Binary Search Trees

Reflecting on Dictionaries

1

Cost

Complexity of various implementations of dictionaries
 assuming it contains *n* entries

	Unsorted array	Array sorted by key	Linked list	Hash Table
lookup	O(n)	O(log n)	O(n)	O(1) average
insert	O(1) amortized	O(n)	O(1)	O(1) average and amortized

• Hash dictionaries are clearly the best implementation

> O(1) lookup and insertion are hard to beat!

Cost

Hash dictionaries are clearly the best implementation
 > O(1) lookup and insertion are hard to beat!
 or are they?

Goal

 Develop a data structure that has guaranteed O(log n) worst-case complexity for lookup, insert and find_min
 > always!

Returns the

entry with the

smallest key

 \circ O(1) would be great but we can't get that

Array sorted Unsorted Hash Table Linked list by key array O(1)O(log n) O(n)O(n) $O(\log n)$ lookup average O(1) O(1)O(log n) O(n)O(1) insert amortized average and amortized O(log n) O(1) find_min 0(n) O(n)O(n)**Exercise**

Getting Started

• The only O(log n) so far is lookup in sorted arrays

	Unsorted array	Array sorted by key	Linked list	Hash Table	
lookup	O(n)	O(log n)	O(n)	O(1) average	O(log n)
insert	O(1) amortized	O(n)	O(1)	O(1) average and amortized	O(log n)
find_min	O(n)	O(1)	O(n)	O(n)	O(log n)

That's binary search
 Let's start there

Searching Sorted Data

• Consider the following sorted array

 When searching for a number x using binary search, we always start by looking at the midpoint, index 4

al lhis eiemeni

Then, 3 things can happen
 x = 12 (and we are done)
 x < 12
 x > 12

- If x < 12, the next index we look at is **necessarily** 2
- If x > 12, the next index we look at is necessarily 7

- Assume x < 12, so we look at 4
 - \circ if x = 4, we are done
 - \circ if x < 4, we **necessarily** look at 0
 - \circ if **x > 4**, we **necessarily** look at 7

- Assume x < 4, so we look at 0
 - \circ if x = 0, we are done
 - \circ if x < 0, we **necessarily** look at -2

 We can map out all possible sequences of elements binary search may examine, for any x

An array provides direct access to all elements
 This is overkill for binary search

At any point, it needs direct access to at most two elements

 We can achieve the same access pattern by pairing up each element with two pointers

 \odot one to each of the two elements that may be examined next

We are losing direct access to arbitrary elements,
 but it retains access to the elements that matter to binary search

Towards an Implementation

• We can capture this idea with this type declaration:

• This arrangement of data in memory is called a tree


```
T->right->data = 42;
```

. . .

T->left->left = alloc(tree);

Searching

• We are doing the **same steps** as binary search

• Starting from an n-element array, the cost is O(log n)

If the tree is obtained as in this example

Searching

• We are doing the **same steps** as binary search

• Starting from an n-element array, the cost is O(log n)

If the tree is obtained as in this example

Recall our Goal

 Develop a data structure that has guaranteed O(log n) worst-case complexity for lookup, insert and find_min
 > always!

 lookup has cost O(log n) 	
in <i>this</i> setup	

	Target data structure	
lookup	O(log n)	\checkmark
insert	O(log n)	
find_min	O(log n)	

O What about insert and find_min?

Insertion

 We are doing the same steps we would do to search for it, and then put it where it should have been
 o so that we find it when searching for it next time

• For an n-element array, this costs O(log n)

We couldn't get this with sorted arrays

If the tree is obtained as in this example

Finding the Smallest Key

 Starting from an n-element array, we can go left at most O(log n) times

• The cost is O(log n)

Recall our Goal

- Develop a data structure that has guaranteed O(log n) worst-case complexity for lookup, insert and find_min
 > always!
 - lookup, insert and find_min all have cost O(log n)

	Target data structure	
lookup	O(log n)	\checkmark
insert	O(log n)	\checkmark
find_min	O(log n)	\checkmark

Trees

Terminology

This arrangement of data is called a (binary) tree
 o each item in it is called a node

 \odot the part of a tree hanging from a node is called a $\ensuremath{\textit{branch}}$

Terminology

The node at the top is called the root of the tree
 the nodes at the bottom are the leaves of the tree
 the other nodes are called inner nodes

Terminology

Given any node

o the node to its left is its left child

- the node to its right is its right child
- the node above it is its parent

.. and Computer Science

Concrete Tree Diagrams

 When drawing trees, we generally omit the details of the memory diagrams

- \odot draw just the data in a node
 - > not the pointer fields
- \odot and the connection to its children
 - > we always draw the root at the top

Pictorial Abstraction

- We will often reason about trees that are arbitrary
 their actual content is unimportant, so we abstract it away
 - We draw a generic tree as a triangle

 We represent the empty tree by simply writing "Empty"

Empty

What do Trees Look Like?

• Abstract trees come in many shapes

When working with trees, we need to account for all these possibilities

 \circ we will forget some

• Is there a simpler description?

What Trees Look Like

• A tree can be

 \circ either empty

or a root with
 a tree on its left and
 a tree on its right

EMPTY

• Every tree reduces to these two cases

What Trees Look Like

• A tree can be

○ either empty

or a root with
 a tree on its left and
 a tree on its right

EMPTY

We only need to consider these two cases when
 o writing code about trees
 o reasoning about trees

A Minimal Tree Invariant

- We only need to consider these two cases when writing code about trees
- Let's apply this to write a basic invariant about trees of *entries*
 - Just check that the data field is never NULL

- typedef struct tree_node tree; struct tree_node { tree* left: entry data; // != NULL tree* right; };
- we store entries in nodesvalid entries are non-NULL

- This is a **recursive** function
 - \odot the $\ensuremath{\textit{base case}}$ is about the empty tree
 - the recursive case is about every tree that is not empty
 - ➤ with a root
 - and two subtrees

A Minimal Tree Invariant

• We just check that the data field is never NULL

But trees have constraints on their structure

 a node does not point to an ancestor
 a node has at most one parent

 How to check them is left as an exercise

 What additional constraints on contents do we need to use trees to implement dictionaries?

Binary Search Trees

Binary Search Trees

- What additional constraints on the contents do we need to use trees to implement dictionaries?
- Because lookup emulates binary search, the data in the tree need to be ordered
 o smaller values on the left
 - bigger values on the right

 A tree whose nodes are ordered is called a binary search tree

The BST Invariant

 A tree whose nodes are ordered is called a binary search tree

• We can write a specification function that check BSTs

Looking Up Keys

Leverage the structure of the tree!
 o empty: the key is not found

○ non-empty:

➢ if root contains the key, found

if key is smaller than the root's go left

if key is bigger than the root's go right

12 4 7 22 19

looking up 19

65

• In code:

- But < and > work only for integers!
 also, keys and entries are not the same thing in general
- We want a dictionary that uses trees
 to store entries of any type
 and look them up using keys of any type

- But < and > work only for integers!
 also, keys and entries are not the same thing in general
- We want a dictionary that uses trees
 to store entries of any type entry
 and look them up using keys of any type key
- We need functions that

 extract the key from an entry: entry_key
 compare two keys: key_compare
- It is for the client to decide on the type of keys and entries
 So the client shall provide these functions

A Client Interface

• The BST dictionary needs a client interface that

- requests the client to provide types entry and key
- \odot declares a function to extract the key of an entry
- declares a function to compare two keys

We could make it fully generic
 but let's keep things simple

• With it, we can write a general implementation

• We can now even provide a useful postcondition

- either lookup returns NULL
 - no entry in T has key k
- > or the key of the returned entry is the same as k

Checking Ordering

Ordered Trees – I

The data in every node must be
 bigger than its left child's
 smaller than its right child

In code:

Ordered Trees – I

The data in every node must be

 bigger than its left child's
 smaller than its right child

x < y < z

it only checks the children of each node

Ordered Trees – II

- The data in every node must be
 bigger than everything in its left subtree
 smaller than everything in its right subtree
- We need two helper functions
 ogt_tree that checks k > T_L (i.e., T_L < k)
 - \circ It_tree that checks k < T_R

 gt_tree has cost O(n)
 if T contains n nodes
 because it compares k with every node in T

Ordered Trees – II

The data in every node must be

 bigger than everything in its left subtree
 smaller than everything in its right subtree

• In code:

is_ordered costs O(n²)
 if T contains n nodes
 because it calls gt_tree and It_tree on each node

Ordered Trees – III

• Can we do better than $O(n^2)$?

As we examine each key k, keep track of its allowed range
if lo < k < hi, then
lo < k_L < k for the key k_L of its left child (if any)
k < k_R < hi for the key k_R of its right child (if any)
if k is the root, then -∞ < k < ∞ Even though we typically don't care about the cost of specification functions

• For arbitrary keys,

o use entries as the bounds and entry_key to extract their key

o use key_compare to compare k with another key

O use NULL as -∞ and ∞ _____ NULL is a value of type entry that is not a valid entry

Ordered Trees – III

hi 0 • As we examine each key k, keep track of its allowed range We carry around the range (lo, hi) (k)In code: as additional parameters bool is_ordered(tree* T, entry lo, entry hi) //@requires is_tree(T); // Code for empty tree **EMPTY** if (T == NULL) return true; Check that lo < k < hi // Code for non-empty tree key k = entry_key(T->data); return (lo == NULL || key_compare(entry_key(lo), k) < 0) && (hi == NULL || key_compare(k, entry_key(hi)) < 0) Check that $|o < T_L < k|$ && is_ordered(T->left, lo, T->data) && is_ordered(T->right, T->data, hi); Check that $k < T_R < hi$

• Complexity: O(n)

- ➢ if T contains n nodes
- \odot we test every node in the tree

Ordered Trees – III

• We need to update is_bst slightly

Inserting Entries

Inserting into a BST

- Do the same steps we would do to search for this entry, and then put it where it should have been
- The code follows the possible shapes of the tree

Inserting into an Empty BST

• We simply create a node for the new entry

We need to *return* the new node to the caller
 o bst_insert must return a tree

Does this achieve what we want?
○ No: T is a **copy** of the caller's tree
> changing T does not change the original

inserting 5

(5)

Inserting into an Empty BST

• We simply create a node for the new entry **and return it**

inserting 5

(5)

bst_insert

Decommissioned

upon returning

e

• The returned tree must be a valid BST

Inserting in a Non-empty BST

• If an entry with the same key is present, we overwrite it

Inserting into a BST

- We make bst_insert more readable by
 - moving the code that creates a new leaf into a helper function
 - explicitly setting its children to NULL

Refactoring code to make it more readable is important for maintainability

BST Dictionaries

Are we There Yet?

• So far, we have implemented lookup and insertion

Are we There Yet?

o bst_insert returns a tree* but

dict_insert does not return anything

NULL is a valid BST but not a valid dictionary

Implementing BST Dictionaries

- We can define a header that contains a pointer to a tree
 and possibly other data
- and wrappers around the BST functions
 - they mediate between trees and dicts

Here's the specification function for BST dictionaries

O the dictionary itself can't be NULL
 ➢ this satisfies the dictionary interface
 O but the underlying BST can
 ➢ that's how we represent the empty dictionary

Implementing BST Dictionaries

struct dict_header {
 tree* root;
 int size; // example of other data
};
typedef struct dict header dict;

• We define wrappers around the BST functions

they mediate between the trees and dicts

Lookup

Insertion

void dict_insert(dict* D, entry e)
//@requires is_dict(D) && e != NULL;
//@ensures dict_lookup(D, entry_key(e)) == e;
//@ensures is_dict(D);
{
 D->root = bst_insert(D->root, e);
}

Creating a dictionary

 allocates a header and
 sets the root to the empty BST

 root

 f(ict* dict_new()
 //@ensures is_dict(\result);
 D= alloc(dict);
 D=>root = NULL;
 return D;
 dict_new creates the empty dictionary

Implementing BST Dictionaries

struct dict_header {
 tree* root;
 int size; // example of other data
};
typedef struct dict header dict;

• We are only left with implementing find_min

entry dict min(dict* D) //@requires is_dict(D); if (D->root == NULL) return NULL; tree* T = D->root; while (T->left != NULL) T = T -> left;return T->data;

The abstract client dict_t is just dict*

typedef dict* dict_t;

That's it!

The BST Dictionary Library

// BSTs and auxiliary functions	// Implementation of interface functions	=		
typedef struct tree_node tree;	dict* dict_new()	g	Client Interface	
struct tree_node {	//@ensures is_dict(\result);	le		
entry data; // data != NULL		N	// typedef* entry;	
tree* left;	dict $D = alloc(dict);$	en	// typedef key;	
tree* right;	D->root = NULL;	ta		
};	return D;	li ci	key entry_key(entry e)	
	}	E	/*@requires e != NULL; @*/;	
// Representation invariant				
bool is_bst (tree* T) { }	entry dict_lookup(dict* D, key k)		int key_compare(key k1, key k2);	۱.
	//@requires is_dict(D);			,
// BST auxiliary functions	//@ensures \result == NULL			
entry bst_lookup(tree* T, key k)	key_compare(entry_key(\result), k) == 0;			
//@requires is_bst(T);	{			
//@ensures \result == NULL	return bst_lookup(D->root, k);	1 (Library Interface	7
<pre> key_compare(entry_key(\result), k) == 0;</pre>	}	<u> </u>		
{}			// typedet* dict_t;	
	void dict_insert(dict* D, entry e)			
	<pre>//@requires is_dict(D) && e != NULL;</pre>		dict_t dict_new()	.
tree* bst_insert(tree* T, entry e)	<pre>//@ensures dict_lookup(D, entry_key(e)) == e;</pre>		/*@ensures \result != NULL;	<u>v</u> */
//@requires is_bst(T) && e != NULL;	//@ensures is_dict(D);			
<pre>//@ensures is_bst(\result) && \result != NULL;</pre>	{		entry dict_lookup(dict_t D, key k)	
<pre>//@ensures bst_lookup(\result, entry_key(e)) == e;</pre>	D->root = bst_insert(D->root, e);		/*@requires D != NULL;	¥/
{ }	}		/*@ensures \result == NULL	.
			key_compare(entry_key(\result), k) == 0; @	¥/
// Implementing the dictionary	entry dict_min(dict* D)			
// Concrete type	<pre>//@requires is_dict(D);</pre>		void dict_insert(dict_t D, entry e)	-
<pre>struct dict_header {</pre>	{		/*@requires D != NULL && e != NULL;	<u>)</u> */
tree* root;	if (D->root == NULL) return NULL;		/*@ensures hdict_lookup(D, entry_key(e)) == e; @	<u>)</u> */
};	tree* T = D->root;			
typedef struct dict_header dict;	while (T->left != NULL)		entry dict_min(dict_t D)	
	T = T -> left;		/*@requires D != NULL;	Y*/
// Representation invariant	return T->data;			
<pre>bool is_dict (dict* D) {</pre>	}			
return D != NULL && is_bst(D->root);				
}	// Client type			
	typedef dict* dict_t;			

6

@*/;

@*/ @*/;

@*/; **b**

Using BST Dictionaries

- We can now use this new implementation of dictionaries for our application
 - \odot once we write an appropriate client definition file

• We could easily make this library fully generic

Recall our Goal

- Develop a data structure that has guaranteed O(log n) worst-case complexity for lookup, insert and find_min
 > always!
- We have succeeded

	Target data structure	
lookup	O(log n)	\checkmark
insert	O(log n)	\checkmark
find_min	O(log n)	\checkmark

 \circ or have we ...