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Our story about client interfaces in the previous chapter was incomplete.
We were able to use client interfaces to implement queues and hash tables
that treat the client’s types as abstract (elem for queues and sets, key and
entry for dictionaries), but any given program could only have a single
type of keys, a single way of hashing.

To solve these problems, we will have to move beyond the C0 language
to a language we call C1. C1 gives us two important features that aren’t
available in C0. The first new feature is a void pointer, which acts as a
generic pointer. The second new feature is function pointers, which allow
us to augment hash dictionaries with methods, an idea that is connected to
Java and object-oriented programming.

Starting in this chapter, we will be working in an extension of C0 called
C1. To get the cc0 compiler to recognize C1, you need to use files with a
.c1 extension. Coin does not currently accept C1.

Additional Resources

• Review slides

– Generic Pointers (https://cs.cmu.edu/~15122/handouts/slides/review/
12-voidstar.pdf)

– Function Pointers (https://cs.cmu.edu/~15122/handouts/slides/review/
14-fpointer.pdf)

– Generic Hash Dictionaries (https://cs.cmu.edu/~15122/handouts/
slides/review/14-generic.pdf)

• Code for this lecture (https://cs.cmu.edu/~15122/handouts/code/14-generic.
tgz)

• There is one short video associated with this lecture:

– Generic Pointers (https://youtu.be/kHthp7Gkyd0)

Relating to our learning goals, we have
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Computational Thinking: Structs with function pointers that can be used
to modify the data contained within the struct is an important idea
from object oriented programming.

Algorithms and Data Structures: We will revisit the idea of hash dictio-
naries in a new setting.

Programming: We explore void pointers and function pointers, which are
necessary for creating truly generic data structures in C0/C1.



Lecture 14: Generic Data Structures 3

1 Generic Pointers: void*

We start by reexamining our queue data structure from last chapter. Then,
the library manipulated data of type elem which the client had to provide
beforehand by a line like

typedef string elem; // supplied by client

One drawback of this is that the client program can only use a single queue
type — queues of strings in this case. The client can use multiple queues of
strings but not a queue of strings and a queue of int’s for example. If we
need to do so, we have to make a copy of the queue library, renaming all
its functions and types.

To avoid this, we need to abandon C0 and make use of a feature of the
C1 language, the void pointer (written void*). C1 extends C0 with this and
a few other features we will examine later in this chapter.

A variable p of type void* is allowed to hold a pointer to anything. Any
pointer p can be turned into a void pointer by a cast, written (void*)p:

int* ip = alloc(int);
void* p1 = (void*)ip;
void* p2 = (void*)alloc(string);
void* p3 = (void*)alloc(struct produce);
void* p4 = (void*)alloc(int**);

Because of this, void pointers are also called generic pointers.
When we have a void pointer, we can turn it back into the type it came

from by casting in the other direction:

int* x = (int*)p1;
string x = *(string*)p2;

This is the only operation we are allowed to perform on a void pointer. In
particular, void pointers do not support dereferencing: *p1 would give us
back a void which is not a type at all — it is just a marker to indicate that
a function does not return a value. Thus, the name “void pointer” and the
notation void* are terrible! (But that’s what they are called in C.)

At run time, a non-NULL void pointer has a tag: casting incorrectly, like
trying to run (int*)p2 in the example above, is a safety violation: it causes
a memory error just like a NULL dereference or array-out-of-bounds error.

These tags make void pointers a bit like values in Python: a void pointer
carries the information about its true pointer type, and an error is raised if
we treat a pointer to an integer like a pointer to a string or vice versa. Inside
contracts, we can check that type with the \hastag(type,p) function:

//@assert \hastag(int*, p1);
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//@assert \hastag(string*, p2);
//@assert \hastag(int***, p4);

//@assert !\hastag(string*, p1);
//@assert !\hastag(int**, p1);
//@assert !\hastag(int***, p1);

Like \length for example, \hastag cannot be used outside of contracts.
One quirk: since NULL has any pointer type, calling \hastag(type, p)

on a void* variable p containing NULL always returns true. This lets us do
slightly strange things like this without any error:

void* p = NULL;
void* x = (void*)(int*)(void*)(string*)(void*)(struct wcount*)p;

2 Generic Data Structures — II

We can make our queue library fully generic by simply choosing void* as
the type elem. Therefore, the only change to the library code is to provide
this one-line definition:

typedef void* elem;

On the client side, using this now fully generic queue library is some-
what more laborious. For one, elements must be pointers. Therefore the
client cannot have a queue of integers: she shall turn it into a queue of inte-
ger pointers. Second, since the type elem is ultimately void*, she must cast
her data to void* (or equivalently elem) before enqueuing it, and then cast
it back to int* before accessing the value of a dequeued element. Here is
a client code snippet where she enqueues 42 into a new queue, and prints
the value at the front of the queue:

queue_t I = queue_new();
int* x = alloc(int); // must store in allocated memory

*x = 42;
enq(I, (void*)x); // must cast to void*
int* y = (int*)deq(I); // must cast back before use
printf("%d", *y);

Now, the same program can also make use of a queue S meant to hold
string (pointers). It can in fact make use of arbitrarily many queues, each
containing data of a different type.

Nothing prevents a user from putting both int*’s and string*’s in the
same queue. This is rarely advisable however, since the client would need
to be able to predict the type of each dequeued element.
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3 Towards Generic Hash Dictionaries

Now that we know about generic pointers, let’s apply them to the hash
dictionaries we developed in the last chapter. Recall that they were semi-
generic, leaving the definition of the types entry of hash table entries and
key of keys to the client — with the result that a program could use a hash
table that stored a single type of entries.

The library interface simply declares entry and key (now a void pointer).
The changes are highlighted.

typedef void* entry;

typedef void* key;

/*** Client interface ***/
key entry_key(entry x) // Supplied by client
/*@requires x != NULL; @*/ ;
int key_hash(key k); // Supplied by client
bool key_equiv(key k1, key k2); // Supplied by client

/*** Library interface ***/
// typedef ______* hdict_t;

hdict_t hdict_new(int capacity)
/*@requires capacity > 0; @*/
/*@ensures \result != NULL; @*/ ;

entry hdict_lookup(hdict_t H, key k)
/*@requires H != NULL; @*/
/*@ensures \result == NULL

|| key_equiv(entry_key(\result), k); @*/ ;

void hdict_insert(hdict_t H, entry x)
/*@requires H != NULL && x != NULL; @*/
/*@ensures hdict_lookup(H, entry_key(x)) == x; @*/ ;

The changes to the client code are more interesting. We show the up-
dates to just the function entry_key where they are most pervasive.

key entry_key(entry x)

//@requires x != NULL && \hastag(struct wcount*, x) ;

//@ensures \result != NULL && \hastag(string*, \result);

{
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string* k = alloc(string);

* k = ( (struct wcount*) x)->word;

return (key) k;

}

The contracts refer to the abstract library types key and entry, but the client
knows that in reality these types are pointers to string’s and struct wcount’s
respectively. This is noted as two \hastag annotations. They prevent mis-
takes like passing an argument of the wrong type or using the result im-
properly — recall that key and entry are just nicknames to void*. Aside
from the NULL-check on the returned key (NULL is not a valid key for the
client), we need to create space for it in allocated memory, cast the entry x
to its original type, struct wcount* in order to be able to extract the word
component we are using as key, and then cast the result into a key before
returning.

Because the library contains the prototype of the client functions, these
functions do not need to be defined before their use in the library functions.
Therefore the library file can now appear first on the compilation command
line, followed by the client files. In fact, there is no reason any more to split
the client code into two files and sandwich the library in between.

Using void pointers solves the unnatural dependency between client
functions and library code. It doesn’t make our hash dictionaries fully
generic however!

To understand why, try compiling a client program that uses two differ-
ent dictionaries, one for counting words as above, and a second one with a
different notion of entries and keys. Although void pointers can handle the
different types, our program will necessarily contain multiple definitions
of the client functions, like entry_key. Superficially, the compilation will
fail because it finds duplicate definitions of such functions. More deeply,
our hash tables do not know which version to use when. We need to tell
them.

4 Memory Model

Up to now, we had a model of C0 execution where variables lived in what
we called local memory and data created by means of alloc_array and
alloc were stored in allocated memory. For example, here is a possible snap-
shot during the execution of an program that uses our hash dictionaries:
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Figure 1: A More Concrete Memory Model
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In reality, a computer contains a single entity we call memory, and it
needs to store many more things than our variables and the data structures
they point to. A more realistic model of how memory is organized is de-
picted in the figure 1. We can think of memory as an array of bytes indexed
by addresses — the very addresses coin reported when allocating arrays
and pointers (but now there are more). Because addresses in C0 (and C1)
have 64 bits, this array appears to have size 264. It is organized into a num-
ber of segments:

OS: The two ends of this memory array belong to the operating system. It
uses these segments to hold its own data structures. A C0 program
has no access to these areas — they are restricted. It is convention to
use address 0x0 as NULL. It is an address after all, but one that we as
programmers cannot do anything with.

Stack: What we referred to so far as “local memory” is normally called the
stack. If we think about it, each time we enter a function, its local vari-
ables come into existence, and they go out of existence when we exit
this function. The nested nature of function calls make local memory
behave like a stack. The stack grows downward from the OS area at
the end of the memory array.

Heap: Our old “allocated memory” is typically called the heap. As we
allocate new data structures, it grows towards the stack.

DATA: Next comes the DATA segment which contains all the string liter-
als present in our program. So far, we had the illusion that strings
were stored in variables and in locations in allocated memory. In re-
ality, these are addresses in the text area.

TEXT: The last segment we shall concern ourselves with is where the com-
piled code of our program resides. The code had to live somewhere
after all!

5 Function Pointers

The language C1 provides an operator, written & and pronounced “address-
of ”, to grab the address in the code segment that corresponds to a function
in a program. For example, &hash_string is the address where the binary
code for the function hash_string is located. The address-of operator can
only be applied to functions in C1, although its use is much more general
in C.
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Now that we can get a hold of a function address, we would like to
assign it to a variable, for example by writing F = &hash_string and then
apply F to some input. But every variable shall have a type. What is the
type of F? The type of a function describes the number, position and type
of its input parameters and its output type. In C1, we declare a function
type by just adding the word typedef in front of its prototype. Since the
prototype of hash_string is

int hash_string(string s);

we write the type of this function as

typedef int hash_string_fn(string s);

By convention, we use _fn as a suffix for function types, just like we used
_t as a suffix for client-side abstract data types. Note that hash_string_fn
is not the type of just hash_string, but of every function that takes a
string as input and returns an int — for example the predefined string
function string_length has this type too!

We can now declare the variable F and assign &hash_string to it as
follows:

hash_string_fn* F = &hash_string;

Note that F is pointer to a hash_string_fn, which is consistent with the
view that it contains an address in memory. F is a function pointer. Because
C1 variables, like C0 variables, can only hold values of small types, we
cannot assign directly a function to a variable — thus

hash_string_fn F = hash_string; // NOT ALLOWED

is illegal.
We don’t create function pointers by dynamically allocating them the

way we do structs: all the functions we could possibly have in our program
are already known when we compile the program, and we grab them using
&.

To call the function assigned to a function pointer, we dereference the
pointer and then supply arguments. For example

(*F)("hello")

The parentheses around *F are important: *F("hello") would have the
effect of attempting to apply F to "hello" and then dereference the result
— the compiler will dutifully inform us that this makes no sense.

Like all other pointers, function pointers can be NULL, and it is a safety
violation to dereference a NULL function pointer.
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6 Generic Data Structures — III

Function pointers give us the mechanism for telling the library which client
functions it should use at any point in the program. Whenever a hash dic-
tionary function relies on client functions, we will provide it with pointers
to the right functions.

Our first step is to convert the client function prototypes in the library
to function types:

typedef key entry_key _fn (entry x)

/*@requires x != NULL; @*/ ;

typedef int key_hash _fn (key k);

typedef bool key_equiv _fn (key k1, key k2);

Recall that this amounts to simply prefixing them with the keyword typedef.
Next, we need to decide how to provide the client functions to the li-

brary code. A first idea is to simply pass them as additional parameters,
for example as in the following header

entry hdict_lookup(hdict* H, key k,
entry_key_fn* to_key, key_equiv_fn* equiv)

Although possible, this approach pushes the burden of using the right func-
tions to the client, for each use of a library function. In a program that
makes use of multiple hash dictionaries, it is easy to make mistakes — after
all, every key equivalence function will have type key_equiv_fn!

A better approach is for the client to specify once and for all which func-
tions to use when creating the hash table, via hdict_new, and storing these
functions in the type that defines the hash table. To do this, we need to
extend struct hdict_header with three fields of function pointer type:

typedef struct hdict_header hdict;
struct hdict_header {
int size; // 0 <= size
chain*[] table; // \length(table) == capacity
int capacity; // 0 < capacity

entry_key_fn* key; // != NULL

key_hash_fn* hash; // != NULL

key_equiv_fn* equiv; // != NULL

};

Note the requirements that these pointers be non-NULL. These requirements
will need to be reflected in the data structure invariant functions is_hdict,
which we omit.
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The new fields get populated by the library function hdict_new, which
is updated as follows:

hdict* hdict_new(int capacity, entry_key_fn* entry_key,

key_hash_fn* hash, key_equiv_fn* equiv )

//@requires capacity > 0;

//@requires entry_key != NULL && hash != NULL && equiv != NULL;

//@ensures is_hdict(\result);
{
hdict* H = alloc(hdict);
H->size = 0;
H->capacity = capacity;
H->table = alloc_array(chain*, capacity);

H->key = entry_key;

H->hash = hash;

H->equiv = equiv;

return H;
}

Every time we create a hash dictionary, the new fields will contain point-
ers to the appropriate functions. Therefore, a hash dictionary now contains
some of the functions that are used to manipulate it. This is one of the fun-
damental ideas underlying object-oriented programming. Objects are data
fields bundled together with functions that operate on them. These func-
tions are called methods in object-oriented languages like Java.

At this point, all it takes to make our hash dictionary library fully generic
is to replace calls to key_equiv to (*H->equiv) throughout the implemen-
tation, where H refers to the current hash dictionary. Note that the operator
precedence rules of C1 parse (*H->equiv) as (*(H->equiv)).

We can actually do slightly better, and at the same time isolate uses
of C1’s rather cumbersome syntax for method calls (compared to object-
oriented languages). We avoid having lots of calls that use the counter-
intuitive notation (*H->equiv)(x,y) by writing a helper function conve-
niently called key_equiv — our original name for this client function — so
we can write calls that look like key_equiv(H, x, y). We do the same for
the other two client functions.

We show the resulting code for hdict_lookup as an example:

entry hdict_lookup(hdict* H, key k)
//@requires is_hdict(H);
/*@ensures \result == NULL

|| key_equiv(H, entry_key(H, \result), k); @*/
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{
int i = index_of_key(H, k);
for (chain* p = H->table[i]; p != NULL; p = p->next) {

if (key_equiv( H, entry_key( H, p->data), k))

return p->data;
}
return NULL;

}

Before moving to the client side, we need to revisit the library interface.
Recall that we could write the prototype of hdict_lookup as

entry hdict_lookup(hdict_t H, key k)
/*@requires H != NULL; @*/
/*@ensures \result == NULL

|| key_equiv(entry_key(\result), k); @*/ ;

Now, the functions key_equiv and entry_key are internal to the imple-
mentation, and therefore they should not be made available to the client.
Unraveling key_equiv into (*H->equiv) will not work either because it
too exposes the internals of the implementation. Our only choice is to do
without this postcondition. The interface prototype of hdict_lookup is
therefore

entry hdict_lookup(hdict_t H, key k)
/*@requires H != NULL; @*/ ;

The upgrade we just made to the library has minimal effects on the
client side. She simply needs to give new names to the client interface func-
tions. She will also need to pass these functions each time she creates a new
hash dictionary using hdict_new.
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7 Exercises

Exercise 1 (sample solution on page 16). One way to store elements of different
type in a linked list is to make it generic, giving its data field type void*. But
then we won’t be able to remember the actual type of the element when we need to
use it. We use the additional field tag to keep track of it.

typedef struct list_node genlist;
struct list_node {
void* data;
string tag; // records the actual type of data
genlist* next;

};

Assume that the only types we want to store in such a list are integers and strings,
with tags "an_int" and "a_string" respectively. Write a function that, given a
generic linked list, prints each of its elements on a separate line. Include contracts
as appropriate. If it encounters an unknown tag, it should call error with a
description of the problem.

Exercise 2 (sample solution on page 16). Define the function type int2int_fn
of all functions that take an integer as input and return an integer. Then, imple-
ment the following two functions

int compose(int2int_fn* f, int2int_fn* g, int x)
/*@requires f != NULL && g != NULL; @*/ ;

int pipeline(int2int_fn*[] F, int n, int x)
/*@requires \length(F) == n; @*/ ;

Given two mathematical functions f and g on the integers and an integer x, the
first implement applying the composition of f and g, often written f ◦ g, to x.
Recall that (f ◦ g)(x) = f(g(x)). The second applies all the functions in the
n-element array F to the integer x, left to right. If F is empty, it shall return x
unchanged.

Exercise 3 (sample solution on page 17). You’re opening up a breakfast restau-
rant that sells pancakes and eggs. For every stack of pancakes that you sell, you
want to keep track of the type of pancakes, of whether the pancakes have syrup,
and of the number of pancakes. For eggs, you’ll want to keep track of the number
and style the eggs are cooked. Any customer that comes through will only ever get
either the pancakes or eggs. We keep a pancake struct and an eggs struct and keep
track of the breakfast for a customer, which could only ever be pancakes or eggs.
Here are their type definitions:
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typedef struct pancakes pancakes;
struct pancakes {
string type;
bool syrup;
int num;

};

typedef struct eggs eggs;
struct eggs {
string style;
int num;

};

typedef struct customer customer;
struct customer {
string name;
void* breakfast;

};

The following code is executed, and we have two customers: one that ordered a
stack of two pancakes and the other a plate of eggs:

int main() {
customer*[] customers = alloc_array(customer*, 2);

eggs* janes = alloc(eggs);
janes->style = "scrambled";
janes->num = 3;

customers[0] = alloc(customer);
customers[0]->name = "Jane";
customers[0]->breakfast = (void*)janes;

pancakes* johns = alloc(pancakes);
johns->type = "blueberry";
johns->syrup = true;
johns->num = 2;

customers[1] = alloc(customer);
customers[1]->name = "John";
customers[1]->breakfast = (void*)johns;

return 0;
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}

Write the code you would need to get the type of pancake from the first customer
and the number of eggs from the second customer. Then, draw the memory diagram
of the code above. Indicate the tag of every memory cell containing a value of type
void* (if it has one).
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Sample Solutions

Solution of exercise 1
As we traverse the input list, we test the tag field of each node and use the
appropriate print command to print its data value. Before we do so, we
need to remember to cast and dereference the data field appropriately. An
assertion that uses \hastag is a good way to anticipate the correct cast.

void print_genlist(genlist* L) {
for (genlist* p = L; p != NULL; p = p->next) {
if (string_equal(p->tag, "an_int")) {
//@assert \hastag(int*, p->data);
printf("%d\n", *(int*)(p->data));

} else if (string_equal(p->tag, "a_string")) {
//@assert \hastag(string*, p->data);
printf("%s\n", *(string*)(p->data));

} else {
printf("%s", p->tag);
error(" is an unknown tag");

}
}

}

Solution of exercise 2
The type declaration of int2int_fn is as follows:

typedef int int2int_fn(int x);
The function compose(f,g,x) simply applies g to x and then f to the

resulting value. Because f and g are function pointers, we need to derefer-
ence them. To do so safely, we need to be sure they are not NULL, which we
do by providing preconditions.

int compose(int2int_fn* f, int2int_fn* g, int x)
//@requires f != NULL && g != NULL;
{
return (*f)((*g)(x));

}
The function pipeline follows similar ideas, this time for all the func-

tions in the array F. Here, we perform our safety check as an assertion.
Alternatively, we could have written a specification function that checks
that all the element of the input array are non-NULL.
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int pipeline(int2int_fn*[] F, int n, int x)
//@requires \length(F) == n;
{
int res = x;
for (int i = 0; i < n; i++)
//@loop_invariant 0 <= i && i <= n;
{
//@assert F[i] != NULL;
res = (*(F[i]))(res);

}
return res;

}

Solution of exercise 3
Here’s the code to retrieve the pancake type of John’s breakfast:

string type = ((pancakes*)(customers[1]->breakfast))->type;

and here’s how to retrieve Jane’s number of eggs:

int num = ((eggs*)(customers[0]->breakfast))->num;

The state of memory after this code executes is as follows:
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