
Lecture 21
Representing Graphs

15-122: Principles of Imperative Computation (Summer 2024)
Frank Pfenning, André Platzer, Rob Simmons,

Penny Anderson, Iliano Cervesato

May 27, 2024

In this lecture we introduce graphs. Graphs provide a uniform model for
many structures, for example, maps with distances or Facebook relation-
ships. Algorithms on graphs are therefore important to many applications.
They will be a central subject in the algorithms courses later in the curricu-
lum; here we only provide a very basic foundation for graph algorithms.

Additional Resources

• Review slides (https://cs.cmu.edu/~15122/handouts/slides/review/23-graphs.
pdf)

• Code for this lecture (https://cs.cmu.edu/~15122/handouts/code/23-graphs.
tgz)

With respect to our learning goals we will look at the following notions.

Computational Thinking: We get a taste of the use of graphs in computer
science. We note that some graphs are represented explicitly while
others are kept implicit.

Algorithms and Data Structures: We see two basic ways to represent graphs:
using adjacency matrices and by means of adjacency lists.

Programming: We use linked lists to give an adjacency list implementa-
tion of graphs.

LECTURE NOTES © Carnegie Mellon University 2024

https://cs.cmu.edu/~15122/handouts/slides/review/23-graphs.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/23-graphs.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/23-graphs.pdf
https://cs.cmu.edu/~15122/handouts/code/23-graphs.tgz
https://cs.cmu.edu/~15122/handouts/code/23-graphs.tgz
https://cs.cmu.edu/~15122/handouts/code/23-graphs.tgz

Lecture 21: Representing Graphs 2

1 Undirected Graphs

We start with undirected graphs which consist of a set V of vertices (also
called nodes) and a set E of edges, each connecting two different vertices.
The following is a simple example of an undirected graph with 5 vertices
(A,B,C,D,E) and 6 edges (AB, BC, CD, AE, BE, CE):

We don’t distinguish between the edge AB and the edge BA because
we’re treating graphs as undirected. There are many ways of defining
graphs with slight variations. Because we specified above that each edge
connects two different vertices, no vertex in a graph can have an edge from
a node back to itself in this course.

2 Implicit Graphs

There are many, many different ways to represent graphs. In some ap-
plications they are never explicitly constructed but remain implicit in the
way the problem was solved. The game of Lights Out is one example of
a situation that implicitly describes an undirected graph. Lights Out is an
electronic game consisting of a grid of lights, usually 5 by 5. The lights are
initially pressed in some pattern of on and off, and the objective of the game
is to turn all the lights off. The player interacts with the game by touching
a light, which toggles its state and the state of all its cardinally adjacent
neighbors (up, down, left, right).

We can think of lights out as an implicit graph with 225 vertices, one for ev-
ery possible configuration of the 5x5 lights out board, and an edge between
two vertices if we can transition from one board to another with a single

Lecture 21: Representing Graphs 3

button press. If we transition from one board to another by pressing a but-
ton, we can return to the first board by pressing the same button. Therefore
the graph is undirected.

Each of the 225 vertices is therefore connected to 25 different edges, giving
us 25 × 225/2 total edges in this graph — we divide by 2 because going
to a node and coming back from it are expressed by the same edge. But
because the graph is implicit in the description of the Lights Out game, we
don’t have to actually store all 32 million vertices and 400 million edges in
memory to understand Lights Out.

An advantage to thinking about Lights Out as a graph is that we can
think about the game in terms of graph algorithms. Asking whether we
can get all the lights out for a given board is asking whether the vertex
representing our starting board is connected to the board with all the lights
out by a series of edges: a path. We’ll talk more about this graph reachability
question in the next lecture.

3 Explicit Graphs and a Graph Interface

Sometimes we do want to represent a graph as an explicit set of edges and
vertices and in that case we need a graph datatype. In the C code that
follows, we’ll refer to our vertices with unsigned integers. The minimal
interface for graphs in Figure 3 allows us to create and free graphs, check
whether an edge exists in the graph, add a new edge to the graph, and get,
traverse and free the neighbors of a node.

We use the C0 notation for contracts on the interface functions here.
Even though C compilers do not recognize the @requires contract and will
simply discard it as a comment, the contract still serves an important role
for the programmer reading the program. For the graph interface, we de-
cide that it does not make sense to add an edge into a graph when that edge
is already there, hence the second precondition. The neighbors of a node
are given to us as a value of the abstract type neighbors_t. We examine

Lecture 21: Representing Graphs 4

typedef unsigned int vertex;
typedef struct graph_header *graph_t;

graph_t graph_new(unsigned int numvert);
//@ensures \result != NULL;

void graph_free(graph_t G);
//@requires G != NULL;

unsigned int graph_size(graph_t G);
//@requires G != NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w);
//@requires G != NULL;
//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w);
//@requires G != NULL;
//@requires v < graph_size(G) && w < graph_size(G);
//@requires v != w && !graph_hasedge(G, v, w);

typedef struct neighbor_header *neighbors_t;

neighbors_t graph_get_neighbors(graph_t G, vertex v);
//@requires G != NULL && v < graph_size(G);
//@ensures \result != NULL;

bool graph_hasmore_neighbors(neighbors_t nbors);
//@requires nbors != NULL;

vertex graph_next_neighbor(neighbors_t nbors);
//@requires nbors != NULL;
//@requires graph_hasmore_neighbors(nbors);

void graph_free_neighbors(neighbors_t nbors);
//@requires nbors != NULL;

Figure 1: A simple graph interface — graph.h

neighbors by mean of the test graph_hasmore_neighbors and the iterator
graph_next_neighbor. The function graph_hasmore_neighbors returns

Lecture 21: Representing Graphs 5

true if there are more neighbors to examine and false otherwise. The
function graph_next_neighbor returns the next unexamined neighbor —
it will return a different neighbor each time it is called.

With this minimal interface, we can create a graph for what will be our
running example (letting A = 0, B = 1, and so on):

graph_t G = graph_new(5);
graph_addedge(G, 0, 1); // AB
graph_addedge(G, 1, 2); // BC
graph_addedge(G, 2, 3); // CD
graph_addedge(G, 0, 4); // AE
graph_addedge(G, 1, 4); // BE
graph_addedge(G, 2, 4); // CE

We could implement the graph interface in Figure 3 in a number of
ways. In the simplest form, a graph with e edges can be represented as
a linked list or array of edges. In the linked list implementation, it takes
O(1) time to add an edge to the graph with graph_addedge, because it
can be appended to the front of the linked list. Finding whether an edge
exists in a graph with e edges might require traversing the whole linked
list, so graph_hasedge is an O(e) operation. Getting the neighbors of a
node would take O(e).

Hashtables and balanced binary search trees would be our standard
tools in this class for representing sets of edges more efficiently. Instead
of taking that route, we will discuss two classic data structures for directly
representing graphs.

4 Adjacency Matrices

One simple way is to represent the graph as a two-dimensional array that
describes its edge relation as follows.

Lecture 21: Representing Graphs 6

There is a checkmark in the cell at row v and column v′ exactly when there
is an edge between nodes v and v′. This representation of a graph is called
an adjacency matrix, because it is a matrix that stores which nodes are neigh-
bors.

We can check if there is an edge from B (= 1) to D (= 3) by looking for
a checkmark in row 1, column 3. In an undirected graph, the top-right
half of this two-dimensional array will be a mirror image of the bottom-
left, because the edge relation is symmetric. Because we disallowed edges
between a node and itself, there are no checkmarks on the main diagonal
of this matrix.

The adjacency matrix representation requires a lot of space: for a graph
with v vertices we must allocate space in O(v2). However, the benefit of the
adjacency matrix representation is that adding an edge (graph_addedge)
and checking for the existence of an edge (graph_hasedge) are both O(1)
operations.

Are the space requirements for adjacency matrices (which requires space
in O(v2)) worse than the space requirements for storing all the edges in a
linked list (which requires space in O(e))? That depends on the relation-
ship between v, the number of vertices, and e the number of edges. A
graph with v vertices has between 0 and

(
v
2

)
= v(v−1)

2 edges. If most of the
edges exist, so that the number of edges is proportional to v2, we say the
graph is dense. For a dense graph, O(e) = O(v2), and so adjacency matri-
ces are a good representation strategy for dense graphs, because in big-O
terms they don’t take up more space than storing all the edges in a linked
list, and operations are much faster.

5 Adjacency Lists

If a graph is not dense, then we say the graph is sparse. The other classic
representation of a graphs, adjacency lists, can be a good representation of
sparse graphs.

In an adjacency list representation, we have a one-dimensional array
that looks much like a hash table. Each vertex has a spot in the array, and
each spot in the array contains a linked list of all the other vertices con-
nected to that vertex. Our running example would look like this as an
adjacency list:

Lecture 21: Representing Graphs 7

Adjacency lists require O(v + e) space to represent a graph with v ver-
tices and e edges: we have to allocate a single array of length v and then
allocate two list entries per edge. The complexity class O(v + e) is often
written as O(max(v, e)) — we leave it as an exercise to check that these two
classes are equivalent — and therefore this is the notation we will typically
use. Adding an edge is still constant time, but lookup (graph_hasedge)
now takes time in O(min(v, e)), since min(v − 1, e) is the maximum length
of any single adjacency list. Finding the neighbors of a node is immediate
with an adjacency list representation as we may simply grab the adjacency
list of that node — this has cost O(1). This is in contrast with the adjacency
matrix representation where we are forced to check every value on the row
of the matrix corresponding to that node.

The following table summarizes and compares the asymptotic cost as-
sociated with the adjacency matrix and adjacency list implementations of a
graph, under the assumptions used in this chapter.

Adjacency Matrix Adjacency List

Space O(v2) O(max(v, e))

graph_hasedge O(1) O(min(v, e))

graph_addedge O(1) O(1)

graph_get_neighbors O(v) O(1)

The cost of graph_hasedge can be reduced by storing the neighbors of each
node not in a linked list but in a more search-efficient data structure, for
example an AVL tree or a hash set. Of course, doing so requires additional
space, something that may not be desirable in some applications. It also
comes at the expense of graph_get_neighbors.

Lecture 21: Representing Graphs 8

6 Adjacency List Implementation

The header for a graph is a struct with two fields: the first is an unsigned
integer representing the actual size, and the second is an array of adjacency
lists. We use the vertex list from the graph interface as our adjacency list.

typedef struct adjlist_node adjlist;
struct adjlist_node {
vertex vert;
adjlist *next;

};

typedef struct graph_header graph;
struct graph_header {
unsigned int size;
adjlist **adj;

};

We leave it as an exercise to the reader to define the representation func-
tions

bool is_vertex(graph *G, vertex v)
bool is_graph(graph *G)

that check that a vertex is valid for a given graph and that a graph itself is
valid.

We can allocate the struct for a new graph using xmalloc, since we’re
going to have to initialize both its fields anyway. But we’d definitely allo-
cate the adjacency list itself using xcalloc to make sure that it is initialized
to array full of NULL values: empty adjacency lists.

graph *graph_new(unsigned int size) {
graph *G = xmalloc(sizeof(graph));
G->size = size;
G->adj = xcalloc(size, sizeof(adjlist*));
ENSURES(is_graph(G));
return G;

}

Given two vertices, we have to search through the whole adjacency list
of one vertex to see if it contains the other vertex. This is what gives the
operation a running time in O(min(v, e)).

bool graph_hasedge(graph *G, vertex v, vertex w) {
REQUIRES(is_graph(G) && is_vertex(G, v) && is_vertex(G, w));

Lecture 21: Representing Graphs 9

for (adjlist *L = G->adj[v]; L != NULL; L = L->next) {
if (L->vert == w) return true;

}
return false;

}

Because we assume an edge must not already exist when we add it to
the graph, we can add an edge in constant time:

void graph_addedge(graph *G, vertex v, vertex w) {
REQUIRES(is_graph(G) && is_vertex(G, v) && is_vertex(G, w));
REQUIRES(v != w && !graph_hasedge(G, v, w));

adjlist *L;

L = xmalloc(sizeof(adjlist)); // add w as a neighbor of v
L->vert = w;
L->next = G->adj[v];
G->adj[v] = L;

L = xmalloc(sizeof(adjlist)); // add v as a neighbor of w
L->vert = v;
L->next = G->adj[w];
G->adj[w] = L;

ENSURES(is_graph(G));
ENSURES(graph_hasedge(G, v, w));

}

We represent the neighbors of a vertex as a struct with a single field
containing a suffix of its adjacency list:

struct neighbor_header {
adjlist *next_neighbor;

};
typedef struct neighbor_header neighbors;

Implementing the representation invariant function

bool is_neighbors(neighbors *nbors);

that checks that a value of type neighbors* is valid, is left to the reader.
As we iterates through the neighbors of a vertex, we move the value

pointed to by the field next_neighbor along the adjacency list. Writing
the representation invariant for values of this type is left as an exercise.

Lecture 21: Representing Graphs 10

Finding the neighbors of a vertex is just a matter of creating an instance
of this struct and initializing its field with the adjacency list of the vertex of
interest.

neighbors *graph_get_neighbors(graph *G, vertex v) {
REQUIRES(is_graph(G) && is_vertex(G, v));
neighbors *nbors = xmalloc(sizeof(neighbors));
nbors->next_neighbor = G->adj[v];
ENSURES(is_neighbors(nbors));
return nbors;

}

Implementing the emptiness check and the iterator are straightforward:

bool graph_hasmore_neighbors(neighbors *nbors) {
REQUIRES(is_neighbors(nbors));
return nbors->next_neighbor != NULL;

}

vertex graph_next_neighbor(neighbors *nbors) {
REQUIRES(is_neighbors(nbors));
REQUIRES(graph_hasmore_neighbors(nbors));

vertex v = nbors->next_neighbor->vert;
nbors->next_neighbor = nbors->next_neighbor->next;
return v;

}

Observe that graph_next_neighbor updates the next_neighbor field to
the next node in the adjacency list (the second precondition guarantees
there must be a next node). Had we defined the neighbors of a vertex as
its adjacency list (as opposed to a struct that points to its adjacency list),
we would have no way do this — do you see why? The vertex that this
function returns belongs to the graph and therefore graph_next_neighbor
should not free its node in the adjacency list.

The function graph_free_neighbors frees the neighbor_header struct:

void graph_free_neighbors(neighbors *nbors) {
free(nbors);

}

It is important that it doesn’t free the adjacency list nodes pointed to by
the next_neighbor field (if any): these belong to the graph and may be ac-
cessed again by future operations. These nodes will be freed bygraph_free
when the graph itself is not needed anymore.

Lecture 21: Representing Graphs 11

7 Adjacency Matrix Implementation

We leave writing an adjacency matrix implementation of our graph inter-
face as an exercise.

In the rest of his discussion, we will assume that it implements the oper-
ations of the graph interface with the following costs for a graph with v ver-
tices and e edges: graph_new, graph_size, graph_hasedge, graph_addedge
and graph_free have all cost O(1). The function graph_get_neighbors
has cost O(v), the function graph_free_neighbors costs O(min(v, e)), while
graph_hasmore_neighbors and graph_next both have constant cost.

Your implementation should aim for these costs and you should check
that it achieves them.

8 Iterating through a Graph

To gain practice with working with our graph interface, we write a function
that prints all the edges in a graph. Give it a try and then check your work
on the next page. This function has the following prototype:

void graph_print(graph_t G)

Lecture 21: Representing Graphs 12

Our implementation is as follows:

void graph_print(graph_t G) {
for (vertex v = 0; v < graph_size(G); v++) {
printf("Vertices connected to %u: ", v);
neighbors_t nbors = graph_get_neighbors(G, v);
while (graph_hasmore_neighbors(nbors)) {
vertex w = graph_next_neighbor(nbors); // w is a neighbor of v
printf(" %u,", w);

}
graph_free_neighbors(nbors);
printf("\n");

}
}

The outer loop examines all the vertices in the graph. For each of them, we
compute its neighbor list and then go through it using the iterator in the
inner loop to print them. We call the function graph_free_neighbors to
dispose of the neighbor list once we are done with it.

It is interesting to analyze the complexity of graph_print on a graph
containing v vertices and e edges. We will do so first assuming the adja-
cency list implementation in Section 6 and then an adjacency matrix imple-
mentation that achieves the costs mentioned in Section 7.

The outer loop runs v times. Inside this loop, the following operations
take place:

• Some print statements that we may assume have cost O(1).

• A call to graph_get_neighbors, whose cost is constant in the adja-
cency list representation. Up to this point in the code, the cost of our
function is O(v).

• The body of the inner loop performs constant cost operations only. In
isolation, the body of this loop runs O(v) times since each vertex can
have up to v − 1 neighbors. Thus, a naive analysis gives us an O(v2)
worst-case complexity for graph_print up to this point in the code.

However, each neighbor corresponds to an edge in the graph. There-
fore, the body of the inner loop will be executed exactly 2e times total
over an entire run of graph_print — each edge is examined twice,
once from each of its endpoints. Thus the inner loop has cost O(e)
overall. Adding this to our tally, the cost of print_graph to this point
in our analysis is O(max(v, e)) — which we recall is the common way
of writing O(v + e).

Lecture 21: Representing Graphs 13

• A call to graph_free_neighbors. This has constant cost.

Thus, graph_print has cost O(max(v, e)) in the adjacency list representa-
tion.

Let’s turn to the adjacency matrix implementation. The outer loop still
runs v times and the cost of the operations inside this loop is as follows:

• The print statements cost O(1).

• The call to graph_get_neighbors now costs O(v) since we are using
the adjacency matrix representation. Up to this point in the code, the
cost of graph_print is now O(v2) in this representation.

• By the same analysis as in the adjacency list representation the body
of the inner loop runs exactly 2e times, for a total cost of O(e) overall.
The cost up to this point using the adjacency matrix representation is
therefore O(max(v2, e)). Since e ∈ O(v2) for any graph, this expres-
sion simplifies to O(v2).

• The call to graph_free_neighbors costs O(e) overall in the adjacency
matrix representation.

Summarizing, our analysis tells us that graph_print has cost O(max(v, e))
in the adjacency list representation and O(v2) with the adjacency matrix
representation. For a dense graph — where e ∈ O(v2) — these two expres-
sions are equivalent. For a sparse graph, the former can be significantly
cheaper.

Lecture 21: Representing Graphs 14

9 Exercises

Exercise 1 (sample solution on page 16). Define the representation functions
is_graph and is_vertex (and any other you may need) used in the contracts of
the adjacency list implementation in Section Adjacency List Implementation of the
graph interface of Section Explicit Graphs and a Graph Interface. Do not worry
about making sure the linked lists are acyclic.

Exercise 2 (sample solution on page 16). Give an implementation of the graph
interface in Section Explicit Graphs and a Graph Interface based on adjacency
matrices. Make sure to provide adequate representation functions.

Exercise 3 (sample solution on page 20). Write a client-side function which
takes in a graph_t G, and returns a new graph where only edges where both end-
points are even remain. You should try to make your code as efficient as possible.

Exercise 4 (sample solution on page 21). Recall this segment from the lecture
code graph invariant:

bool is_acyclic(adjlist* start) {
if (start == NULL) return true;
adjlist* h = start->next; // hare
adjlist* t = start; // tortoise
while (h != t) {
if (h == NULL || h->next == NULL) return true;
h = h->next->next;
//@assert t != NULL; // hare is faster and hits NULL quicker
t = t->next;

}
//@assert h == t;
return false;

}

In a v-vertex graph with e edges represented as an adjacency list, what is the
complexity of checking that all chains are acyclic, in terms of v and e?

Exercise 5 (sample solution on page 22). Determine the complexity of the fol-
lowing code in terms of the number of vertices v and number of edges e of the graph
G. Do your analysis for both adjacency matrix and adjacency list implementations.

int f1(graph_t G) {
unsigned int n = graph_size(G);
int total = 0;
for (unsigned int i = 0; i < n; i ++) {
neighbors_t nbors = graph_get_neighbors(G, i);

sec:graphs:adjlist_impl
sec:graphs:graph_interface
sec:graphs:graph_interface

Lecture 21: Representing Graphs 15

if (nbors != NULL) {
total++;

}
else {
graph_addedge(G, i, 0);

}
graph_free_neighbors(nbors);

}
return total;

}

Lecture 21: Representing Graphs 16

Sample Solutions

Solution of exercise 1 The code for the function is_vertex is a fairly sim-
ply check, but for is_graph we need to make sure there are no NULL point-
ers, self loops, duplicate edges, or invalid edges. We also need to make sure
that the graph is undirected, so we have a helper function to help us make
sure that edges go in both directions.

bool is_vertex(graph *G, vertex v) {
REQUIRES(G != NULL);
return v < G->size;

}

bool is_in(adjlist* p, vertex v) {
while (p != NULL) {
if (p->vert == v) return true;
p = p->next;

}
return false;

}

bool is_graph(graph *G) {
if (G == NULL) return false;
if (G->adj == NULL) return false;
for (unsigned int i = 0; i < G->size; i++) {
if (!is_acyclic(G->adj[i])) return false;
for (adjlist *p = G->adj[i]; p != NULL; p = p->next) {
//Check for valid vertex and self-loops
if (p->vert == i || !(is_vertex(G, p->vert))) return false;
//Make sure graph is symmetric
if (!is_in(G->adj[p->vert], i)) return false;
//Make sure edge only appears once
if (is_in(p->next, p->vert)) return false;

}
}
return true;

}
The function is_acyclic, which checks that a linked list is NULL-terminated
(by virtue of being acyclic) has been omitted.

Solution of exercise 2 Graph are defined as the type graph, a struct consist-
ing of the number of vertices and an array of array of booleans. Neighbors

Lecture 21: Representing Graphs 17

are defined as in the adjacency list representation. The representation in-
variant function is_vertex stays unchanged with respect to the adjacency
list representation. The data structure invariant function is_graph is sim-
pler: it checks that neither the input graph G nor that the array of array
G->adj nor any of the arrays in it are NULL, it then checks that the elements
on the diagonal of the matrix are set to false (to verify that there are no
self-edges) and that the matrix is symmetric (to ensure that the graph is
undirected).

typedef struct graph_header graph;
struct graph_header {
unsigned int size;
bool **adj;

};

bool is_vertex (graph *G, vertex v) {
REQUIRES(G != NULL);
return v < G->size;

}

bool is_graph (graph *G) {
if (G == NULL || G->adj == NULL) return false;
for (unsigned int i = 0; i < G->size; i++) {
if (G->adj[i] == NULL) return false;
//No self-loops
if (G->adj[i][i]) return false;
for (unsigned int j = 0; j < G->size; j++) {
//Must be undirected
if (G->adj[i][j] != G->adj[j][i]) return false;

}
}
return true;

}
Given these premises, the remaining functions are fairly straightfor-

ward. The function graph_new(numvert) creates an array of numvert ar-
rays, and then populates each of its element with an array of numvert
booleans. Using xcalloc automatically initialized their elements to false
(since the newly created graph shall have no edges). The function graph_free
shall free all these arrays of booleans, the array that contains them, and nat-
urally the struct that represents the graph — in this order.

Lecture 21: Representing Graphs 18

unsigned int graph_size(graph *G) {
REQUIRES(is_graph(G));
return G->size;

}

graph *graph_new(unsigned int numvert) {
graph *G= xmalloc(sizeof(graph));
G->size = numvert;
bool **matrix = xmalloc(G->size * sizeof(bool*));
for (unsigned int i = 0; i < G->size; i++) {
matrix[i] = xcalloc(G->size, sizeof(bool));

}
G->adj = matrix;
ENSURES(is_graph(G));
return G;

}

bool graph_hasedge(graph *G, vertex v, vertex w) {
REQUIRES(is_graph(G));
REQUIRES(v < graph_size(G) && w < graph_size(G));
return G->adj[v][w];

}

void graph_addedge(graph *G, vertex v, vertex w) {
REQUIRES(is_graph(G));
REQUIRES(v < graph_size(G) && w < graph_size(G));
REQUIRES(v != w && !graph_hasedge(G,v,w));

G->adj[v][w] = true;
G->adj[w][v] = true;

ENSURES(is_graph(G));
}

void graph_free(graph *G) {
REQUIRES(is_graph(G));
for (unsigned int i = 0; i < G->size; i++) {
free(G->adj[i]);

}
free(G->adj);
free(G);

}

Lecture 21: Representing Graphs 19

The type neighbor_header is defined exactly as for the adjacency list
representation, i.e., as a struct pointing to a linked list of vertices. For clar-
ity, we rename the node type as neighbor although it is an adjacency list.
The function graph_get_neighbor creates the structs and adds a vertex to
the list it contains whenever the matrix reads true for that vertex.

typedef struct neighbor_list neighbor;
struct neighbor_list {
vertex vert;
neighbor *next;

};

struct neighbor_header {
neighbor *neighbors;

};
typedef struct neighbor_header neighbors;

neighbors_t graph_get_neighbors(graph *G, vertex v) {
REQUIRES(is_graph(G) && v < graph_size(G));
neighbors *N = xcalloc(sizeof(neighbors), 1);
for (vertex i = 0; i < G->size; i++) {
if (G->adj[i][v]) {
//Insert new neighbor at beginning of list
neighbor *n = xmalloc(sizeof(neighbor));
n->vert = i;
n->next = N->neighbors;
N->neighbors = n;

}
}
ENSURES(N != NULL);
return N;

}

bool graph_hasmore_neighbors(neighbors_t nbors) {
REQUIRES(nbors != NULL);
return nbors->neighbors != NULL;

}
The remaining functions on neighbors are straightforward. In the func-

tion graph_free_neighbors, we must be careful not to free a node before
we set up an alternate way to access it successor.

Lecture 21: Representing Graphs 20

vertex graph_next_neighbor(neighbors_t nbors) {
REQUIRES(nbors != NULL);
REQUIRES(graph_hasmore_neighbors(nbors));
neighbor *n = nbors->neighbors;
nbors->neighbors = n->next;
vertex res = n->vert;
free(n);
return res;

}

void graph_free_neighbors(neighbors_t nbors) {
REQUIRES(nbors != NULL);
neighbor *n = nbors->neighbors;
while (n != NULL) {
neighbor *next = n->next;
free(n);
n = next;

}
free(nbors);

}

Solution of exercise 3 Intuitively, we want to create a new graph and add
every edge whose endpoints are even. Doing so by looping over all possi-
ble pairs of even vertices would work, but that would cost O(v2), which is
high for sparse graphs. A more efficient solution, assuming an adjacency
list implementation, loops over the neighbors of the even vertices. The re-
sulting complexity is O(v + emin(e, v)).

Lecture 21: Representing Graphs 21

graph_t even_connected(graph_t G) {
REQUIRES(G != NULL);
int n = graph_size(G);
graph_t G_new = graph_new(n);
for (int i = 0; i < n; i += 2) {
if (i % 2 == 0) {
neighbors_t nbors = graph_get_neighbors(G, i);
while (graph_hasmore_neighbors(nbors)) {
vertex w = graph_next_neighbor(nbors);
if (w % 2 == 0 && !graph_hasedge(G_new, i, w)) {
graph_addedge(G_new, i, w);

}
}
graph_free_neighbors(nbors);

}
}
ENSURES(G_new != NULL);
return G_new;

}
Note the call to graph_hasedge in the innermost conditional. This is nec-
essary because of the preconditions of graph_addedge which is specialized
to undirected graphs: once we have added the edge (u,w) from u, we shall
not add (w, u) from w since that’s the same edge again.

The inner loop will run 2e times, just like for graph_print. The func-
tion graph_hasedge is called on all vertices both of whose endpoints are
even, which in the worst case will be all e edges. Each time it is called, it
will inspect one of the adjacency lists, which has cost O(min(e, v)). There-
fore, the cost of the inner loop is O(emin(e, v)). Consequently, by rea-
soning in the same was as for graph_print, the cost of the function is
O(v + emin(e, v)).

Solution of exercise 4 The overall acyclicity test has cost O(v + e).
In order to check acyclicity on a graph, we have to loop through all

of the vertices (which costs O(v)), and for each vertex check its neighbors.
However, some vertices might have a small number of edges, or none at
all, while some vertices might have a lot. Thus, we do not know what the
cost of a single is_acyclic call will be, but we can figure out the total cost.

Over the course of all of the acyclic checks, we eventually loop over all
of the neighbors. The overall number of neighbors visited is 2e, since each
edge appears twice in our graph. Thus, the total cost of checking the chains
is O(v + e), since we have to check the chain of each vertex (each index of
the adjacency list), even if it is empty, and the total work of checking the

Lecture 21: Representing Graphs 22

non-empty chains is O(e).

Solution of exercise 5 In both cases, the loop runs v times.

Adjacency list representation: Each of the v calls to graph_get_neighbors
costs O(1). So, this operation contributes O(v) over all iterations of
the loop. The same is true for graph_free_neighbors.

The function graph_addedge has O(1) cost and it runs at most v
times, for a total cost equal to O(v).

Therefore the overall cost of f1 is O(v) using the adjacency list repre-
sentation.

Adjacency matrix representation: In this representation, graph_get_neighbors
costs O(v), for an overall cost of O(v2) over all iterations of the loop.

Each call to graph_addedge costs O(1), for a worst-time overall cost
of O(v).

The cost of graph_free_neighbors is more interesting. Each call has
cost O(min(e, v)), however the overall number of neighbor nodes that
are freed is exactly 2e. Thus, the overall cost over all iterations of the
loop is O(e).

The total cost of f1 is O(v2 + v + e) which simplifies to O(v2) since
e ≤ v2.

	Undirected Graphs
	Implicit Graphs
	Explicit Graphs and a Graph Interface
	Adjacency Matrices
	Adjacency Lists
	Adjacency List Implementation
	Adjacency Matrix Implementation
	Iterating through a Graph
	Exercises

