Graphs

Graphs

What is a Graph?

- A graph is a collection of dots and lines

What is a Graph?

- The dots are called vertices or nodes
o they are generally given unique labels

What is a Graph?

- The lines are called edges
o each edge connects a pairs of vertices
$>$ its endpoints
O there is at most one edge between any two vertices

G

What is a Graph?

- The graphs we will consider O are undirected
$>$ the edge (A, B) is the same the edge (B, A)
\bigcirc have no self-edges
$>$ there is no edge (V, V) for any vertex V

What is a Graph?

- To describe a graph, we need to give its vertices and its edges
- Mathematically, a graph G is a pair (V, E)
$>\mathrm{V}$ is its set of vertices
$>E$ is its set of edges
$G=(V, E)$

G

This graph:
• vertices $\{A, B, C, D, E, F, G, H, I, J\}$
• edges $\{(A, B),(A, C),(A, I),(A, H)$,
(B,C), (B,E), (C,D), (C,E),
(C,H), (C,I), (D,E), (D,I), (F,H),
(F,I), (F,J), (G,H), (H,J)\}

What is a Graph?

- The neighbors of a vertex are all the vertices connected to it with an edge

What are Graphs Good for?

- Graphs are a convenient abstraction that brings out commonalities between different domains
- Once we understand a problem in term of graphs, we can use general graph algorithms to solve it
o no need to reinvent the wheel every time
- Graphs are everywhere
- edges are major highways

It could represent a social network

- vertices are people

This is what a social network looked like ... in 2005 - vertices are people posting photos
 - edges are people following the photo stream of others

Lightsout

- Lightsout is a game played on boards consisting of $n \times n$ lights \circ each light can be either on or off
- We make a move by pressing a light, which toggles it and its cardinal neighbors
- From a given configuration, the goal of the game is to turn off all light

Lightsout as a Graph

- A vertex is a board configuration
- An edge is a move
o pressing a light twice brings us back to where we were $>$ the graph is undirected o pressing a light takes us to a new configuration > no self-edges

Lightsout as a Graph

- To solve a given board, we must find a sequence of moves that takes us to the board with all the lights out
o find a series of vertices connected by edges
configurations

Lightsout as a Graph

- A series of vertices connected by edges is called a path
o solving lightsout is the same as finding a path from the given configuration to the solved configuration

- Figuring out how to go from

Getting Directions

 one place to another also amounts to finding a path between them- Graphs bring out commonalities between different domains

Getting Introduced

- Figuring out how to get introduced to someone also amounts to finding a path between them
o Graphs bring out commonalities between different domains

Lightsout as a Graph

- A path is a series of vertices connected by edges
o we can reduce the problem of solving lightsout to the problem of finding a path between two vertices

Lightsout as a Graph

- A path is a series of vertices connected by edges
- There can be many paths between two vertices

Lightsout as a Graph

- On $n \times n$ lightsout,
o there are $2^{n^{*} n}$ board configurations
$>$ each of the $n^{*} n$ lights can be either on or off
- from any board, we can make $n * n$ moves
$>$ by pressing any one of the $n^{*} n$ lights
- The graph representing $n \times n$ lightsout has
- $2^{n^{*} n}$ vertices

○ $n^{*} n * 2 n^{*} n / 2$ edges
$>$ there are $2^{n^{*} n}$ vertices
$>$ each has $n \times n$ neighbors
$>$ but this would count each edge (A,B) twice

- from A to B and
\square from B to A
so we divide by 2

Models vs. Data Structures

- A graph can be
o a conceptual model to understand a problem
o a concrete data structure to solve it
- For 2×2 lightsout, it is both
o Conceptually, it brings out the structure of the problem and highlights what it has in common with other problems
o Concretely, we can traverse a data structure that represents it in search of a path to the solved board
- Turning 6x6 lightsout into a data structure is not practical
o each board requires 36 bits
O we need over 64GB to represent its 2^{36} vertices
o we need over 2TB to represent its 36 * $2^{36} / 2$ edges

Implicit Graphs

- We don't need a graph data structure to solve $n \times n$ lightsout o from each board we can algorithmically generate all boards that can be reached in one move
o pick one of them and repeat until
$>$ we reach the solved board
$>$ or we reach a previously seen board
- from it try a different move
- In the process, we are building an implicit graph
o a small portion of the graph exists in memory at any time
$>$ the boards we have previously seen
a vertices
$>$ the moves we still need to try from them
- edges

Explicit Graphs

- For many graphs, there is no algorithmic way to generate their edges
$>$ roads between cities
$>$ social networks
>...
- We must represent them explicitly as a data structure in memory
- We will now develop a small library for solving problems with these explicit graphs

A Graph Interface

A Minimal Graph Data Structure

- What we need to represent
- graphs themselves
$>$ type graph_t
o the vertices of a graph
$>$ type vertex
- we label vertices with the numbers $0,1,2, \ldots$

- consecutive integers starting at 0
- vertex is defined as unsigned int

O the edges of the graph
$>$ we represent an edge as its endpoints

- no need for an edge type

A Minimal Graph Data Structure

- Basic operations on graphs
o graph_new(n) create a new graph with n vertices
$>$ we fix the number of vertices at creation time
\square we cannot add vertices after the fact
o graph_size(G) returns the number of vertices in G
o graph_hasedge(G, v, w) checks if the graph G contains the edge (v,w)
o graph_addedge(G, v, w) adds the edge (v,w) to the graph G
o graph_free(G) disposes of G
- A realistic graph library would provide a much richer set of operations
o we can define most of them on the basis of these five

A Minimal Graph Interface - I

Example

- We create this graph as
graph_addedge(G, 1, 2);
graph_addedge(G, 1, 4);
graph_addedge(G, 2, 3);

graph_addedge(G, 2, 4); $\quad \quad \quad \quad$| in any |
| :--- |
| order |

- Then
$>$ graph_hasedge(G, 3, 2) returns true, but
> graph_hasedge(G, 3, 1) return false
- there is a path from 3 to 1 , but no direct edge

Neighbors

- It is convenient to handle neighbors explicitly
$>$ this is not strictly necessary
$>$ but graph algorithms get better complexity if we do so inside the library
- Abstract type of neighbors
o neighbors_t
- Operations on neighbors
- graph_get_neighbors(G, v)
$>$ returns the neighbors of vertex v in G
O graph_hasmore_neighbors(nbors)

$>$ checks if there are additional neighbors
o graph_next_neighbor(nbors)
$>$ returns the next neighbor
This is called an iterator
o graph_free_neighbors(nbors)
$>$ dispose of unexamined neighbors

A Minimal Graph Interface - II

Example

- We grab the neighbors of vertex 4 as
neighbors_t n4 = graph_get_neighbors(G, 4);
$>\mathrm{n} 4$ contains vertices $0,1,2$ in some order
vertex a = graph_next_neighbor(n4);
$>$ say a is vertex 1

- it could also be 0 or 2
vertex b = graph_next_neighbor(n4);
$>$ say b is vertex 0
\square it cannot be 1 because we already got that neighbor
- but it could be 2
vertex c = graph_next_neighbor(n4);
$>c$ has to be vertex 2
\square it cannot be 0 or 1 because we already got those neighbors
graph_hasmore_neighbor(n4)
$>$ returns false because we have exhausted all the neighbors of 4

Implementing Graphs

Implementing Graphs

- How to implement graphs based on what we studied?
- The main operations are
$>$ adding an edge to the graph
$>$ checking if an edge is contained in the graph
- These are the operations we had for sets
$>$ iterating through the neighbors of a vertex
- Implement graphs as
o a linked list of edges
o a hash set
if we are able to sort the edges
- How much would the operations cost?

Measuring the Cost of Graph Operations

- If a graph has \mathbf{v} vertices, the number \mathbf{e} of edges ranges between
- 0 , and \qquad
$\circ \mathrm{v}(\mathrm{v}-1) / 2$ This is a complete graph
$>$ there is an edge between each of the v vertices and the other v - 1 vertices, but we divide by 2 so that we don't double-count edges
- So, $e \in O\left(v^{2}\right)$

o we could do with just v as a cost parameter,
o but many graphs have far fewer than $v(v-1) / 2$ edges
> using only v would be overly pessimistic
- Use both v and e as cost parameters

Naïve Graph Implementations

- For implementations based on known data structures, the cost of the basic graph operations are

	Linked list of edges	Hash set of edges
graph_hasedge	$\mathrm{O}(\mathrm{e})$	$\mathrm{O}(1)$ avg
graph_addedge	$\mathrm{O}(1)$	$\mathrm{O}(1)$ avg+amt

- What about iterating through the neighbors of a vertex?

Naïve Graph Implementations

- Finding the neighbors of a vertex requires going over all the edges
o graph_get_neighbors has cost $O(e)$ and $O(v)$ avg
- How many neighbors are there?

0 at most v-1
$>$ if this vertex has an edge to all other vertices

o at most e
$>$ there cannot be more neighbors than edges in the graph

- A vertex has $\mathrm{O}(\min (\mathrm{v}, \mathrm{e}))$ neighbors
o iterating through the neighbors costs $\mathrm{O}(\min (\mathrm{v}, \mathrm{e}))$
$>$ times the cost of the operation being performed

Naïve Graph Implementations

- In summary

	Linked list of edges	Hash set of edges
graph_hasedge	$\mathrm{O}(\mathrm{e})$	$\mathrm{O}(1)$ avg
graph_addedge	$\mathrm{O}(1)$	$\mathrm{O}(1) \mathrm{avg}+\mathrm{amt}$
graph_get_neighbors	$\mathrm{O}(\mathrm{e})$	$\mathrm{O}(\mathrm{v})$ avg
Iterating through neighbors	$\mathrm{O}(\min (\mathrm{v}, \mathrm{e}))$	$\mathrm{O}(\min (\mathrm{v}, \mathrm{e}))$

Classic Graph Implementations

- Can we do better?
- Two representations of graphs are commonly used
o the adjacency matrix representation
o the adjacency list representation
"adjacency" is just a fancy word for neighbors
- Both give us better cost ... in different situations ...

The Adjacency Matrix Representation

- Represent the graph as a v^{*} v matrix of booleans
$\circ M[i, j]==$ true if there is an edge between i and j
○ M[i,j] == false otherwise M is called the adjacency matrix

- Cost of the operations
o graph_hasedge(G, v, w): O(1) $>$ just return M[v,w]
○ graph_addedge(G, v, w): O(1) > just set M[v,w] to true
O graph_get_neighbors(G, v): O(v) > go through the row for vin M
- Space needed: $\mathrm{O}\left(\mathrm{v}^{2}\right)$

For undirected graphs, M is symmetric: $\mathrm{M}[\mathrm{i}, \mathrm{j}]=\mathrm{M}[\mathrm{j}, \mathrm{i}]$
$\mathrm{M}[2,4]==$ true because G contains edge $(2,4)$

No self-edges, so $M[i, i]==$ false

The Adjacency List Representation

- For each vertex v , keep track of its neighbors in a list
o the adjacency list of v
- Store the adjacency lists in a vertex-indexed array

- Cost of the operations
o graph_hasedge(G, v, w): O(min(v,e)) $>$ each vertex has $\mathrm{O}(\min (\mathrm{v}, \mathrm{e}))$ neighbors $>$ each adjacency list has length $\mathrm{O}(\min (\mathrm{v}, \mathrm{e}))$ - graph_addedge(G, v, w): O(1) > add v in w's list and w in v's list
o graph_get_neighbors(G, v): O(1)
> just grab v's adjacency list

The Adjacency List Representation

- For each vertex v, keep track of its neighbors in a list
\circ the adjacency list of v
- Store the adjacency lists in a vertex-indexed array

- Space needed: O(v + e)
o a v-element array
- 2e list items
$>$ each edge corresponds to exactly 2 list items
- $O(v+e)$ is conventionally
 written $\mathrm{O}(\max (\mathrm{v}, \mathrm{e}))$

Adjacency Matrix vs. List

	Adjacency matrix	Adjacency list
Space	$\mathrm{O}\left(\mathrm{v}^{2}\right)$	$\mathrm{O}(\mathrm{v}+\mathrm{e})$
graph_hasedge	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{min}(\mathrm{v}, \mathrm{e}))$
graph_addedge	$\mathrm{O}(1)$	$\mathrm{O}(1)$
graph_get_neighbors	$\mathrm{O}(\mathrm{v})$	$\mathrm{O}(1)$
Iterating through neighbors	$\mathrm{O}(\min (\mathrm{v}, \mathrm{e}))$	$\mathrm{O}(\mathrm{min}(\mathrm{v}, \mathrm{e}))$

When to Use What Representation?

- Recall that $0 \leq \mathrm{e} \leq \mathrm{v}(\mathrm{v}-1) / 2$
- A graph is dense if it has lots of edges
oe is on the order of v^{2}
- A graph is sparse if it has relatively few edges
$o e$ is in $O(v)$
- at most $O(v \log v)$
$>$ but definitely not $\mathrm{O}\left(\mathrm{v}^{2}\right)$
- lots of graphs are sparse
> social networks
$>$ roads between cities
>...

Cost in Dense Graphs

- We replace e with v^{2} and simplify

	Adjacency matrix	Adjacency list	Same
Space	$\mathrm{O}\left(\mathrm{v}^{2}\right)$	$\mathrm{O}(\mathrm{v}+\mathrm{e}) \rightarrow \mathrm{O}\left(\mathrm{v}^{2}\right)$	
graph_hasedge	O(1)	$\mathrm{O}(\min (\mathrm{v}, \mathrm{e})) \rightarrow \mathrm{O}(\mathrm{v})$	$\stackrel{\mathrm{AM}}{ }$
graph_addedge	$\mathrm{O}(1)$	$\mathrm{O}(1)$	Same
graph_get_neighbors	$\mathrm{O}(\mathrm{v})$	$\mathrm{O}(1)$	$\stackrel{A L}{ }$
Iterating through neighbors	$\mathrm{O}(\mathrm{min}(\mathrm{v}, \mathrm{e})) \rightarrow \mathrm{O}(\mathrm{v})$	$\mathrm{O}(\mathrm{min}(\mathrm{v}, \mathrm{e})) \rightarrow \mathrm{O}(\mathrm{v})$	Same

Cost in Dense Graphs

- graph_hasedge is faster with AM
- graph_get_neighbors is faster with AL
o but we typically iterate through the neighbors after grabbing them
- All other operations are the same
- The space requirements are the same
- For dense graphs
o the two representations have about the same cost
o but graph_hasedge is faster with AM the adjacency matrix representation is preferable

Cost in Sparse Graphs

- We replace e with v and simplify

	Adjacency matrix	Adjacency list
Space	$\mathrm{O}\left(\mathrm{v}^{2}\right)$	$\mathrm{O}(\mathrm{v}+\mathrm{e}) \rightarrow \mathrm{O}(\mathrm{v})$
graph_hasedge	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{min}(\mathrm{v}, \mathrm{e})) \rightarrow \mathrm{O}(\mathrm{v})$
graph_addedge	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{v})$

Cost in Sparse Graphs

- AL requires a lot less space
- graph_hasedge is faster with AM
- graph_get_neighbors is faster with AL
o but we typically iterate through the neighbors after grabbing them
- All other operations are the same
- For sparse graphs
- AL uses substantially less space

O the two representations have about the same cost
o but graph_hasedge is faster with AM
the adjacency list representation is preferable because it doesn't require as much space

Adjacency List Implementation

Graph Types

- An adjacency list is just a NULL-terminated linked list of vertices
- The graph data structure consists of
O the number vof vertices in the graph
$>$ field size
o a v-element array of adjacency lists
$>$ field adjlist
typedef struct adjlist_node adjlist;
struct adjlist_node \{
vertex vert;
adjlist *next;
\};
typedef struct graph_header graph;
struct graph_header \{
unsigned int size;
adjlist **adj;
adjlist*[] adj in C0

Representation Invariants

- The interface defines

typedef unsigned int vertex;

- A vertex is valid if its value is between 0 and the size of the graph

Representation Invariants

- A graph is valid if
o it is non-NULL

O the length of the array of adjacency lists is equal to it size
> but we can't check this in C
o each adjacency list is valid

```
bool is_graph(graph *G) {
    if (G == NULL) return false;
    //@assert(G->size == \length(G->adj));
    for (unsigned int i=0;i<G->size; i++) {
    if (!is_adjlist(G, i, G->adj[i])) return false;
}
    return true;
}
```


Representation Invariants

- An adjacency list is valid if
o it is NULL-terminated
o each vertex is valid
o there are not self-edges
o every outgoing edge has a corresponding edge coming back in
o there are no duplicate edges


```
bool is_adjlist(graph *G, vertex v, adjlist *L) {
    REQUIRES(G != NULL);
    //@requires(G->size == \length(G->adj));
    if (!is_acyclic(L)) return false;
    while (L != NULL) {
    vertex w = L->vert; // w is a neighbor of v
    // Neighbors are legal vertices
    if (!is_vertex(G, wt)) return false;
    // No self-edges
    if (v == w) return false;
    // Every outgoing edge has a corresponding
    // edge coming back to it
    if (!is_in_adjlist(G->adj[w], v)) return false;
    // Edges aren't duplicated
    if (is_in_adjlist(L->next, w)) return false;
    L = L->next;
}
    return true;
}
```


Basic operations

- graph_size returns the stored size
- Cost O(1)

```
unsigned int graph_size(graph *G) {
    REQUIRES(is_graph(G));
    return G->size;
}
```

- graph_new creates an array of empty adjacency lists
o calloc makes it convenient
- Cost O(v)
$>$ calloc needs to zero out all v positions

```
graph *graph_new(unsigned int size) {
    graph *G = xmalloc(sizeof(graph));
    G->size = size;
    G->adj = xcalloc(size, sizeof(adjlist*));
    ENSURES(is_graph(G));
    return G;
}
```


Freeing a Graph

- graph_free must free
o all adjacency lists

o the array
o the graph header
- Cost: $\mathrm{O}(\mathrm{v}+\mathrm{e})$
o there are $2 e$ nodes to free in the adjacency lists
o v array positions need to be accessed for that

```
void graph_free(graph *G) {
    REQUIRES(is_graph(G));
    for (unsigned int i=0; i < G->size; i++) {
        adjlist *L = G->adj[i];
        while (L != NULL) {
        adjlist *tmp = L->next;
        free(L);
        L = tmp;
```

 Free the adjacency list nodes
 Free the array
 free(G->
free(G);
Free the header

Checking Edges

- graph_hasedge(G, v, w) does a linear search for w in the adjacency list of v
o we could implement it the other way around as well
- Its cost is $\mathrm{O}(\min (\mathrm{v}, \mathrm{e}))$
o the maximum length of an adjacency list
o the maximum number of neighbors of a vertex

```
bool graph_hasedge(graph *G, vertex v, vertex w) {
    REQUIRES(is_graph(G));
    REQUIRES(is_vertex(G, v) && is_vertex(G, w));
    for (adjlist *L = G->adj[v]; L != NULL; L = L->next) {
    if (L->vert == w) return true;
}
    return false;
}
```


Adding an Edge

- The preconditions exclude o self-edges
o edges already contained in the graph
- graph_addedge(G, v, w)
\circ adds w as a neighbor of v
o and v as a neighbor of w


```
void graph_addedge(graph *G, vertex v, vertex w) {
    REQUIRES(is_graph(G));
    REQUIRES(is_vertex(G, v) && is_vertex(G, w));
    REQUIRES(v != w && !graph_hasedge(G, v, w));
    adjlist *L;
    L = xmalloc(sizeof(adjlist));
    L->vert = w; 
    G->adj[v] = L;
    L = xmalloc(sizeof(adjlist));
    L->vert = v;
    L->next = G->adj[w]; aadd v as a neighbor of w
    G->adj[w] = L;
    ENSURES(is_graph(G));
    ENSURES(graph_hasedge(G, v, w));
}
```

- Constant cost

Neighbors

- We can use the adjacency list of a vertex as a representation of its neighbors
- We must be careful however not to modify the graph as we iterate through the neighbors
- Define a struct with a single field
$>$ a pointer to the next neighbor to examine

Neighbors

- graph_get_neighbors(G, v)
o creates a neighbors struct
o points the next_neighbor fields to the adjacency list of v
- returns this struct
- Constant cost

```
neighbors *graph_get_neighbors(graph *G, vertex v) {
```

neighbors *graph_get_neighbors(graph *G, vertex v) {
REQUIRES(is_graph(G) \&\& is_vertex(G, v));
REQUIRES(is_graph(G) \&\& is_vertex(G, v));
neighbors *nbors = xmalloc(sizeof(neighbors));
neighbors *nbors = xmalloc(sizeof(neighbors));
nbors->next_neighbor = G->adj[v];
nbors->next_neighbor = G->adj[v];
ENSURES(is_neighbors(nbors));
ENSURES(is_neighbors(nbors));
return nbors;
return nbors;
}

```
}
```


Neighbors

- graph_next_neighbor
o returns the next neighbor
o advances the next_neighbor field along the adjacency list

It must not free that adjacency list node since it is owned by the graph

- Constant cost

```
vertex graph_next_neighbor(neighbors *nbors) {
    REQUIRES(is_neighbors(nbors));
    REQUIRES(graph_hasmore_neighbors(nbors));
```

 vertex \(v=\) nbors->next_neighbor->vert;
 nbors->next_neighbor = nbors->next_neighbor->next;
 return v;
 \}

Neighbors

- graph_hasmore_neighbors checks whether the end of the adjacency list has been reached

```
bool graph_hasmore_neighbors(neighbors *nbors) {
    REQUIRES(is_neighbors(nbors));
    return nbors->next_neighbor != NULL;
}
```

- graph_free_neighbors frees the neighbor header
o and only the header

```
void graph_free_neighbors(neighbors *nbors) {
    REQUIRES(is_neighbors(nbors));
    free(nbors);
}
```

It must not free the rest of the adjacency list since it is owned by the graph

- Constant time

Cost Summary

	Adjacency list
Space	$\mathrm{O}(\mathrm{v}+\mathrm{e})$
graph_new	$\mathrm{O}(\mathrm{v})$
graph_free	$\mathrm{O}(\mathrm{v}+\mathrm{e})$
graph_size	$\mathrm{O}(1)$
graph_hasedge	$\mathrm{O}(\mathrm{min}(\mathrm{v}, \mathrm{e}))$
graph_addedge	$\mathrm{O}(1)$
graph_get_neighbors	$\mathrm{O}(1)$
graph_hasmore_neighbors	$\mathrm{O}(1)$
graph_next_neighbor	$\mathrm{O}(1)$
graph_free_neighbors	$\mathrm{O}(1)$

Using the Graph Interface

Printing a Graph

- Using the graph interface, write a client function that prints a graph
o for every vertex
$>$ print it
$>$ print every neighbor of this node

```
void graph_print(graph_t G) {
    for (vertex v = 0; v < graph_size(G); v++) {
    printf("Vertices connected to %u: ", v);
    neighbors_t nbors = graph_get_neighbors(G, v);
    while (graph_hasmore_neighbors(nbors)) {
        vertex w = graph_next_neighbor(nbors);
        printf(" %u,", w);
    }
    graph_free_neighbors(nbors);
    printf("\n");
    }
}
```


typedef unsigned int vertex;

typedef struct graph_header *graph_t;
graph_t graph_new(unsigned int numvert);
//@ensures \result != NULL;
void graph_free(graph_t G);
//@requires G != NULL;
unsigned int graph_size(graph_t G);
//@requires G != NULL;
bool graph_hasedge(graph_t G, vertex v, vertex w);
//@requires G != NULL;
//@requires v < graph_size(G) \&\& w < graph_size(G);
void graph_addedge(graph_t G, vertex v, vertex w);
//@requires G != NULL;
//@requires v < graph_size(G) \&\& w < graph_size(G);
//@requires v != w \&\& !graph_hasedge(G, v, w);
typedef struct neighbor_header *neighbors_t;
neighbors_t graph_get_neighbors(graph_t G, vertex v); //@requires G != NULL \&\& v < graph_size(G); //@ensures \result != NULL;
bool graph_hasmore_neighbors(neighbors_t nbors); //@requires nbors != NULL;
vertex graph_next_neighbor(neighbors_t nbors); //@requires nbors != NULL;
//@requires graph_hasmore_neighbors(nbors); //@ensures is_vertex(\result);
void graph_free_neighbors(neighbors_t nbors); //@requires nbors != NULL;

- We will see other algorithms that follow this pattern

What is the Cost of graph_print?

graph_get_neighbors	$\mathrm{O}(1)$
graph_hasmore_neighbors	$\mathrm{O}(1)$
graph_next_neighbor	$\mathrm{O}(1)$
graph_free_neighbors	$\mathrm{O}(1)$

- For a graph with v vertices and e edges
- using a library based on the adjacency list representation

- So the cost of graph_print is $\mathrm{O}(\mathrm{v} \min (\mathrm{v}, \mathrm{e}))$

What is the Cost of graph_print?

- The cost of graph_print is $O(v \min (v, e))$
\circ for a graph with v vertices and e edges using adjacency lists
- Is that right?
- We assumed every vertex has $\mathrm{O}(\min (\mathrm{v}, \mathrm{e}))$ neighbors
o But overall graph_print visits every edge exactly twice
$>$ once from each endpoint
$>$ the body of the inner loop runs $2 e$ times over all iterations of the outer loop
$>$ the entire inner loop costs $\mathrm{O}(\mathrm{e})$

What is the Cost of graph_print?

- The entire inner loop costs $\mathrm{O}(\mathrm{e})$

- The actual cost of graph_print is $\mathrm{O}(\mathrm{v}+\mathrm{e})$
o for a graph with v vertices and e edges using adjacency lists

What is the Cost of graph_print?

- Using the adjacency matrix representation
- By the same argument, the entire inner loop costs O(e)
o and graph_free_neighbors too

```
void graph_print(graph_t G) {
    for (vertex v = 0; v < graph_size(G); v++) {
    printf("Vertices connected to %u: ", v);
    neighbors_t nbors = graph_get_neighbors(G, v);
    while (graph_hasmore_neighbors(nbors)) {
        vertex w = graph_next_neighbor(nbors);
        printf(" %u,", w);
    }
    graph_free_neighbors(nbors);
    printf("\n");
```

 there are only $2 e$ neighbors to free

- The actual cost of graph_print is $O\left(v^{2}+e\right)$
o This is $O\left(v^{2}\right)$ since $e \in O\left(v^{2}\right)$ always

What is the Cost of print_graph?

- Adjacency list representation: $\mathrm{O}(\mathrm{v}+\mathrm{e})$
- Adjacency matrix representation: $\mathrm{O}\left(\mathrm{v}^{2}\right)$

- For a dense graph

$$
\nu e \in O\left(v^{2}\right)
$$

they are the same

- For a sparse graph, AL is better

```
void graph_print(graph_t G) {
    for (vertex v = 0; v < graph_size(G); v++) {
        printf("Vertices connected to %u: ", v);
    neighbors_t nbors = graph_get_neighbors(G, v);
    while (graph_hasmore_neighbors(nbors)) {
        vertex w = graph_next_neighbor(nbors);
        printf(" %u,", w);
    }
    graph_free_neighbors(nbors);
    printf("\n");
}
}
```

