
C’s Memory Model

1

C0 C

Balance Sheet … so far

Lost Gained

• Contracts

• Safety

• Garbage collection

• Memory initialization

• Preprocessor

• Whimsical execution

• Explicit memory management

• Separate compilation

2

Arrays in C

3

 Here’s how we create a 5-element int array

int *A = malloc(sizeof(int) * 5);

 In C arrays and pointers are the same thing*

oNo special array type

oNo special allocation instruction

malloc returns NULL when we have run out of memory

 we use xmalloc instead

Creating an Array

The type is int*,

not int[]

We use malloc like for pointers,

not a special array-only instruction

4 *on the heap

int *A = xmalloc(sizeof(int) * 5);

 But what does it do?

o It allocates contiguous space that can contain

5 ints on the heap

o and returns its address

Creating an Array

OS

OS

main …

hdict_new …

…

"apple" …

"lime" …

A 0xBB0

0x0AC

0

1

2

3

4

0x080 20

0x090 10

0x088 50

5 3
0xD04

0xDDC

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 40xBB0 0xBB4 0xBB8 0xBBC 0xBC0

0xBB0

5

Using an Array

 Arrays are accessed like in C0

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

o Like in C0, C arrays are 0-indexed

contains

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

7 12 1

A[0] A[1] A[2] A[3] A[4]

A[0] refers to the 1st int pointed to by A,

A[1] to the 2nd int pointed to by A,

…

A[4] to the 5th int pointed to by A

A

int main() {

int *A = xmalloc(sizeof(int) * 5);

...

}

0xBB0

6

Pointer Arithmetic

 If A is a pointer, then *A is a valid expression

oWhat is it?

 A is an int*, so *A is an int

o it refers to the first element of the array

o *A is the same as A[0]

*A = 42;

sets A[0] to 42

int main() {

int *A = xmalloc(sizeof(int) * 5);

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

...

}

contains

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

7 12 1

A[0] A[1] A[2] A[3] A[4]

A 0xBB0

7

Pointer Arithmetic

 A is the address of the first element of the

array

 What is the address of the next element?

o It’s A + one int over: A+1

o In general the address of the i-th element of A is A+i

 This is called pointer arithmetic

int main() {

int *A = xmalloc(sizeof(int) * 5);

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

*A = 42;

...

}

contains

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 1

A[0] A[1] A[2] A[3] A[4]

A 0xBB0

A plus i elements over

Not A plus i bytes over

8

Pointer Arithmetic

 A+i is the address of A[i]

o so *(A+i) is A[i]

 the value of the element A[i]

o so

printf("A[1] is %d\n", *(A+1));

prints 7

 In fact, A[i] is just convenience syntax for *(A+i)

int main() {

int *A = xmalloc(sizeof(int) * 5);

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

*A = 42;

...

}

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 1

A[0] A[1] A[2] A[3] A[4]

*A *(A+1) *(A+2) *(A+3) *(A+4)

In the same way that p->next

is just convenience syntax

for (*p).next

9

Pointer Arithmetic

 Pointer arithmetic is one of the most error-prone

features of C

 But no C program needs to use it

o Every piece of C code can be rewritten without

 change *(A+i) to A[i]

 change A+i to … (later)

 Code that doesn’t use pointer arithmetic

o is more readable

o has fewer bugs

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 1

A[0] A[1] A[2] A[3] A[4]

*A *(A+1) *(A+2) *(A+3) *(A+4)

Danger

10

Initializing Memory

 (x)malloc does not initialize

memory to default value

o A[3] could contain any value

 To allocate memory and initialize it to all zeros, use the

function calloc

int *A = calloc(5, sizeof(int));

 calloc returns NULL if there is

no memory available

 lib/xalloc.h provides xcalloc

that aborts execution instead

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 1

A[0] A[1] A[2] A[3] A[4]

int main() {

int *A = xmalloc(sizeof(int) * 5);

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

*A = 42;

...

}

calloc takes two arguments,

while malloc takes only one

Number of elements Size of each element

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 0 1

A[0] A[1] A[2] A[3] A[4]

Now A[3] contains 0
11

Freeing Arrays

 A was created in allocated memory

o on the heap

 Therefore we must free it before the program exits

o otherwise there is a memory leak

free(A);

 The C motto

If you allocate it, you free it

int main() {

int *A = xcalloc(5, sizeof(int));

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

*A = 42;

free(A);

}

12

The Length of an Array

 In C0, we can know the length of an array

only in contracts

 In C, there is no way to find out the length of an array

oWe need to keep track of it

meticulously

 But free knows how much memory to give back to the OS

o The memory management part of the run-time keeps track of the

starting address and size of every piece of allocated memory …

o… but none of this is accessible to the program

int main() {

int *A = xcalloc(5, sizeof(int));

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

*A = 42;

free(A);

}

C0 stores it secretly

It is written nowhere

13

14

Arrays Summary

Arrays in C

 Arrays are pointers

 Created with (x)malloc

 does not initialize elements

or with (x)calloc

 does initialize elements

 Must be freed

 No way to find the length

Arrays in C0

 Arrays have a special type

 Created with alloc_array

 Initializes the elements to 0

 Garbage collected

 Length available in contracts

Undefined Behavior

Danger

15

Out-of-bound Accesses

 What if we try to access A[5]?

printf("A[5] is %d\n", A[5]);

 In C0, this is a safety violation

o array access out of bounds

 In C, that’s *(A+5)

o the value of the 6th int starting from the address in A

 What will happen?

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 0 1

A[0] A[1] A[2] A[3] A[4]

This is outside of A

int main() {

int *A = xcalloc(5, sizeof(int));

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

*A = 42;

}

16

Out-of-bound Accesses

 What will happen?

printf("A[5] is %d\n", A[5]);

 It could

o print some int and continue execution

o abort the program

o crash the computer

o do weirder things

(within the laws of physics)

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 0 1

A[0] A[1] A[2] A[3] A[4]

This is outside of A

Google joke:

order pizza for the whole team

int main() {

int *A = xcalloc(5, sizeof(int));

A[1] = 7;

A[2] = A[1] + 5;

A[4] = 1;

*A = 42;

}

17

Out-of-bound

Accesses

printf("A[5] is %d\n", A[5]);

could do different things on different runs

o it could work as expected most of the times but not always

 corrupt the data and crash in mysterious ways later

 Same thing with

printf("A[-1] is %d\n", A[-1]);

printf("A[1000] is %d\n", A[1000]);

 But

printf("A[10000000] is %d\n", A[10000000]);

will consistently crash the program
with a segmentation fault

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 0 1

A[0] A[1] A[2] A[3] A[4]

This is outside of A

gcc -Wall …

./a.out

A[5] is 1879048222

A[1000] is -837332876

A[-1] is 1073741854

Segmentation fault (core dumped)

Linux Terminal

18

Debugging Out-of-bound Accesses

 The code could work as expected most of the times but

not always

o Extremely hard to debug

 Valgrind will often point out out-of-bound accesses

printf("A[5] is %d\n", A[5]);

valgrind ./a.out

==14980== Invalid read of size 4

==14980== at 0x1089C2: main (test.c:40)

==14980== Address 0x522d054 is 0 bytes after a block of size 20 alloc'd

==14980== at 0x4C31B25: calloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-

linux.so)

==14980== by 0x108878: xcalloc (xalloc.c:16)

==14980== by 0x108965: main (test.c:29)

…

Linux Terminal

Line where the bad access occurred

Line where it was allocated

In this code, ints are 4 bytes

A contains 5 ints,

so it’s 20 bytes long

19

Debugging Out-of-bound Accesses

 Valgrind will often point out out-of-bound accesses

A[5] = 15122;

valgrind ./a.out

==15847== Invalid write of size 4

==15847== at 0x108982: main (test.c:46)

==15847== Address 0x522d054 is 0 bytes after a block of size 20 alloc'd

==15847== at 0x4C31B25: calloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-

linux.so)

==15847== by 0x108838: xcalloc (xalloc.c:16)

==15847== by 0x108925: main (test.c:29)

…

Linux Terminal

Line where the bad access occurred
In this code, ints are 4 bytes

Here we are writing to A[5]

Line where it was allocated

20

Debugging Out-of-bound Accesses

 Valgrind will often point out out-of-bound accesses

printf("A[-1] is %d\n", A[-1]);

valgrind ./a.out

==15091== Invalid read of size 4

==15091== at 0x1089C2: main (test.c:42)

==15091== Address 0x522d03c is 4 bytes before a block of size 20 alloc'd

==15091== at 0x4C31B25: calloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-

linux.so)

==15091== by 0x108878: xcalloc (xalloc.c:16)

==15091== by 0x108965: main (test.c:29)

…

Linux Terminal

Line where the bad access occurred

Line where it was allocated

In this code, ints are 4 bytes

A contains 5 ints,

so it’s 20 bytes long

21

Debugging Out-of-bound Accesses

 Valgrind will often point out out-of-bound accesses

printf("A[1000] is %d\n", A[1000]);

o It doesn’t give as much information further away from the array

valgrind ./a.out

==15063== Invalid read of size 4

==15063== at 0x1089C4: main (test.c:41)

==15063== Address 0x522dfe0 is 3,904 bytes inside an unallocated block of size 4,194,112

in arena "client"

…

Linux Terminal

Line where the bad access occurred
In this code, ints are 4 bytes

22

Debugging Out-of-bound Accesses

 Valgrind will often point out out-of-bound accesses

printf("A[10000000] is %d\n", A[10000000]);

oWhat does this mean?

valgrind ./a.out

==15113== Invalid read of size 4

==15113== at 0x1089C4: main (test.c:44)

==15113== Address 0x7852a40 is not stack'd, malloc'd or (recently) free'd

==15113==

==15113==

==15113== Process terminating with default action of signal 11 (SIGSEGV)

==15113== Access not within mapped region at address 0x7852A40

==15113== at 0x1089C4: main (test.c:44)

…

Segmentation fault (core dumped)

Linux Terminal

Line where the bad access occurred
In this code, ints are 4 bytes

23

Out-of-bound Accesses

printf("A[5] is %d\n", A[5]);

printf("A[-1] is %d\n", A[-1]);

printf("A[1000] is %d\n", A[1000]);

all access memory in the heap, near A

printf("A[10000000] is %d\n", A[10000000]);

accesses memory outside in the heap

o in a different segment of memory

o That’s why the program crashes with

a segmentation fault

OS

OS

main …

hdict_new …

…

"apple" …

"lime" …

A 0xBB0

0x0AC

0

1

2

3

4

0x080 20

0x090 10

0x088 50

5 3
0xD04

0xDDC

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4

0xBB0

24

Debugging Out-of-bound Accesses

 Valgrind cannot catch all out-of-bound accesses

A[-1000] = 42;

o Valgrind keeps track of likely locations where programmers

make mistakes

e.g., off-by-one errors

o it does not monitor the whole memory

valgrind ./a.out

==16357==

==16357==

…

Linux Terminal

No error reported!

25

Undefined Behavior

Out-of-bound accesses may do different things on different runs

 Why?

 Because the C99 standard does not specify what should

happen

 Out-of-bound accesses are undefined behavior

o different compilers do different things

o often just carry on

 read or write other program data

unless accessing a restricted segment

That’s what will make

the code run fastest

But debugging

is a nightmare

26

Undefined Behavior

 Every safety violation in C0 is undefined behavior in C

o accessing an array out-of-bound

o dereferencing NULL

o (plus other violations we will examine later)

 But there is more in C than in C0

 Almost anything else slightly weird is undefined behavior

in C

o reading uninitialized memory

even if correctly allocated

o using memory that has been freed

o double free

o…
More later

C0 was engineered this way

on purpose:

• everything that could happen

during execution is defined

• bad thing that could happen

abort the program

27

Undefined Behavior

 What’s so bad about them?

o Security vulnerabilities

Heartbleed, Stuxnet

o Software bugs

buffer overflow

 Why does C have undefined behaviors?

o These were the early days of programming language research

 Why haven’t they been fixed?

o Some legacy code relies on the behavior of a specific compiler

on a specific OS to do its job

Fixing it would break this code

Danger

28

Aliasing

29

Aliasing into an Array

int *B = A+2;

 B contains the address of

the third element of A

 But B has type int*

o an array of ints

B[0] is A[2]

B[1] is A[3], …

B B+1 B+2

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 1

A[0] A[1] A[2] A[3] A[4]

B[0] B[1] B[2]

OS

OS

main …

hdict_new …

…

"apple" …

"lime" …

A 0xBB0

0x0AC

0

1

2

3

4

0x080 20

0x090 10

0x088 50

5 3
0xD04

0xDDC

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4

0xBB0

B 0xBB8

Pointer arithmetic lets us grab

the address of an element

in the middle of an array

30

Aliasing into an Array

int *B = A+2;

assert(B[0] == A[2]);

assert (B[1] == A[3]);

assert(*(B+2) == A[4]);

 We have a new form of aliasing

B[1] = 35;

assert(A[3] == 35);

B B+1 B+2

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 1

A[0] A[1] A[2] A[3] A[4]

B[0] B[1] B[2]

B[0] is A[2],

B[1] is A[3], …

B B+1 B+2

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 35 1

A[0] A[1] A[2] A[3] A[4]

B[0] B[1] B[2]

31

Aliasing into an Array

int *B = A+2;

B[1] = 35;

 We are not allowed to free B

o It was not returned by (x)malloc or (x)calloc

oDoing so is undefined behavior

B B+1 B+2

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 35 1

A[0] A[1] A[2] A[3] A[4]

B[0] B[1] B[2]

32

Casting Pointers in C

33

Casting Pointers

 In C1, we can

o cast any pointer to void*

o cast void* only to the original pointer type

 In C, we can cast any pointer to any pointer type

o this never triggers an error

char *C = (char*)A;

As C, it views the space occupied by A as a char array

C

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 35 1

A[0] A[1] A[2] A[3] A[4]

C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9] C[10] C[11] C[12] C[13] C[14] C[15] C[16] C[17] C[18] C[19]

A char is 1 byte,

so each int is 4 chars

34

Casting Pointers

 C[16] is the 17th character in C

o i.e., the first byte of A[4]

 Since A[4] is 1 == 0x00000001

owe expect C[16] to be 0

C

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 35 1

A[0] A[1] A[2] A[3] A[4]

C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9] C[10] C[11] C[12] C[13] C[14] C[15] C[16] C[17] C[18] C[19]

35

Casting Pointers

printf("The 16th char in C is %d\n", C[16]);

 We expect C[16] to be 0

o Integers can be represented in various way over 4 bytes

gcc uses little-endian format

C

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 35 1

A[0] A[1] A[2] A[3] A[4]

C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9] C[10] C[11] C[12] C[13] C[14] C[15] C[16] C[17] C[18] C[19]

gcc -Wall …

./a.out

The 16th char in C is 1

Linux Terminal

Why?

The most significant byte

has the highest address

36

Casting Pointers

 As an array, each element of D is two ints

o accessing D[1].y is the same as accessing A[5]

out of bounds

undefined behavior

 When casting pointers, we must be mindful of alignment

struct point {

int x;

int y;

};

…

struct point *D = (struct point *)(A + 2);

printf("(x0,y0) = (%d, %d)\n", D[0].x, D[0].y);

printf("(x1,y1) = (%d, %d)\n", D[1].x, D[1].y);

D D+1

A A+1 A+2 A+3 A+4

0xBB0 0xBB4 0xBB8 0xBBC 0xBC0

42 7 12 35 1

A[0] A[1] A[2] A[3] A[4]

D[0] D[1]

D[0].x D[0].y D[1].x D[1].y

37

D[0] and D[1] are not pointers,

so we need to use . instead of ->

Casting Pointers

 Careless casting can be outright dangerous

In practice,

 cast a pointer of arbitrary type to void* or char* only

o accessing pointers cast to other types is undefined behavior

struct thermonuclear_device_controller {

…

};

…

struct thermonuclear_device_controller *danger = (struct thermonuclear_device_controller*)(A + 2);

activate(danger[17].warhead);

38

Casting to void*

 In C1, void* stands for a pointer of any type

o this is the basis for building generic data structures

as long as the elements are pointers

 In C, void* is also the type of an array of … void
but void is not a type in C

o void* can be viewed as the address of the first element of any

array

 there is no way to infer the size of the elements

nor the number of elements

 With this, we can write generic operations on arrays with

arbitrary elements

o not just pointers

39

Generic Array Operations

 We can write generic operations on arbitrary arrays by

o casting their address to void*

o specifying the element size

o specifying the number of elements

 Example: a generic sort function

void sort(void *A, int elem_size, int num_elem, compare_fn *cmp);

The array to be sorted,

as a void*

The number of bytes

of the elements of A

The number of

elements of A

A function to

compare elements

40

Stack Allocation

41

Stack-allocated Arrays

 In C0, arrays can only live on the heap

 C allows creating arrays on the stack

o these are stack-allocated arrays

 The instruction

int E[8];

allocates an 8-element int array on the stack

o It is accessed using the normal array notation

E[0] = 3;

E[1] = 2 * E[0];

OS

OS

main …

hdict_new …

…

"apple" …

"lime" …

A 0xBB0

0x0AC

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4

0xBB0

0 1 2 3 4 5 6 7

3 6E

42

Stack-allocated Arrays

 Stack-allocated arrays can be initialized to

array literals

int F[] = {2, 4, 6, 8, 3};

allocates a 5-element int array on the stack

and initializes with the given values

 Array literals are really useful to write test

cases

o but they cannot be very big

OS

OS

main …

hdict_new …

…

"apple" …

"lime" …

A 0xBB0

0x0AC

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4

0xBB0

0 1 2 3 4 5 6 7

3 6E

0 1 2 3 4

2 4 6 8 3F

The compiler will figure out

the size of the array

The initial elements of F

43

Stack-allocated Structs

 Similarly, C allows allocating structs on the

stack

struct point p;

o and we can conveniently initialize them

struct point q = { .x = 15, .y=122 };

 Stack-allocated structs are not pointers

o their fields must be accessed using the dot

notation

p.x = 9;

p.y = 7;

printf("p is (%d, %d)\n", p.x, p.y);

OS

OS

main …

hdict_new …

…

"apple" …

"lime" …

A 0xBB0

0x0AC

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4

0xBB0

0 1 2 3 4 5 6 7

3 6E

0 1 2 3 4

2 4 6 8 3F

x y

9 7p

44

Disposing of Stack-allocated Data

 The space for stack-allocated arrays and

structs is reclaimed when exiting the

function that declared them

oNo need to free them

o In fact, this is undefined behavior!

 Because of this they cannot be used for

traditional data structures

o if queue_new were to allocate a queue on the

stack, other queue functions wouldn’t be able

to use it when it returns

Traditional queues must be heap-allocated

OS

OS

main …

hdict_new …

…

"apple" …

"lime" …

A 0xBB0

0x0AC

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4

0xBB0

0 1 2 3 4 5 6 7

3 6E

0 1 2 3 4

2 4 6 8 3F

x y

9 7p

45

Address-of

46

Capturing Memory Addresses

 In C1, & can only be used on function

names

 In C, & can get the address of anything

that has a memory address

o functions

o local variables

o fields of structs

o array elements

 In general, for any exp for which

exp = …

is syntactically valid, we can write

&exp

OS

OS

main …

hdict_new …

…

"apple" …

"lime" …

A 0xBB0

0x0AC

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4

0xBB0

0 1 2 3 4 5 6 7

3 6E

0 1 2 3 4

2 4 6 8 3F

x y

9 7p

47

Such exp are

called l-values

Capturing Memory Addresses

 local variables

int i = 11;

increment(&i);

 fields of structs

increment(&p.y);

struct point *q = calloc(1, sizeof(struct point));

increment(&(q->y));

 array elements

o increment(&A[3]);

o increment(&F[2]);

OS

OS

main …

increment…

…

"apple" …

"lime" …

A 0xBB0

0x0AC

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4

42 7 12 35 10xBB0

0 1 2 3 4 5 6 7

3 6E

0 1 2 3 4

2 4 6 8 3F

x y

9 7p

void increment(int *p) {

REQUIRES(p != NULL);

*p = *p + 1;

}

Increments an int* by 1

i 11

x y

0 0

qi is now 12

p.y is now 8

q->y is now 1

A[3] is now 36

F[2] is now 7

Initializes

q to (0,0)

48

Pointer Arithmetic

 All code using pointer arithmetic can be rewritten without

oCode is more readable

o and has fewer bugs

 Change

o *(A + i) to A[i]

o A + i to &A[i]

49

Bad Uses of Address-of

 In general, for any exp for which

exp = …

is syntactically valid, we can write

&exp

o &(i+2)

 i+2 = 7; is not legal

o &(A+3)

A+3 = xcalloc(4, sizeof(int)); is not legal

o &&i

&i = xmalloc(sizeof(int)); is not legal

50

Really Bad Uses of Address-of

 Returns the address of a stack value that will be

deallocated upon return!

o The next function call will overwrite it

 This is a huge security vulnerability

int* bad() {

int a = 1;

return &a;

}

Recent versions of gcc

stopped allowing it

51

Strings in C

52

Strings

 There is no type string in C

 Strings are just arrays of characters

o of type char*

o The string syntax

"hello"

is just convenience syntax for an array containing 'h', 'e', …

 Given

char *s1 = "hello";

the statements

printf("%c%c%c%c%c\n", s1[0], s1[1], s1[2], s1[3], s1[4]);

printf("%s\n", s1);

produce the exact same output

53

NUL

char *s1 = "hello";

printf("%s\n", s1);

 How does printf know when to stop printing characters?

o the length of an array is recorded nowhere

 The end of a string is indicated by the NUL character

owritten '\0'

owhose value is 0

 Thus, s1 is an array of six characters and s1[5] == '\0'

54

The <string> Library

 The <string> library contains lots of useful functions to

work with strings

o strlen returns the number of characters in a string

up to the first NUL character, excluded

char *s1 = "hello";

assert(strlen(s1) == 5);

 s1 is an array of 6 characters but it has length 5

o strcpy(dst, src) copies all the characters of string src to dst

up to the NUL character, included

dst must be big enough to store all the characters in src plus NUL

o and many more utility functions

This is an endless

source of bugs

This is an endless

source of bugs

55

Strings

 Strings can live in three places

o in the DATA segment

char *s1 = "hello";

 these strings are read-only

s1[0] = 'm';

is undefined behavior

no need to free them

in fact, that’s undefined behavior

o in the heap

o on the stack

OS

OS

main …

increment…

…

"hello"

s1 0xCB0

0xCN-

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'0xBB0

0 1 2 3 4 5

'w' 'o' 'r' 'l' 'd' '\0's3

R
e
a
d
 o

n
ly

s2 0xBB0

0 1 2 3

's' 'k' 'y' '\0's4

56

Strings

 Strings can live in three places

o in the DATA segment

o in the heap

char *s2 = xmalloc(strlen(s1) + 1);

strcpy(s2, s1)

s2[0] = 'Y';

free(s2);

we need to allocate one extra character for

the NUL terminator

we need to free them

o on the stack

OS

OS

main …

increment…

…

"hello"

s1 0xCB0

0xCN-

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'0xBB0

0 1 2 3 4 5

'w' 'o' 'r' 'l' 'd' '\0's3

R
e
a
d
 o

n
ly

s2 0xBB0

0 1 2 3

's' 'k' 'y' '\0's4

This is an endless

source of bugs

Danger

57

Strings

 Strings can live in three places

o in the DATA segment

o in the heap

o on the stack

char s3[] = "world";

char s4[] = {'s', 'k', 'y', '\0'};

 if using array literals, we often need to

include the NUL terminator

no need to free them

OS

OS

main …

increment…

…

"hello"

s1 0xCB0

0xCN-

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'0xBB0

0 1 2 3 4 5

'w' 'o' 'r' 'l' 'd' '\0's3

R
e
a
d
 o

n
ly

s2 0xBB0

0 1 2 3

's' 'k' 'y' '\0's4

Danger

58

Strings in Summary

 Strings can live in three places

o in the DATA segment

char *s1 = "hello";

o in the heap

char *s2 = xmalloc(strlen(s1) + 1);

strcpy(s2, s1)

s2[0] = 'Y';

free(s2);

o on the stack

char s3[] = "world";

char s4[] = {'s', 'k', 'y', '\0'};

OS

OS

main …

increment…

…

"hello"

s1 0xCB0

0xCN-

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'0xBB0

0 1 2 3 4 5

'w' 'o' 'r' 'l' 'd' '\0's3

R
e
a
d
 o

n
ly

s2 0xBB0

0 1 2 3

's' 'k' 'y' '\0's4

59

Strings in Summary

Writable? Allocation Deallocation

DATA No
Automatic

(when execution starts)
N/A

Stack Yes
Automatic

(when function is called)

Automatic

(when function returns)

Heap Yes
Manual

(with malloc)

Manual

(with free)

OS

OS

main …

increment…

…

"hello"

s1 0xCB0

0xCN-

0x0

0xFF…FF

S
T
A

C
K

H
E

A
P

T
E

X
T

D
A

T
A

main

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'0xBB0

0 1 2 3 4 5

'w' 'o' 'r' 'l' 'd' '\0's3

R
e
a
d
 o

n
ly

s2 0xBB0

0 1 2 3

's' 'k' 'y' '\0's4

60

 Strings can live in three places

Summary

61

Undefined Behavior

 Reading/writing to non-allocated memory

 Reading uninitialized memory

o even if correctly allocated

 Use after free

 Double free

 Freeing memory not returned by malloc/calloc

 Writing to read-only memory

62

Lost Gained

• Contracts

• Safety

• Garbage collection

• Memory initialization

• Well-behaved arrays

• Fully-defined language

• Strings

• Preprocessor

• Undefined behavior (?)

• Explicit memory management

• Separate compilation

• Pointer arithmetic (?)

• Stack-allocated arrays and structs

• Generalized address-of

Balance Sheet

63

