strings

