Graphs

Graphs

1

What are Graphs Good for?

- Graphs are a convenient **abstraction** that brings out commonalities between different domains
- Once we understand a problem in term of graphs, we can use general graph algorithms to solve it

 \odot no need to reinvent the wheel every time

• Graphs are everywhere

- This is what a social network looked like ... in 2005
- vertices are people posting photos
- edges are people following the photo stream of others

The FlickrVerse, April 2005

Lightsout

- Lightsout is a *game* played on boards consisting of *n x n* lights
 each light can be either on or off
- We make a *move* by pressing a light, which toggles it and its cardinal neighbors
- From a given configuration, the goal of the game is to turn off all light

Getting Introduced

- Figuring out how to get introduced to someone also amounts to finding a path between them
 - Graphs bring out commonalities between different domains

• On *n x n* lightsout,

○ there are 2^{n*n} board configurations
 ➤ each of the n*n lights can be either on or off

- \odot from any board, we can make *n*n* moves
 - > by pressing any one of the n^*n lights
- The graph representing *n* x *n* lightsout has
 - \bigcirc 2^{*n***n*} vertices
 - n*n * 2^{n*n} / 2 edges
 - > there are 2^{n^*n} vertices
 - \succ each has *n x n* neighbors
 - but this would count each edge (A,B) twice
 - $\hfill\square$ from A to B and
 - □ from B to A
 - so we divide by 2

Models vs. Data Structures

• A graph can be

o a conceptual model to understand a problem

○ a concrete **data structure** to solve it

• For 2x2 lightsout, it is both

- Conceptually, it brings out the structure of the problem and highlights what it has in common with other problems
- Concretely, we can traverse a data structure that represents it in search of a path to the solved board
- Turning 6x6 lightsout into a data structure is not practical
 each board requires 36 bits
 - \odot we need over 64GB to represent its 2³⁶ vertices
 - \odot we need over 2TB to represent its 36 * 2 36 / 2 edges

That's more memory than most computers have

Implicit Graphs

We don't need a graph data structure to solve *n x n* lightsout
 o from each board we can algorithmically generate all boards that can be reached in one move

- o pick one of them and repeat until
 - \succ we reach the solved board
 - > or we reach a previously seen board
 - □ from it try a different move
- In the process, we are building an **implicit graph**
 - o a small portion of the graph exists in memory at any time
 - > the boards we have previously seen
 - vertices
 - \succ the moves we still need to try from them
 - $\hfill\square$ edges

Explicit Graphs

- For many graphs, there is no algorithmic way to generate their edges
 - ➤ roads between cities
 - social networks
 - ≻…
- We must represent them explicitly as a data structure in memory

• We will now develop a small library for solving problems with these **explicit graphs**

A Graph Interface

A Minimal Graph Data Structure

- What we need to represent
 - \odot graphs themselves
 - > type graph_t
 - \odot the vertices of a graph
 - ➤ type vertex
 - $\hfill\square$ we label vertices with the numbers 0, 1, 2, …
 - consecutive integers starting at 0
 - vertex is defined as unsigned int
 - \odot the edges of the graph
 - > we represent an edge as its endpoints
 - □ no need for an edge type

A Minimal Graph Data Structure

Basic operations on graphs

o graph_new(n) create a new graph with n vertices

- > we fix the number of vertices at creation time
 - $\hfill\square$ we cannot add vertices after the fact
- o graph_size(G) returns the number of vertices in G
- graph_hasedge(G, v, w) checks if the graph G contains the edge (v,w)
- graph_addedge(G, v, w) adds the edge (v,w) to the graph G
 graph_free(G) disposes of G
- A realistic graph library would provide a much richer set of operations

○ we can define most of them on the basis of these five

A Minimal Graph Interface – I

Example

• We create this graph as

graph_t G = graph_new(5); graph_addedge(G, 0, 1); graph_addedge(G, 0, 4); graph_addedge(G, 1, 2); graph_addedge(G, 1, 4); graph_addedge(G, 2, 3);

in any order

Then

- > graph_hasedge(G, 3, 2) returns true, but
- > graph_hasedge(G, 3, 1) return false
 - □ there is a path from 3 to 1, but no direct edge

• It is convenient to handle neighbors explicitly

> this is not strictly necessary

> but graph algorithms get better complexity if we do so inside the library

Abstract type of neighbors
 o neighbors_t

Operations on neighbors

o graph_get_neighbors(G, v)

 \succ returns the neighbors of vertex v in G

o graph_hasmore_neighbors(nbors)

checks if there are additional neighbors

- o graph_next_neighbor(nbors)
 - returns the next neighbor

o graph_free_neighbors(nbors)

> dispose of unexamined neighbors

These allow us to iterate through the neighbors of a vertex

This is called an iterator

A Minimal Graph Interface – II

Example

G

• We grab the neighbors of vertex 4 as

neighbors_t n4 = graph_get_neighbors(G, 4);

h4 contains vertices 0, 1, 2 in some order

vertex a = graph_next_neighbor(n4);

➤ say a is vertex 1

□ it could also be 0 or 2

vertex b = graph_next_neighbor(n4);

➤ say b is vertex 0

□ it cannot be 1 because we already got that neighbor

□ but it could be 2

vertex c = graph_next_neighbor(n4);

 \succ c has to be vertex 2

□ it cannot be 0 or 1 because we already got those neighbors

graph_hasmore_neighbor(n4)

returns false because we have exhausted all the neighbors of 4

Implementing Graphs

Implementing Graphs

• How to implement graphs based on what we studied?

- \odot The main operations are
 - > adding an edge to the graph
 - > checking if an edge is contained in the graph
 - □ These are the operations we had for **sets**
 - iterating through the neighbors of a vertex
- Implement graphs as
 - o a linked list of edges
 - o a hash set

We could also use AVL trees if we are able to sort the edges

• How much would the operations cost?

Measuring the Cost of Graph Operations

- If a graph has v vertices, the number e of edges ranges between
 - O 0, and ______ The graph has no edges
 - $\circ v(v-1)/2$ ______ This is a complete graph
 - there is an edge between each of the v vertices and the other v-1 vertices, but we divide by 2 so that we don't double-count edges

• So, $e \in O(v^2)$

- \odot we could do with just v as a cost parameter,
- o but many graphs have far fewer than v(v-1)/2 edges
 - > using only v would be overly pessimistic
- Use both v and e as cost parameters

Naïve Graph Implementations

 For implementations based on known data structures, the cost of the basic graph operations are

	Linked list of edges	Hash set of edges
graph_hasedge	O(e)	O(1) avg
graph_addedge	O(1)	O(1) avg+amt

• What about iterating through the neighbors of a vertex?

Naïve Graph Implementations

 Finding the neighbors of a vertex requires going over all the edges

o graph_get_neighbors has cost O(e) and O(v) avg

- How many neighbors are there?
 - o at most v-1
 - if this vertex has an edge to all other vertices
 - o at most e
 - there cannot be more neighbors than edges in the graph
- A vertex has O(min(v,e)) neighbors
 iterating through the neighbors costs O(min(v,e))
 times the cost of the operation being performed

Naïve Graph Implementations

• In summary

	Linked list of edges	Hash set of edges
graph_hasedge	O(e)	O(1) avg
graph_addedge	O(1)	O(1) avg + amt
graph_get_neighbors	O(e)	O(v) avg
Iterating through neighbors	O(min(v,e))	O(min(v,e))

Classic Graph Implementations

- Can we do better?
- Two representations of graphs are commonly used
 the adjacency matrix representation
 the adjacency list representation

"adjacency" is just a fancy word for neighbors

• Both give us better cost ... in different situations ...

The Adjacency Matrix Representation

Represent the graph as a v*v matrix of booleans
 M[i,j] == true if there is an edge between i and j
 M[i,j] == false otherwise
 M is called the adjacency matrix

M[2,4] == true

because G

contains

edge (2,4)

The Adjacency List Representation

- For each vertex v, keep track of its neighbors in a list
 - the adjacency list of v
- Store the adjacency lists in a vertex-indexed array
- Cost of the operations
 - o graph_hasedge(G, v, w): O(min(v,e))
 - > each vertex has O(min(v,e)) neighbors
 - > each adjacency list has length O(min(v,e))
 - o graph_addedge(G, v, w): O(1)
 - ➤ add v in w's list and w in v's list
 - graph_get_neighbors(G, v): O(1)
 ➢ just grab v's adjacency list

3

2

4

0

1

The Adjacency List Representation

3

2

4

3

2

0

4

- For each vertex v, keep track of its neighbors in a list
 - the adjacency list of v
- Store the adjacency lists in a vertex-indexed array
- Space needed: O(v + e)
 - o a v-element array
 - 2e list items
 - each edge corresponds to exactly2 list items
- O(v + e) is conventionally written O(max(v,e))

Why? Note that $max(v,e) \le v+e \le 2max(v,e)$

0

1

2

3

4

2

Adjacency Matrix vs. List

	Adjacency matrix	Adjacency list
Space	O(v ²)	O(v + e)
graph_hasedge	O(1)	O(min(v,e))
graph_addedge	O(1)	O(1)
graph_get_neighbors	O(v)	O(1)
Iterating through neighbors	O(min(v,e))	O(min(v,e))

When to Use What Representation?

- Recall that $0 \le e \le v(v-1)/2$
- A graph is dense if it has lots of edges
 o e is on the order of v²
- A graph is sparse if it has relatively few edges
 o e is in O(v)
 - □ at most O(v log v)
 - > but definitely not $O(v^2)$
 - \odot lots of graphs are sparse
 - ➤ social networks
 - roads between cities
 - ▶...

Cost in Dense Graphs

• We replace e with v^2 and simplify

	Adjacency matrix	Adjacency list	
Space	O(v ²)	$O(v + e) \rightarrow O(v^2)$	Same
graph_hasedge	O(1)	O(min(v,e)) → O(v)	AM
graph_addedge	O(1)	O(1)	Same
graph_get_neighbors	O(v)	O(1)	
Iterating through neighbors	O(min(v,e)) → O(v)	O(min(v,e)) → O(v)	

Cost in Dense Graphs

- graph_hasedge is faster with AM
- graph_get_neighbors is faster with AL
 - but we typically iterate through the neighbors after grabbing them
- All other operations are the same
- The space requirements are the same
- For dense graphs

 the two representations have about the same cost
 but graph_hasedge is faster with AM
 the adjacency matrix representation is preferable

Cost in Sparse Graphs

• We replace e with v and simplify

	Adjacency matrix	Adjacency list	
Space	O(v ²)	$O(v + e) \rightarrow O(v)$	
graph_hasedge	O(1)	O(min(v,e)) → O(v)	AM
graph_addedge	O(1)	O(1)	Same
graph_get_neighbors	O(v)	O(1)	
Iterating through neighbors	O(min(v,e)) → O(v)	O(min(v,e)) → O(v)	Same

Cost in Sparse Graphs

- AL requires a lot less space
- graph_hasedge is faster with AM
- graph_get_neighbors is faster with AL
 - but we typically iterate through the neighbors after grabbing them
- All other operations are the same
- For sparse graphs
 - AL uses substantially less space
 - \odot the two representations have about the same cost
 - o but graph_hasedge is faster with AM

the adjacency list representation is preferable because it doesn't require as much space

Adjacency List Implementation

Graph Types

- An adjacency list is just a NULL-terminated linked list of vertices
- The graph data structure consists of
 - the number v of vertices in the graph
 - ➢ field size
 - a v-element array of adjacency lists
 - ➢ field adjlist

Representation Invariants

• The interface defines

typedef unsigned int vertex;

 A vertex is valid if its value is between 0 and the size of the graph

Representation Invariants

A graph is valid if
 it is non-NULL

 \odot the length of the array of adjacency lists is equal to it size

but we can't check this in C

o each adjacency list is valid

```
bool is_graph(graph *G) {
    if (G == NULL) return false;
    //@assert(G->size == \length(G->adj));
    for (unsigned int i = 0; i < G->size; i++) {
        if (!is_adjlist(G, i, G->adj[i])) return false;
    }
    return true;
}
```

Representation Invariants

- An adjacency list is valid if
 it is NULL-terminated
 - each vertex is valid
 - \odot there are not self-edges
 - every outgoing edge has a corresponding edge coming back in
 - there are no duplicate edges


```
bool is_adjlist(graph *G, vertex v, adjlist *L) {
    REQUIRES(G != NULL);
    //@requires(G->size == \length(G->adj));
    if (!is_acyclic(L)) return false;
```

while (L != NULL) {
 vertex w = L->vert;

// w is a neighbor of v

// Neighbors are legal vertices
if (!is_vertex(G, wt)) return false;

// No self-edges
if (v == w) return false;

// Every outgoing edge has a corresponding // edge coming back to it if (!is_in_adjlist(G->adj[w], v)) return false;

// Edges aren't duplicated
if (is_in_adjlist(L->next, w)) return false;

```
L = L -> next;
```

return true;

Basic operations

graph_size returns the stored size
 Cost O(1)

- graph_new creates an array of empty adjacency lists
 - calloc makes it convenient
 - Cost O(v)
 - calloc needs to zero out all v positions

unsigned int graph_size(graph *G) {
 REQUIRES(is_graph(G));
 return G->size;

graph *graph_new(unsigned int size) {
 graph *G = xmalloc(sizeof(graph));
 G->size = size;
 G->adj = xcalloc(size, sizeof(adjlist*));
 ENSURES(is_graph(G));
 return G;
}

Freeing a Graph

- graph_free must free
 all adjacency lists
 the array
 - \odot the graph header

Checking Edges

 graph_hasedge(G, v, w) does a linear search for w in the adjacency list of v

 we could implement it the other way around as well

- Its cost is O(min(v,e))
 the maximum length of an adjacency list
 - the maximum number of neighbors of a vertex

bool graph_hasedge(graph *G, vertex v, vertex w) {
 REQUIRES(is_graph(G));
 REQUIRES(is_vertex(G, v) && is_vertex(G, w));

return false;

Adding an Edge

- The preconditions exclude
 o self-edges
 - edges already contained in the graph
- graph_addedge(G, v, w)
 adds w as a neighbor of v
 and v as a neighbor of w

- We can use the adjacency list of a vertex as a representation of its neighbors
 - We must be careful however not to modify the graph as we iterate through the neighbors

 \odot Define a struct with a single field

> a pointer to the next neighbor to examine

- graph_get_neighbors(G, v)
 - creates a neighbors struct
 - points the next_neighbor fields to the adjacency list of v
 - \odot returns this struct

neighbors *graph_get_neighbors(graph *G, vertex v) {
 REQUIRES(is_graph(G) && is_vertex(G, v));

neighbors *nbors = xmalloc(sizeof(neighbors));
nbors->next_neighbor = G->adj[v];
ENSURES(is_neighbors(nbors));
return nbors;

• Constant cost

• graph_next_neighbor

- $\ensuremath{\circ}$ returns the next neighbor
- advances the next_neighbor field along the adjacency list

It **must not** free that adjacency list node since it is owned by the graph vertex graph_next_neighbor(neighbors *nbors) {
 REQUIRES(is_neighbors(nbors));
 REQUIRES(graph_hasmore_neighbors(nbors));

vertex v = nbors->next_neighbor->vert; nbors->next_neighbor = nbors->next_neighbor->next; return v;

Constant cost

 graph_hasmore_neighbors checks whether the end of the adjacency list has been reached

bool graph_hasmore_neighbors(neighbors *nbors) {
 REQUIRES(is_neighbors(nbors));
 return nbors->next_neighbor != NULL;

- graph_free_neighbors frees the neighbor header
 - \circ and **only** the header

It must not free the rest of the adjacency list since it is owned by the graph void graph_free_neighbors(neighbors *nbors) {
 REQUIRES(is_neighbors(nbors));
 free(nbors);

Constant time

Cost Summary

	Adjacency list
Space	O(v + e)
graph_new	O(v)
graph_free	O(v + e)
graph_size	O(1)
graph_hasedge	O(min(v,e))
graph_addedge	O(1)
graph_get_neighbors	O(1)
graph_hasmore_neighbors	O(1)
graph_next_neighbor	O(1)
graph_free_neighbors	O(1)

Using the Graph Interface

Printing a Graph

- Using the graph interface, write a client function that prints a graph
 - \circ for every vertex
 - ≻ print it
 - print every neighbor of this node

```
void graph_print(graph_t G) {
  for (vertex v = 0; v < graph_size(G); v++) {
    printf("Vertices connected to %u: ", v);
    neighbors_t nbors = graph_get_neighbors(G, v);
    while (graph_hasmore_neighbors(nbors)) {
        vertex w = graph_next_neighbor(nbors);
        printf(" %u,", w);
    }
    graph_free_neighbors(nbors);
    printf("\n");
    }
}</pre>
```


We will see other algorithms that follow this pattern

66

What is the Cost of graph_print?

- For a graph with v vertices and e edges
- using a library based on the adjacency list representation

So the cost of graph_print is O(v min(v, e))

What is the Cost of graph_print?

- The cost of graph_print is O(v min(v, e))
 o for a graph with v vertices and e edges using adjacency lists
- Is that right?
 - We assumed every vertex has O(min(v,e)) neighbors
 - But overall graph_print visits every edge exactly twice
 - once from each endpoint
 - the body of the inner loop runs 2e times over all iterations of the outer loop
 - \succ the entire inner loop costs O(e)

What is the Cost of graph_print?

• The entire inner loop costs O(e)

The actual cost of graph_print is O(v + e)
 o for a graph with v vertices and e edges using adjacency lists

What is the Cost of graph_print?

- Using the adjacency matrix representation
- By the same argument, the entire inner loop costs O(e)
 o and graph_free_neighbors too

• The actual cost of graph_print is $O(v^2 + e)$ \circ This is $O(v^2)$ since $e \in O(v^2)$ always

What is the Cost of print_graph?

- Adjacency list representation: O(v + e)
- Adjacency matrix representation: O(v²)

- For a dense graph
 ▷ e ∈ O(v²)
 they are the same
- For a sparse graph, AL is better

```
void graph_print(graph_t G) {
  for (vertex v = 0; v < graph_size(G); v++) {
    printf("Vertices connected to %u: ", v);
    neighbors_t nbors = graph_get_neighbors(G, v);
    while (graph_hasmore_neighbors(nbors)) {
        vertex w = graph_next_neighbor(nbors);
        printf(" %u,", w);
    }
    graph_free_neighbors(nbors);
    printf("\n");
    }
}</pre>
```