
How to Debug with Print Statements

1 How do I print?

First, it's important to make sure we know how to actually print data, as the behavior of the print

statements in C0 can seem unintuitive. Before we talk about the actual functions, let us establish

a golden rule:

Important: Whenever you want to see output from your program, make sure you print a newline

(\n) at the end of anything you want to see.

You can print a newline either using the println function (which will print a newline at the

end of its string argument), or by printing the newline character as part of the string.

You need to do this because printing is �bu�ered� in C0: C0 accumulates data in a bu�er until

it sees a newline, at which points it ��ushes� the bu�er and actually displays it to the terminal.

This can also be manually done with the flush function.

There are two ways to print something in C0: using printf and using type-speci�c print

functions. Let's look at both.

1.1 Printing using printf

The most convenient way to print in C0 is to use the printf function. The �rst argument of printf
is the string you wish to print. This string may contain format speci�ers, which are used to print

the value of expressions supplied as additional arguments.

For example, if you wanted to print a pair of integers a and b followed by a new line, you would

use the following command:

printf("(%d,%d)\n", a, b);

When this command is executed, the �rst %d will be replaced by the value of a, and the second %d
by the value of b. So, if a is 4 and b is 5, then this will print (4,5).

In C0, printf supports three format speci�ers: %d for values of type int, %c for characters,

and %s for string. You can �nd more information about printf in the C0 Library Reference.

1.2 Printing using Type-Speci�c Functions

If you want to print the value of a variable, you can also to use appropriate print function for the

type of that variable. These are as follows:

• print � Strings

• println � Strings, but also prints a newline at the end (see the above important note)

• printbool � Booleans

• printchar � Characters

• printint � Integers

1

https://c0.cs.cmu.edu/docs/c0-libraries.pdf


You can also �nd more information on these functions in the C0 Library Reference.

For example, to print the pair of integers a and b in this way, we would do the following:

print("(");
printint(a);
print(",");
printint(b);
println(")");

Notice that we use println to print the closing parenthesis. If a is 4 and b is 5, then this will print

(4,5).
Clearly, that's more cumbersome than using printf, but that's occasionally useful, in particular

since printf does not provide a format speci�er for booleans.

2 Where do I put my print statements?

There are a lot of interesting uses for print statements in the debugging world, some of which you

may not even think of at �rst glance. Here are some useful applications:

• What is the value of a particular variable at this point in the program? � The

classic use of a print statement is to check the value of a variable at a given point. If your

variable is a complicated data structure, it is helpful to write a function to print it nicely. See

Section How do I print a data structure?.

• Did I enter this conditional or loop? � Sometimes your concern is whether your code

is actually being executed when it's supposed to, such as when it's inside an if statement or

loop. In that case, you may want to put a print statement inside the branch to see whether

it prints or not.

int a = 0;
if (a == 0 && d > 213)
{
a = 1;
printf("Inside the first if statement\n");

}

If the sentence is printed, we know that we entered the if statement.

• Did I enter this function? � Same as the above; you can place your print statement at

the beginning of your function to see if you called it. It is often also helpful to print out the

values of at least some of the arguments:

void merge(int[] A, int lo, int mid, int hi)
// Some contracts (omitted)
{
printf("Entered Merge!\n");
printf("lo is %d, mid is %d, hi is %d.\n", lo, mid, hi);

// Some more code (omitted)
}

2

https://c0.cs.cmu.edu/docs/c0-libraries.pdf
sec:print:datastructure


• When did I crash? � Possibly the most underrated use of the print statement is to �gure

out exactly when your program terminated if it crashed unexpectedly. Place a print statement

before and after every statement you think could crash, and base further action o� of what

doesn't print.

printf("A\n");
int a = *r;
printf("B\n");
int b = *q;
printf("C\n");
int c = *p;
printf("D\n");
return 0;

If this program prints A and B, but doesn't print C or D, for example, then I know that q is

a NULL pointer.

Important: If you have a lot of print statements, it is often a good idea to format them so that

it is easy for you to scan through them to �nd information. One useful technique is to indent the

data you print based on the indentation of the code they are in, and to print out the name of the

function you are in with no indentation applied. That way, print statements for a function are

clearly distinguished from print statements for a di�erent function, and print statements within the

same function but at di�erent points can have some distinguishing factors as well.

3 How do I print a data structure?

Often, you may need to write your own printing function for a more complex data structure for

more careful debugging. We will demonstrate how to do so by writing an array_print function

for integer arrays. First, we'll need a header:

void array_print(int[] A, int n)
//@requires 0 <= n && n <= \length(A);

Make sure you include any arguments you need to make your function work; in this case, we need

the length of the array.

Note: We'll be writing this function to align with the other print functions, which means it will

not print a newline at the end of the data structure.

Next, we want to make sure we print all the useful information in our data structure:

void array_print(int[] A, int n)
//@requires 0 <= n && n <= \length(A);
{
for (int i = 0; i < n; i++) {
printf("%d", A[i]);

}
}

3



This technically prints all the information we need, but we will likely run into a problem if we try

to use the function as-is. Consider the array [1,2,3,4]. That will print as 1234; but does that
mean we have an array with the numbers 1, 2, 3, and 4? Or does it mean we have an array with

just the number 1234? This function currently prints something ambiguous and therefore not very

useful.

In order to rectify this, we want to format our data structure nicely; you may see this called

�pretty printing� in some other languages.

void array_print(int[] A, int n)
//@requires 0 < n && n <= \length(A);
{
printf("[");
for (int i = 0; i < n; i++) {
printf("%d", A[i]);
if (i != n-1) printf(",")

}
printf("]");

}

Now, an array containing 1, 2, 3, and 4 will print [1,2,3,4] as expected, while an array containing

1234 will print [1234]. Now, our data structure is clear and readable, and we can print it whenever

we want!

Note: Writing a good print function for a data structure seems like a lot of work. However, this

is an investment that pays o� handsomely while debugging complex code!

Now, we can use array_print any time we want to print the contents of an array of integers.

Taking the merge example from before, we might add a call to array_print in order to print out

all the arguments:

void merge(int[] A, int lo, int mid, int hi)
// Some contracts (omitted)
{
printf("Entered Merge!\n");
printf("lo is %d, mid is %d, hi is %d.\n", lo, mid, hi);
printf("A is "); // New!
array_print(A, hi); // New!
printf("\n");

// Some more code (omitted)
}

Notice that we don't have any guarantee that hi is actually equal to the length of the array � but

that's �ne: all we care about is the array segment from lo to hi, so it is ok if we miss some things

outside of that segment.

4


	How do I print?
	Printing using 'printf'
	Printing using Type-Specific Functions

	Where do I put my print statements?
	How do I print a data structure?

