
How to Write a Test File

1 Intro

Test �les are a way for you to be become reasonably con�dent that your code works the way you

want it to. They are made up of multiple di�erent test cases, in which you run the other code you

have written and compare it to the answers you were expecting.

2 How do I start a test �le?

First, create and open a new �le using an editor of your choosing. A test �le needs to have a main

function that will be run when the code is executed, so at �rst the �le should have the following

code:

int main(){
// tests will go here
return 0;

}

3 Writing Test Cases

Important: For this section of the document we will be writing test cases for the following GCD

function:

int GCD(int a, int b)
//@requires a > 0 && b > 0;
//@ensures \result >= 1;
//@ensures a % \result == 0 && b % \result == 0;

To start, we want to know that our code works on some small, simple tests, so we might want

to test that GCD(2, 5) does what we want, as well as GCD(19, 21). We want an assertion to fail

if our code doesn't work as expected, so we will assert that the result of GCD on each call produces

the expected output.

int main(){
assert(GCD(2, 5) == 1); // added
assert(GCD(19, 21) == 1); // added

return 0;
}

Note: We don't use //@assert in test cases because we want the test cases to be run regardless

of if contracts are enabled.

1



Furthermore, code used in an //@assert statement (like all contract) needs to be pure: exe-

cuting it may not modify allocated memory. Therefore, tests that modify allocated memory would

not even compile if written using //@assert.

Now we have written two test cases, but these cases only show us that our code probably works

on inputs that have a common divisor of 1. To check that it works on some others, we can pick

inputs that result in an output greater than 1.

int main(){
assert(GCD(2, 5) == 1);
assert(GCD(19, 21) == 1);

assert(GCD(12, 20) == 4); // added
assert(GCD(6, 9) == 3); // added

return 0;
}

So now we have some basic test cases that test the simple functionality of our code, we should

consider some trickier cases. So far, all of our test cases have the �rst input be less than the second

input, but we can see from the //@requires that it should work either way.

int main(){
assert(GCD(2, 5) == 1);
assert(GCD(19, 21) == 1);

assert(GCD(5, 2) == 1); // added
assert(GCD(21, 19) == 1); // added

assert(GCD(12, 20) == 4);
assert(GCD(6, 9) == 3);

assert(GCD(20, 12) == 4); // added
assert(GCD(9, 6) == 3); // added

return 0;
}

We also might want to consider what happens when the result is the same as one of the inputs,

as well as what happens when the two inputs are the same.

int main(){
assert(GCD(2, 5) == 1);
assert(GCD(19, 21) == 1);

assert(GCD(5, 2) == 1);
assert(GCD(21, 19) == 1);

assert(GCD(12, 20) == 4);
assert(GCD(6, 9) == 3);

2



assert(GCD(20, 12) == 4);
assert(GCD(9, 6) == 3);

assert(GCD(6, 18) == 6); // added
assert(GCD(18, 6) == 6); // added
assert(GCD(5, 20) == 5); // added
assert(GCD(20, 5) == 5); // added

return 0;
}

When it comes to thinking about edge cases, we usually try to see if our code works on the

smallest inputs and largest inputs. In this case, there is a precondition that both of the inputs

are positive, so the smallest they can be is 1 and the largest is int_max(). To be able to use

int_max(), we have to #use <util>.

// added
#use <util>

int main(){
assert(GCD(2, 5) == 1);
assert(GCD(19, 21) == 1);

assert(GCD(5, 2) == 1);
assert(GCD(21, 19) == 1);

assert(GCD(12, 20) == 4);
assert(GCD(6, 9) == 3);

assert(GCD(20, 12) == 4);
assert(GCD(9, 6) == 3);

assert(GCD(6, 18) == 6);
assert(GCD(18, 6) == 6);
assert(GCD(5, 20) == 5);
assert(GCD(20, 5) == 5);

assert(GCD(1, int_max()) == 1); // added
assert(GCD(int_max(), 1) == 1); // added
assert(GCD(int_max(),int_max()) == int_max()); // added
assert(GCD(1, 1) == 1); // added

return 0;
}

Important: It is impossible in C0 to write test cases that check that certain function calls fail a

precondition, so all of the calls to our function that our test �le makes has to satisfy the precondi-

tions.

3



Let's say that we put this test code in a �le called test-gcd.c0, and our gcd code was in a

�le called gcd.c0. To compile and run our tests with our gcd code we would execute the following

command:

% cc0 gcd.c0 test-gcd.c0
% ./a.out

4 Edge Cases

Testing edge cases is super important. Code that works on edge cases often also works on tests that

are not edge cases. Edge cases are test cases that deal with the edges of the range of valid inputs.

Some common edge cases are:

• extremely small or large integers

• empty arrays

• null pointers

• empty strings

4


	Intro
	How do I start a test file?
	Writing Test Cases
	Edge Cases

