Amortized Analysis

The n-bit Counter

Problem of the Day

Rob has a startup. Each time he gets a new user, he increments a giant stone counter his investors (VC) erected in downtown San Francisco - that's a sequence of 6 stone tablets with 0 on one side and 1 on the other.

Every time a user signs up, he increments the counter. But the power company charges him \$1 each time he turns a tablet. He is tight on funding, so he needs to pass that cost to the users. He wants to charge users as little as possible to cover his cost (the VC promised to erect new tablets as his user base grows).

How much should he charge each new user?

Understanding the Problem

- Each time a user signs up, increment the counter
o pay the power company $\$ 1$ per bit flipped

o charge the user $\$ x$ to cover the cost $>$ make x as little as possible
- Cash flow:
new user

- Implicit requirements
- Always have enough cash to pay the power bill

Understanding the Problem

- What is the cost of signing up the first few users?
Counter

Solution \#1

- Charge each user the actual cost
o Rob can't charge different users different costs

x
- Implicit requirements
- Always have enough cash to pay the power bill
N Nen O Charge every user the same amount

Solution \#2

- Charge each user the maximum possible cost
o How much would that be?
>6 bits, so \$6
$>$ in general, for an n bit counter, cost is $\$ n$
O This is too much Nobody would sign up
$>$ Rob would be making a big profit

- Implicit requirements
- Always have enough cash to pay the power bill
- Charge every user the same amount

Understanding the Problem

- Let's write down Rob's total cost over time

Solution \#3

- Charge each user $\$ 2$ This is reasonable for users
o If the actual cost is less, put the difference in a savings account
o If the actual cost is more, pay the difference from these savings
- Does this work?
$>$ Does he always have enough cash to pay the power bill?
- Implicit requirements
- Always have enough cash to pay the power bill
- Charge every user the same amount
- Goal: charge little

Understanding the Problem

- Let's write down the total income and savings over time

$\begin{array}{llll} & C o u n t e r \\ 0 & 0 & 0 & 0 \end{array}$	User \#	Cost	Total cost	Total income	Savings	$\begin{aligned} & \text { total_income_user } \\ & =2^{*} \text { user\# } \end{aligned}$
	1	1	1	2	1	\bigcirc
0000010	2	2	3	4	1	total income total cost
\mathcal{N}	3	1	4	6	2	
	4	3	7	8	1	enough to pay bills
	5	1	8	10	2	> savings + \$2 2 next cost
	6	2	10	12	2	O no need to borrow
	7	1	11	14	3	$>$ savings ≥ 0
	8	4	15	16	1	

Problem Solved?

- Charging users $\$ 2$ seems to work ...
$>$ it works for the first 8 users!
- ... but how can we be sure?
o at some point,
$>$ Rob may not have enough cash to cover the costs
$>$ or he may run a big profit
o or both at different times
- Let's turn this into a computer science problem

Problem Solved?

Analyzing the n-bit Counter

The n-bit Counter Revisited

- View the counter as a data structure
on bits
- and a user sign-up as an operation
- The number of bit flips is the cost of performing the operation
- Worst-case cost is $\mathrm{O}(\mathrm{n})$
$>$ flip all n bits
- Then, "enough to pay bills" and "savings ≥ 0 " are like data structure invariants ...

○ ... but about cost So far, data structure invariants have been about the

- Wait! representation of the data structure, never about cost
$>$ what are the savings in the data structure?
$>$ what does the $\$ 2$ fee represent?

What are the Savings?

- The savings are equal to the number of bits set to 1

Counter	User \#	Savings
000000	1	1
	2	1
	3	2
	4	1
	5	2
	6	2
	7	3
	8	1

o Visualize this by placing a token
on top of each 1-bit in the counter

- A token represents a unit of cost
$>=\$ 1=$ cost of one bit flip
$>$ we earn tokens by charging for an increment
- 2 tokens per call to the operation
- no matter how many bits actually get flipped
$>$ we spend tokens performing the increment
- 1 token per actual bit flip
- variable number of bit flips per increment

The Token Invariant

- If we
o earn 2 tokens per increment and
o spend 1 token for each bit flipped to carry it out,
- we claim that

O the tokens in saving are always equal to the number of 1-bits

- This is our token invariant $\quad \begin{aligned} & \text { Well, this is a candidate invariant: } \\ & \text { we still need to show it is valid }\end{aligned}$
\# tokens = \# 1-bits
○ if valid, then "saving ≥ 0 " holds
$>$ because there can't be a negative number of 1-bits

Proving the Token Invariant

- To prove it is valid, we need to show that it is preserved by the operations
O if the invariant holds before the operation, it also holds after

Just like loop invariants
while ($\mathrm{i}<\mathrm{n}$)
//@loop_invariant $0<=$ i \& \& i Vlength(A);

In fact, just like data structure invariants!
void enq(queue* Q, string x)
//@requires is_queue(Q);
//@ensures is_queue(Q);

- Preservation:

$>$ i.e., if \# tokens $==$ \# 1-bits before incrementing the counter, then \# tokens == \# 1-bits also after
$>$ if true, then "enough savings to pay power bill" holds
- because \# 1-bits after can't be negative

Proving the Token Invariant

- To prove it is valid, we need to show that it is preserved by the operations
- if the invariant holds before the operation, it also holds after
- Should we also prove that it is true initially?
$>$ kind of ...
\bigcirc... we are missing an operation:
$>$ creating a new counter initialized to 0

$$
00000000
$$

o Does the token invariant hold for a new counter?
\# tokens == \# 1-bits
$>$ no users yet, so no tokens
$>$ no 1-bits

- This is a special case of preservation (no "before")

Proving the Token Invariant

\# 1-bits before + 2 - \# bit flips = \# 1-bits after

- i.e., if \# tokens == \# 1-bits before incrementing the counter, then \# tokens == \# 1-bits also after
- Let's check it on an example

Proving the Token Invariant

\# 1-bits before + 2 - \# bit flips = \# 1-bits after

- i.e., if \# tokens == \# 1-bits before incrementing the counter, then \# tokens == \# 1-bits also after
- How are the tokens used?

Proving the Token Invariant

\# 1-bits before + 2 - \# bit flips = \# 1-bits after

- i.e., if \# tokens == \# 1-bits before incrementing the counter, then \# tokens == \# 1-bits also after
- How are the tokens used?
o tokens associated to bits:
$>$ used to flip bit from 1 to 0
- 2 tokens from user
>1 token to flip rightmost 0-bit to 1
>1 token to place on top of new rightmost 1-bit

Proving the Token Invariant

\# 1-bits before + 2 - \# bit flips = \# 1-bits after

- General situation

Earns 2 tokens from user

- rightmost 1-bits are flipped
> paid by associated token in savings
O rightmost 0-bit is flipped
$>$ paid by 1 token from user
O token for the new rightmost 1-bit > paid by 1 token from user
o other bits don't change

Solution \#3

- Charge each user \$2 This is reasonable for users
- If the actual cost is less, put the difference in a savings account
- If the actual cost is more, pay the difference from these savings
- Does this work?
> YES!
- Implicit requirements
- Always have enough cash to pay the power bill
- Charge every user the same amount
- Goal: charge little

What does the $\$ 2$ fee Represent?

- We pretend that each increment costs 2 tokens
o even though it may cost as much as n, or as little as 1
- This is the amortized cost of an increment
o not the actual cost of an increment (which varies)
o but enough to cover the actual cost over a sequence of operations
$>$ inexpensive increments pay for expensive ones
$>$ prepay future cost
o note that 2 is in $\mathrm{O}(1)$
- Worst case cost of increment: $O(n)$
- Amortized cost of increment:

Amortized Complexity Analysis

Sequences of Operations

- We have a data structure on which we perform a sequence of k operations
- Normal complexity analysis tells us that the cost of the sequence is bounded by k times the worst-case complexity of the operations

- The overall actual cost of the sequence may be much less

- Define the amortized cost as the overall
 actual cost divided by the length of the sequence
o amortized_cost = actual_cost / k

Amortized Cost

The overall actual cost divided by the length of the sequence

- This is the average of the actual cost of each operation over the sequence
O amortized_cost = ($\sum_{\mathrm{i}=0}^{\mathrm{k}}$ cost_of_operation_i) / k
$>$ rounded up
- As if every operation in the sequence cost the same amount - This amount is the amortized cost
- Just looking at the worst-case complexity is too pessimistic
o it tells us about the cost of an operation in isolation
o but here the operation is part of a sequence

Amortized Cost

The overall actual cost divided by the length of the sequence

O amortized_cost = ($\sum_{\mathrm{i}=0}^{\mathrm{k}}$ cost_of_operation_i) $/ \mathrm{k}$
> rounded up

The Old Notion of "Average"

- Recall Quicksort
- Worst-case complexity: O(n²)
$>$ when we were really unlucky and systematically picked bad pivots
\bigcirc Average-case complexity: O(n log n)
$>$ what we expected for an average array
\square very unlikely that all pivots are bad
- What were we averaging over?
- The likelihood of a series of bad pivots in all possible arrays > a probability distribution
- Average-case complexity has to do with chance
o There is a very low probability that the actual cost will be $O\left(n^{2}\right)$ on any given input > but it may happen
\square the actual cost depends on what array we are handed

A New Notion of "Average"

- Average-case complexity: average over input distribution
o The actual cost has to do with chance
- Amortized complexity: average over a sequence of operations
- We know the exact cost of every operation

Basically an
average over time
$>$ so we know the exact cost of the sequence overall
$>$ this is an exact calculation

- no chance involved
- Difference

Amortized complexity
o average over time vs.
o average over chance

Amortization in Practice (I)

- A baker buys a $\$ 100$ sack of flour every 100 loaves of bread
- $1^{\text {st }}$ loaf costs $\$ 100$

$\circ 2^{\text {nd }}, 3^{\text {rd }}, \ldots, 100^{\text {th }}$ costs nothing
- The baker charges $\$ 1$ for each loaf
o average cost over all 100 loafs

Here, both worst case and amortized cost are O(1)

- not as dramatic as $O(n)$ vs. $O(1)$

Amortization in Practice (II)

- Your smartphone use varies over time
o some days you barely go online
Actual cost to
your provider
o other days you binge-watch movies for hours on end
- Your provider charges you a fixed monthly cost
o average cost over time and over all customers (+ profit)

When to Use Amortized Analysis?

- We have a sequence of k operations on a data structure
o the sequence starts from a well-defined state
o each operation changes the data structure
- We expect the actual cost of the whole sequence to be much less than k times the worst-case complexity of the operations
o a few operations are expensive
- many are cheap
$>$ Use the inexpensive operations to pay for the expensive operations
We prepay for future costs

How to do Amortized Analysis?

- Invent a notion of token
o represents a unit of cost
- Determine how many tokens to charge for each operation
$>$ this is the candidate amortized cost \circ (see next)
what we pretend the operation costs
- Specify the token invariant
o for any instance of the data structure, how many tokens need to be saved
- Prove that every operation preserves the token invariant
o if the invariant holds before, it also holds after
saved tokens before + amortized cost - actual cost = saved tokens after

How to Determine the Amortized Cost?

How many tokens to charge?

1. Draw a short sequence of operations
> make it long enough so that a pattern emerges
2. Write the cost of each operation
3. Flag the most expensive so far
4. For each operation, compute the total cost up to it
5. Divide the total cost of the most expensive operations by the operation number in the sequence
6. Round up - that's the candidate amortized cost

[^0]

Unbounded Arrays

Another Problem

- We want to store all the words in a text file into an array-like data structure so that we can access them fast
o we don't know how many words there are ahead of time
$>$ we add them one at a time
- Use an array?
o access is $O(1)$
o but we don't know how big to make it!
$>$ too small and we run out of space
$>$ too big and we waste lots of space
- Use a linked list?
o we can make it the exact right size!
o but access is $\mathrm{O}(\mathrm{n})$

Another Problem

- We want to store all the words in a text file into an array-like data structure so that we can access them fast
o we don't know how many words there are ahead of time
- We want an unbounded array
$>$ a data structure that combines the best properties of arrays and linked lists
\bigcirc access is about $\mathrm{O}(1)$

O and size is about right

Never too small, and

- Same operations as regular arrays, plus
not extravagantly big
o a way to add a new element at the end
o a way to remove the end element

The Unbounded Array Interface

Towards an Implementation

- Recall the SSA concrete type

- Can we reuse it for unbounded arrays?
o Let's add "c" to it

Towards an Implementation

- Let's add "c" to it

- Copying the old elements to the new array is expensive $>\mathrm{O}(\mathrm{n})$ for an n -element array
- Next, let's remove the last element

Towards an Implementation

- Next, let's remove the last element

- Copying the remaining elements to the new array is expensive > again, $\mathrm{O}(\mathrm{n})$
- Can we do better?

Towards an Implementation

- Can we do better?
o Maybe leave the array alone and just change the length!

- We did not do any copying, just updated the length $>\mathrm{O}(1)$ for an n -element array
- Let's continue by adding "d"

Towards an Implementation

- Let's continue by adding "d"

- All we did is one write!
> O(1)
- But is it safe?
- We have no way to know the true length of the array!
- it used to be that $\mathrm{A}->$ length $==$ Vength(A->data)
$>$ when executing
A->data[2] = "d"
we don't know if we are writing out of bounds
a now, all we know is that A->length <= Vength(A->data)

Towards an Implementation

- Fix this by splitting length into two fields
o size is the size of the unbounded array reported to the user
o limit is the true length of the underlying array

Towards an Implementation

- Let's do it all over again: we first add "c"

- No need to copy old array elements
$>$ write new element in the first unused space
$>$ update size
○ $\mathrm{O}(1)$ for an n-element array
$>$ very cheap this time
- Next, let's remove the last element

Towards an Implementation

- Next, let's remove the last element

- Simply decrement size and return element
\circ O(1)
- Let's continue by adding "d"

Towards an Implementation

- Let's continue by adding "d"

- As before, just update size

○ $O(1)$

- This is where we got stuck earlier
o Let's carry on and add "e"

Towards an Implementation

- Let's carry on and add "e"

- We need to resize the array to accommodate "e"
o while satisfying the representation invariants
- How big should the new array be?

Resizing the Array

- How big should the new array be?
o One longer: just enough to accommodate "e"

$O \mathrm{O}(\mathrm{n})$ for an n -element array
- The next uba_add will also be $O(n)$
o and the next after that, and the one after, and ...

Resizing the Array

- How big should the new array be?
o one longer: just enough to accommodate "e"
○ O(n) for an n-element array, but the next add will also be O(n), ...
- A sequence of n uba_add starting from a limit- 1 array costs

$$
1+2+3+\ldots+(n-1)+n=n(n+1) / 2
$$

That's $\mathrm{O}\left(\mathrm{n}^{2}\right)$

- The amortized cost of each operation is $\mathrm{O}(\mathrm{n})$, like the worst-case
- Can we do better?
- Observation: if there is space in the array, uba_add costs just $\mathrm{O}(1)$
o Idea: make the new array bigger than necessary

Resizing the Array

- How big should the new array be?
o Two longer: enough to accommodate "e" and a next element

o O(n) for an n-element array
- The next add will be $\mathrm{O}(1)$ but the one after that is $\mathrm{O}(\mathrm{n})$ again
o The cost of a sequence of n uba_add is still $O\left(\mathrm{n}^{2}\right)$
o The amortized cost stays at $O(n)$
- Same if we grow the array by any fixed amount c

Resizing the Array

- How big should the new array be?
- Double the length!

o O(n) for an n-element array
- The next n uba_add will be $O(1)$
- We get good amortized cost when
$>$ the expensive operations are further and further apart
$>$ most operations are cheap
- Does doubling the size of the array give us $\mathbf{O}(1)$ amortized cost?

Analyzing Unbounded Arrays

Amortized Cost of uba_add

- Conjecture: doubling the size of the array on resize yields O(1) amortized complexity
- Let's follow our methodology
- Invent a notion of token
o represents a unit of cost
- Determine how many tokens to charge o the candidate amortized cost \sim
- Specify the token invariant
- for any instance of the data structure, how many tokens need to be saved
- Prove that the operation preserves it
o if the invariant holds before, it also holds after > saved tokens before + amortized cost - actual cost $=$ saved tokens after

1. Draw a short sequence of operations
2. Write the cost of each operation
3. Flag the most expensive so far
4. For each operation, compute the total cost up to it
5. Divide the total cost of the most expensive operations by the operation number in the sequence
6. Round up - that's the candidate amortized cost

Amortized Cost of uba_add

- Invent a notion of token
o represents a unit of cost
- For us, the unit of cost will be an array write
o 1 array write costs 1 token
o all other instructions are cost-free
$>$ we could also assign a cost to them
but let's keep things simple

Amortized Cost of uba_add

- Determine how many tokens to charge o that's the candidate amortized cost
- When adding an element
o we first write it in the old array, and then
o if full, copy everything to the new array

1. Draw a short sequence of operations
2. Write the cost of each operation
3. Flag the most expensive so far
4. For each operation, compute the total cost up to it
5. Divide the total cost of the most expensive operations by the operation number in the sequence
6. Round up - that's the candidate amortized cost

- This costs 5 tokens
$>$ write "e" in the old array
$>$ copy "a", "b", "d", "e" to the new array the math simpler mat simpler

Amortized Cost of uba_add

It looks like we need to charge 3 tokens per uba_add

- Specify the token invariant
o for any instance of the data structure, how many tokens need to be saved
- How are the 3 tokens charged for an uba_add used?
- We always write the added element to the old array
> 1 token used to write the new element
- The remaining 2 tokens are saved
> where do they go?

Amortized Cost of uba_add

- How are the 3 tokens charged for an uba_add used?
o 1 token used to write the new element
- Where do the remaining 2 tokens go?
- Assume
o we have just resized the array and have no tokens left

Amortized Cost of uba_add

- How are the 3 tokens charged for an uba_add used?

○ 1 token used to write the new element

- Each of the remaining 2 tokens is associated with an element in the old array
>1 token to copy the element we just wrote
- always in the $2^{\text {nd }}$ half of the array
>1 token to copy the matching element in the first half of the array
\square element that was copied on the last resize

Amortized Cost of uba_add

- The token invariant
o every element in the $2^{\text {nd }}$ half of the array has a token
\circ and the corresponding element in the $1^{\text {st }}$ half of the array has a token

- Alternative formulation:

0 an array with limit $2 k$ and size $k+r$ holds $2 r$ tokens (for $0 \leq r<k$) $>$ \# tokens $==2 r$

Amortized Cost of uba_add

- Prove that the operation preserves the token invariant
o if the invariant holds before, it also holds after
> saved tokens before + amortized cost - actual cost = saved tokens after
- We need to distinguish two cases

1. Adding the element does not trigger a resize
2. Adding the element does trigger a resize
... and we will need to see what happens before the first resize

Amortized Cost of uba_add

saved tokens before + amortized cost - actual cost = saved tokens after

1. Adding the element does not trigger a resize
$>$ We receive 3 tokens
. we spend 1 to write the new element

we put 1 on top of the new element

- we put 1 on top of the matching element in the $1^{\text {st }}$ half of the array

> Alternatively,
- \# tokens after = \# tokens before $+3-1=2 r+2=2(r+1)=2 r^{\prime}$

Amortized Cost of uba add

saved tokens before + amortized cost - actual cost = saved tokens after

2. Adding the element does trigger a resize
$>$ We receive 3 tokens

a we spend 1 to write the new element
we put 1 on top of the new element

- we put 1 on top of the matching element in the $1^{\text {st }}$ half of the array
$>$ We spend all tokens associated with array elements \square

Amortized Cost of uba_add

saved tokens before + amortized cost - actual cost = saved tokens after

2. Adding the element does trigger a resize

> Alternatively,

- \# tokens after = \# tokens before $+3-1-(\#$ tokens before +2$)=2 r+2-(2 r+2)=0=2 r^{\prime}$

Amortized Cost of uba_add

- What happens before the first resize?
o there is no $1^{\text {st }}$ half of the array where to put matching tokens
o put it in an extra savings account
$>$ that will not be used when resizing
$>$ update the token invariant to: \# tokens $\geq 2 r$

- It doesn't matter if we have extra savings
$>$ we are charging 3 tokens for uba_add
$>$ amortized cost is still $\mathrm{O}(1)$

Amortized Cost of uba_add

- We followed our methodology
- Invent a notion of token
o represents a unit of cost
- Determine how many tokens to charge
o the candidate amortized cost
- Specify the token invariant
- for any instance of the data structure, how many tokens need to be saved
- Prove that the operation preserves it

O if the invariant holds before, it also holds after
$>$ saved tokens before + amortized cost - actual cost $=$ saved tokens after

1. Draw a short sequence of operations
2. Write the cost of each operation
3. Flag the most expensive so far
4. For each operation, compute the total cost up to it
5. Divide the total cost of the most expensive operations by the operation number in the sequence
6. Round up - that's the candidate amortized cost

- and found that
o we can charge 3 tokens for uba_add
o the amortized complexity of uba_add is $\mathbf{O}(1)$
\bigcirc although its worst-case complexity is $\mathbf{O}(\mathrm{n})$

What about the Other Operations?

- uba_len and uba_get don't write to the array
o they cost 0 tokens
- uba_set does exactly 1 write to the array
o it costs 1 token
By charging this number of tokens, they trivially preserve the token invariant
o our analysis of uba_add remains valid even for sequences of operations that make use of them
- uba_new: doesn't write to the array

- uba_rem is ... interesting
- left as exercise!

Implementing Unbounded Arrays

Let's implement them!

- Things we need to do
- Define the concrete type for uba_t
- Define its representation invariants

O write code for every interface function
$>$ make sure it's safe and correct
Left as an exercise

Concrete Type

- We did this earlier!

```
// Implementation-side type
struct uba_header { // Concrete type
    int size; // 0<= size && size < limit
    int limit; }\quad//0<limi
    string[] data; // \length(data) == limit
};
typedef struct uba_header uba; // Internal name
// ... rest of implementation
// Client-side type (abstract)
typedef uba* uba_t;
```


Representation Invariants

```
struct uba_header {
    int size; | // 0<= size && size < limit
    int limit; }\quad//0<limi
    string[] data; // \length(data) == limit
};
typedef struct uba_header uba;
```

- Internally, unbounded arrays are values of type uba*non-NULL
o satisfies the requirements in the type


```
bool is_array_expected_length(string[] A, int length) {
    //@assert \length(A) == length;
    return true;
}
bool is_uba(uba* A) {
    return A!= NULL
        && 0 <= A->size
        && A->size < A->limit
        && is_array_expected_length(A->data, A->limit);
}
```


Basic Array Operations

struct uba_header \{
int size;
int limit;
string[] data;
\};
typedef struct uba_header uba;

- The code is as expected

```
int uba_len(uba* A)
//@requires is_uba(A);
//@ensures 0 <= \result && \result < \length(A->data);
{
return A->size;
}
```

void uba_set(uba* A, int i, string x)
//@requires 0 <= i \&\& i < uba_len(A);

```
```

string uba_get(uba* A, int i)

```
```

string uba_get(uba* A, int i)
//@requires is_uba(A);
//@requires is_uba(A);
//@requires 0 <= i \&\& i < uba_len(A);
//@requires 0 <= i \&\& i < uba_len(A);
{
{
return A->data[i];
return A->data[i];
}

```
```

}

```
```

```
```

uba* uba_new(int size)

```
```

uba* uba_new(int size)
//@requires 0 <= size;
//@requires 0 <= size;
//@ensures is_uba(\result);
//@ensures is_uba(\result);
//@ensures uba_len(\result) == size;
//@ensures uba_len(\result) == size;
{
{
uba* A = alloc(uba);
uba* A = alloc(uba);
int limit = size == 0 ? 1 : size*2;
int limit = size == 0 ? 1 : size*2;
A->data = alloc_array(string, limit);
A->data = alloc_array(string, limit);
A->size = size;
A->size = size;
A->limit = limit;
A->limit = limit;
return A;
return A;
}

```
}
```

 - if size == 0, then limit = 1
    ```
    - otherwise limit = size*2
We are not
We are not
considering
considering
overflow
```

overflow

```

```

//@requires is_uba(A);
//@ensures is_uba(A);
{
A->data[i] = x;
}

```
73

\section*{AOOing an Eiennent}
int limit;
string[] data;
typedef struct uba_header uba;
- We write the new element,
- increment size,
- if array is full, we resize it
o but only if there can't be overflow

```

struct uba_header {
int size;

Resizing the Array

- Create an array with the new limit,
- copy the elements over
- update the fields of the header

```
void uba_resize(uba* A, int new_limit)
//@requires A != NULL; _ we may have size==limit
//@requires 0 <= A->size && A->size < new_limit;
//@requires \length(A->data) == A->limit;
//@ensures is_uba(A);
    S
{
string[] B = alloc_array(string, new_limit);
    for (int i = 0; i < A->size; i++)
    //@loop_invariant 0 <= i && i <= A->size;
    {
        B[i] = A->data[i];
    }
A->limit = new_limit;
A}>>\mathrm{ data = B;
}
```

Part of its job is to restore the representation invariant

Unbounded Arrays in the Wild

Python "Lists"

- The Python programming language does not have arrays
- It has "lists" that can be indexed, extended and shrunk
o nothing to do with linked list

- Python lists work just like unbounded arrays

O append is what we called uba_add

How are Python Lists Implemented?

- Source code available at https://github.com/python/cpython/blob/master/Objects/listobject.c o It is written in C
- Let's look at the code for append

How are Python Lists Implemented?

- Let's look at the code of app1

```
297 static int
298 app1(PyListObject *self, PyObject *v)
299
300
301
302
303
304
305
306
307
308
309
310
3 1 1
312
313
314
315
{
    Py_ssize_t n = PyList_GET_SIZE(self);
    assert (v != NULL);
    if (n == PY_SSIZE_T_MAX) {
        PyErr_SetString(PyExc_OverflowError,
            "cannot add more objects to list");
        return -1;
    }
    if (list_resize(self, n+1) < 0)
        return -1;
        resize array if needed
    Py_INCREF(v);
    PyList_SET_ITEM(self, n, v);
    return 0;

\section*{How are Python Lists Implemented?}
- Let's look at the code of list_resize


\section*{Wrap Up}

\section*{What have we done?}
- We introduced amortized complexity
o average cost over a sequence of operations
- We learned how to determine the amortized complexity o amortized analysis using the accounting method
- We used it to analyze unbounded arrays
\begin{tabular}{|c|c|c|}
\hline Operation & Worst-case complexity & Amortized complexity \\
\hline uba_len & \(\mathrm{O}(1)\) & \multirow{3}{*}{} \\
\cline { 1 - 2 } uba_new & \(\mathrm{O}(\mathrm{n})\) & \multirow{3}{*}{ (same) } \\
\cline { 1 - 2 } uba_get & \(\mathrm{O}(1)\) & \\
\hline uba_set & \(\mathrm{O}(1)\) & \\
\hline uba_add & \(\mathrm{O}(\mathrm{n})\) & \(\mathrm{O}(1)\) \\
\hline uba_rem & \(\mathrm{O}(\mathrm{n})\) & \(\mathrm{O}(1)\) \\
\hline
\end{tabular}
- We implemented unbounded arrays```


[^0]:    This is called the accounting method

