
Numbers in C

Balance Sheet … so far

Lost Gained

• Contracts

• Safety

• Garbage collection

• Memory initialization

• Well-behaved arrays

• Fully-defined language

• Strings

• Preprocessor

• Undefined behavior

• Explicit memory management

• Separate compilation

• Pointer arithmetic

• Stack-allocated arrays and structs

• Generalized address-of

1

Undefined Behavior

M
e
m

o
ry

• Reading/writing to non-allocated memory

• Reading uninitialized memory
• even if correctly allocated

• Use after free

• Double free

• Freeing memory not returned by malloc/calloc

• Writing to read-only memory

N
u

m
b

e
rs

Today

2

The type int

3

int Sizes

 In C0/C1, the size of values of type int is 32 bits

o and pointers are 64 bits

 In C, the size of an int has evolved over time

o and pointers too

Pointer size 8 16 32 64

int size 8 16 32 32

‘70s ‘80s ‘90s Today

TypicalTypical

4

int Sizes

 In C, the size of an int has evolved over time

o and pointers too

 Early computers had 8-bit

addresses

o 256 bytes of memory

RAM was very expensive

 ints ranged from -128 to 127

Pointer size 8 16 32 64

int size 8 16 32 32

‘70s ‘80s ‘90s Today

The computer that

sent Apollo 11 to the moon

‘60s

HP 9830A

5

int Sizes

 In C, the size of an int has evolved over time

o and pointers too

 16-bit addresses

o (up to) 64 kilobytes of memory

 the Commodore 64

 ints ranged from -32768 to 32767

Pointer size 8 16 32 64

int size 8 16 32 32

‘70s ‘80s ‘90s Today

Apple II

Commodore 64

6

int Sizes

 In C, the size of an int has evolved over time

o and pointers too

 32-bit addresses

o (up to) 4 gigabytes of memory

 ints ranged in the billions

Pointer size 8 16 32 64

int size 8 16 32 32

‘70s ‘80s ‘90s Today

PC

iMac

7

int Sizes

 In C, the size of an int has evolved over time

o and pointers too

 64-bit addresses

o nobody has 264 bytes memory

 billions are still Ok for ints

Pointer size 8 16 32 64

int size 8 16 32 32

‘70s ‘80s ‘90s Today

8

Implementation-defined Behavior

 The C standard says that it is for the compiler to define the

size of an int
with some constraints

 It is implementation-defined

The compiler decides, but

o it remains fixed

o the programmer can find out how big an int is

 the file <limits.h> defines the values of INT_MIN and INT_MAX

 and therefore the size of an int

Undefined behavior ≠ implementation-defined behavior

o undefined behavior does not have to be consistent

o the programmer has no way to find out from inside the program

9

Implementation-defined Behavior

 Most programmers don’t need to know how big an int is

o just write code normally, possibly using INT_MIN and INT_MAX

o the compiler will use whatever internal size it has chosen

 Same thing for pointers

 Code written in the 1970s still works on today’s computers

o as long as the code doesn’t depend on the size of an int

o and the programmer used sizeof inside malloc

This is not true of code that uses

the bits of an int to encode data:

bit patterns (e.g., pixels)

10

int’s Undefined Behaviors

 Safety violations in C0 are undefined behavior in C

o division/modulus by 0, or INT_MIN divided/mod’ed by -1

o shifting by more than the size of an int

 Overflow!

oC programs do not necessarily use two’s complement

 this makes it essentially

impossible to reason

about ints in a C program

n + n - n and n may produce different results

o gcc provides the flag -fwrapv to force the use of two’s

complement for ints

 And a few more

o e.g., left-shifting a negative value

11

In 1972, a lot of computers

didn’t use 2’s complement

Other Integer Types

12

Signed Integer Types

 C0 has a single type of integers: int

 C has many more

o long: integers that are larger than int

64 bits nowadays

o short: integers that are smaller than int

16 bits nowadays

o char: integers that are smaller than short

8 bits nowadays

but always 1 byte

o… and there are more

char is a number!

• 'a' is convenience syntax

• the placeholder %c in printf

displays it as a character

C99 defines a byte as at least 8 bit

13

Unsigned Integer Types

 Lots of code doesn’t use negative numbers

 C provides unsigned variants of each integer type
 same number of bits but sign bit can be used to represent more numbers

 twice as many numbers

o unsigned long

o unsigned int

o unsigned short

o unsigned char

 Overflow on unsigned numbers is defined to wrap around

o unsigned numbers do follow the laws of modular arithmetic

or just unsigned

14

The most significant bit

is not special for them

Unsigned Integer Types

 size_t is used to hold pointer and offsets

o the argument of malloc and calloc

o array indices

o return type of sizeof

o…

 The size of size_t is the size of a memory address

15

Implementation-defined Integers

signed unsigned C99 constraints Today’s size

signed char unsigned char exactly 1 byte 8 bits

short unsigned short range at least (-215, 215) 16 bits

int unsigned int range at least (-215, 215) 32 bits

long unsigned long range at least (-231, 231) 64 bits

size_t 64 bits

and there are several more …

Whether char is signed or unsigned

is implementation-defined

16

Casting Integers

17

Integer Casts

 We go back and forth between different number types with

casts

int x = 3;

long y = (long)x;

 Literal numbers have always type int

3

o The compiler introduces implicit casts as needed

long x = 3;

 is implicitly turned into

long x = (long)3;

x is 0x00000003

y is 0x0000000000000003

this is an int

18

Integer Casts

o Literal numbers have always type int

o The compiler introduces implicit casts as needed

 This can lead to unexpected outcomes

long x = 1 << 40;

is undefined behavior

o This is implicitly turned into

long x = (long)(1 << 40);

Fix: long x = ((long)1) << 40;

1 is an int

This shift 1 by 40 positions but 1 has only 32 bits!

19

Casting Rules

If the new type can represent the value, the value is preserved

o signed char x = 3; // x is 3 (= 0x03)

unsigned char y = (unsigned char)x; // y is 3 (= 0x03)

o signed char x = 3; // x is 3 (= 0x03)

unsigned int y = (unsigned int)x; // y is 3 (= 0x00000003)

o signed char x = -3; // x is -3 (= 0xFD)

int y = (int)x; // y is -3 (= 0xFFFFFFFD)

o unsigned char x = 253; // x is 253 (= 0xFD)

unsigned int y = (unsigned int)x; // y is 253 (= 0x0000000FD)

o int x = -3; // x is -3 (= 0xFFFFFFFD)

signed char y = (signed char)x; // y is -3 (= 0xFD)

20

Casting Rules

If the new type can’t represent the value but is unsigned:

 if the new type is smaller or the same,

the least significant bits are retained

o int x = INT_MAX; // x is 2147483647 (= 0x7FFFFFFF)

unsigned char y = (unsigned char)x; // y is 255 (= 0xFF)

o signed char x = -3; // x is -3 (= 0xFD)

unsigned char y = (unsigned char)x; // y is 253 (= 0xFD)

 if the new type is bigger,

the bits are sign-extended

o signed char x = -3; // x is -3 (= 0xFD)

unsigned int y = (unsigned int)x; // y is 4294967293 (= 0xFFFFFFFD)

21

An unsigned type

can’t represent

negative numbers

An unsigned type

can’t represent

negative numbers

INT_MAX doesn’t fit into a char

Casting Rules

If the new type can’t represent the value but is signed,

the result is implementation-defined

o int x = INT_MAX; // x is 2147483647 (= 0x7FFFFFFF)

signed char y = (signed char)x; // y is ??

o int x = -241; // x is -241(= 0xFFFFFF0F)

signed char y = (signed char)x; // y is ??

22

Many compilers discard

the most significant bits

… often -1= (0xFF)

… often 15= (0x0F)

Casting Summary

23

new_type can

represent the value

of exp?

new_type

is signed?

The value of exp

is preserved

Yes

No

new_type

is larger than

old_type?

No

Implementation-defined
(often discard the most significant bits)

Yes

The bits are

sign-extended

Yes

The least-significant bits

are retained

No

(new_type)exp

exp of type old_type

Fixed-size Numbers

24

Fixed-size Integers

 For bit patterns, the program needs the number of bits to

remain the same as C evolves

 Header file <stdint.h> provides fixed-size integer types

o in signed and unsigned variants

Fixed-size

signed

Today’s signed

equivalent

Today’s unsigned

equivalent

Fixed-size

unsigned

int8_t signed char unsigned char uint8_t

int16_t short unsigned short uint16_t

int32_t int unsigned int uint32_t

int64_t long unsigned long uint64_t

That’s the number of bits

25

Floating Point Numbers

26

float

 The type float represents floating point numbers
nowadays 32 bits

float x = 0.1;

float y = 2.0235E-27;

 float and int use the same number of bits,

but float has a much larger range

o some numbers with a decimal point are not representable

o the larger range comes at the cost of precision

operations on floats may cause rounding errors

Numbers with a decimal point

That’s 2.0235 * 10-27

27

float

 Operations on floats may cause rounding errors

o Example 1

#include <math.h>

#define PI 3.14159265

float x = sin(PI);

o Example 2

float y = (10E20 / 10E10) * 10E10;

we expect y to be equal to 10E20

but it isn’t always

 it depends on the compiler

Defines sin, cos, log, …

Any more decimals

would be ignored

In math, sin() is 0

but sin(PI) is not 0.0

That’s (1020/1010) * 1010

Danger

28

float

 Operations on floats may cause rounding errors

o Example 3

for (float res = 0.0; res != 5.0; res += 0.1)

printf("res = %f\n", res);

we expect the loop to terminate after 50 iterations

 instead it runs for ever

That’s because 0.1 decimal is a periodic number in binary: 0.00011

0.1 * 2 = 0.2

0.2 * 2 = 0.4

0.4 * 2 = 0.8

0.8 * 2 = 1.6

0.6 * 2 = 1.2

0.2

This is how we

convert 0.1 to binary

At this point, it repeats

Danger

29

float

 Operations on floats may cause rounding errors

 This makes it impossible to reason about programs

o This is why there are no floats in C0

 Adding more bits does not solve the problem

o The type double of double-precision floating point numbers has

typically 64 bits nowadays

 similar issues

30

Union and Enum Types

31

Sample Problem

 Print a message based on the season

 How to encode seasons?

o use strings …

 testing which season we are in is costly

o use integers

 Drawbacks

o The encoding is not mnemonic

we will make mistakes

o A whole int for 4 values seems wasteful

// 0 = Winter

// 1 = Spring

// 2 = Summer

// 3 = Fall

int today = 3;

if (today == 0)

printf("snow!\n");

else if (today == 3)

printf("leaves!\n");

else

printf("sun!\n");

32

Enum Types

o The encoding is not mnemonic

o A whole int for 4 values seems wasteful

 An enum type lets

o the programmer choose mnemonic values
 no need to remember the encoding – just use the names

o the compiler decide how to implement them

what actual type to map them to

what values to use

 the compiler optimizes

space usage

enum season { WINTER, SPRING, SUMMER, FALL };

enum season today = FALL;

if (today == WINTER)

printf("snow!\n");

else if (today == FALL)

printf("leaves!\n");

else

printf("sun!\n");

By convention, enum

values are written in

all caps

The compiler maps enum

names to some numerical values

33

Switch Statements

 A switch statement is an alternative to cascaded if-elses

for numerical values
 including union types

o They make the code

more readable

 Each value considered is

handled by a case

o The execution of a case

continues till the next break

or the end of the switch

statement

 it exits the switch statement

o The default case handles any remaining value

enum season { WINTER, SPRING, SUMMER, FALL };

enum season today = FALL;

switch (today) {

case WINTER:

printf("snow!\n");

break;

case FALL:

printf("leaves!\n");

break;

default:

printf("sun!\n");

}

a case

another case

the default case

34

Switch Statements

 If a break is missing,

the execution continues

with the next case

This the source of many bugs!

Recent versions of gcc

issue a warning

when this happens

Danger
enum season { WINTER, SPRING, SUMMER, FALL };

enum season today = FALL;

switch (today) {

case WINTER:

printf("snow!\n");

break;

case FALL:

printf("leaves!\n");

break;

default:

printf("sun!\n");

}

a case

another case

the default case

35

Another Sample Problem

 Define a type for binary trees with int data only in their

leaves
and where the empty tree is not represented as NULL

o A leafy tree could be

an inner node with pointers to two children

a leaf with int data

an empty tree

o Then:
enum nodekind = { INNER, LEAF, EMPTY };

struct ltree {

enum nodekind kind;

int data;

leafytree *left;

leafytree *right;

};

typedef struct ltree leafytree;

We now know about

enum types!

We now know about

enum types!

42empty

A leaf

An inner node

The empty tree

36

Sample Problem

This representation wastes memory

o the compiler will pick a small

numerical type for kind

probably a char

but

o the remaining 3 fields are never fully utilized for any node type

 inner nodes do not make use of the data field

 leaves do not use left and right

 the empty tree does not need any

enum nodekind = { INNER, LEAF, EMPTY };

struct ltree {

enum nodekind kind;

int data;

leafytree *left;

leafytree *right;

};

typedef struct ltree leafytree;

37

Union Types

 A union type allows using the same space in different ways

 Consider the space needed for a node, aside from its kind

left
data

right

s
p

a
c
e

An inner node

uses the space

to store two pointers

A leaf uses

part of the space

to store an int

The empty tree

does not use

any space

38

Union Types

 A union type allows using the same space in different ways

left
data

right

s
p

a
c
e

enum nodekind { INNER, LEAF, EMPTY };

struct innernode {

leafytree *left;

leafytree *right;

};

union nodecontent {

int data;

struct innernode node;

};

struct ltree {

enum nodekind kind;

union nodecontent content;

};

typedef struct ltree leafytree;

An inner node

consists of two pointers

The content of a generic node is

• either an int (the data of a leaf)

• or an inner node

There is no need to

have an option for

the empty tree since

it uses no space

C11 supports a much more compact syntax

39

Building a Tree

 Let’s write code that creates this tree

enum nodekind { INNER, LEAF, EMPTY };

struct innernode {

leafytree *left;

leafytree *right;

};

union nodecontent {

int data;

struct innernode node;

};

struct ltree {

enum nodekind kind;

union nodecontent content;

};

typedef struct ltree leafytree;

leafytree *T = malloc(sizeof(leafytree));

T->kind = INNER;

T->content.node.left = malloc(sizeof(leafytree));

T->content.node.left->kind = EMPTY;

T->content.node.right = malloc(sizeof(leafytree));

T->content.node.right->kind = LEAF;

T->content.node.right->content.data = 42;

42empty

A leaf

An inner node

The empty tree

Whenever not following a pointer,

we must use the dot notation

INNER

LEAF

42
EMPTY

40

Adding up a Leafy Tree

 We use a switch statement to write clear code

owe discriminate on T->kind

o it has three possible values

 INNER, LEAF and EMPTY

int add_tree(leafytree *T) {

int n = 0;

switch (T->kind) {

case INNER:

n += add_tree(T->content.node.left);

n += add_tree(T->content.node.right);

break;

case LEAF:

n = T->content.data;

break;

default:

n = 0;

}

return n;

}

41

Summary

42

Undefined Behavior

M
e
m

o
ry

• Reading/writing to non-allocated memory

• Reading uninitialized memory

• even if correctly allocated

• Use after free

• Double free

• Freeing memory not returned by malloc/calloc

• Writing to read-only memory

N
u

m
b

e
rs • Division/mod by zero

• INT_MIN divided/mod’ed by -1

• Shift by more than the number of bits

• Signed overflow

43

