
15-150

Fall 2024

Dilsun Kaynar

LECTURE 1

Introduction,Philosophy, Some Basics

About 15-150

Instructors: Stephanie Balzer, Dilsun Kaynar

 19 TAs

http://www.cs.cmu.edu/~15150/

We are on Canvas!

Today

• Organization of the course
• Philosophy of the course
• Basics of types, values, expressions in

SML

Course tasks
• Assignments 40%
• Labs 10%
• Midterm 1 15% (Sep 26)
• Midterm 2 15% (Nov 7)
• Final 20%

Collaboration policy

• Make sure to read and understand the
policy for this semester

Extra help
• Office Hours by TAs
• Instructors available by appointment
• Student Academic Success Center

• Drop-in Tutoring
• Wednesdays POS 280

• 1-on-1 tutoring by appointment

Course philosophy

• Computation is functional.
• Programming is an explanatory

linguistic process.

Functional
programming

SML

Computation is
functional

• values classified with respect to types

• expressions

• functions map values to values

Imperative vs. Functional
command expression

 x := 5 3 + 5

evaluatedexecuted

has an effect no effect

 (new value) (new state)

Programming as
explanation

• Problem statement
• Invariants
• Specifications
• Proofs of correctness

• Analyze, decompose and fit, prove

} High expectation to explain

precisely and concisely

Parallelism

How many people have taken 15-122?

Let’s count it using parallelism.

Parallelism

< 1, 0, 0, 1, 1 >

< 1, 0, 1, 0, 1 >

< 1, 1, 0, 1, 1 >

< 0, 0, 0, 1, 1 >

3

3

4

2

/\

\/

12

sum: int sequence → int

fun count (class: room): int = sum (map sum class)

type room = row sequence

type row = int sequence

Analysis

• How could you improve the running time of
count?

Divide and conquer

Parallelism
• Expression evaluation has no side-effects

• can evaluate independent code in parallel
• evaluation order has no effect on value

• Parallel evaluation may be faster than sequential

Learn to exploit parallelism!

Cost Analysis

• Parallel computation

• How long would it take if one could have as many
processors as one wants; length of longest critical
path

Span

• Sequential computation

• Total sequential time; number of operations

Work

Introducing ML

• Types t
• Expressions e
• Values v (subset of expressions)

Examples
(3 + 4) * 2

 7 * 2

 14

(3 + 4) * (2 + 1)
 21

==>
1

==>
1

==>
3

How many steps would the second take if we used parallelism?

"the " + "walrus"
==> "the walrus"

"the walrus" + 1 ill-typed

SML never evaluates an ill-typed expression!

Types, Expressions,
Values

• A type is a “prediction” about the kind of value
that an expression will have if it winds up having
a value

• An expression is well-typed if it has at least
one type, and ill-typed otherwise.

• A well-typed expression has a type, may have a
value, and may have an effect (not for our
effect-free fragment)

• has type t, written as e : t
• may have a value, written as e ↪ v

 (or e ==> v)
• may have an effect (not our effect-free

fragment)

Every well-formed ML expression e

Example:

 (3 + 4) * 2 : int

 (3 + 4) * 2 ↪ 14

Types in ML
• Basic types
• int, real, bool, char, string

• Constructed types
• Product types
• Function types
• User-defined types

Integers, Expressions

• Type int

• Values …, ~1, 0, 1, …,

• Expressions e1 + e2, e1 - e2, e1 * e2,

e1 div e2, e1 mod e2, …

• Example ~4 * 3

Integers, Typing
• Typing rules

• n : int

• e1 + e2 : int if e1 : int and e2 : int

• similar for other operations

(3 + 4) * 2 : int because
(3 + 4): int 2: int

(3 + 4): int because 3: int 4: intand

Integers, Evaluation

• e1 + e2 e1' + e2 if e1 e1’

• n1 + e2 n1 + e2’ if e2 e2’

• n1 + n2 n

where n is the sum of n1 and n2

==>
1

==>
1

==>
1

==>
1

==>
1

Example
Well-typed expression with no value

5 div 0 : int

Notation Recap

e: t e has type t

e ==> e’ e reduces to e’

e ↪ v e evaluates to v

Extensional
equivalence

An equivalence relation on expressions of the same type

≅

Extensional Equivalence

• Expressions of type int are extensionally
equivalent whenever one of the following is true
• if they evaluate to the same integer
• if they both loop forever
• if they both raise the same exception

Equivalence is a form of semantic equality

Equivalence

• Functions of type int -> int are extensionally
equivalent if they map extensionally equivalent
arguments to extensionally equivalent results

Referential
transparency

• The type of an expression depends only
on the types of its sub-expressions

• The value of an expression depends only
on the values of its sub-expressions

for types and values

safe substitution,
compositional reasoning

Extensional Equivalence

• Expressions of type int are extensionally
equivalent whenever one of the following is true
• if they evaluate to the same integer
• if they both loop forever
• if they both raise the same exception

For now, we will mostly focus on the first
condition by making appropriate assumptions.

Equivalence
21 + 21 ≅ 42 ≅ 7 * 6

[2,4,6] ≅ [1+1, 2+2, 3+3]

(fn x => x + x) ≅ (fn x => 2 * x)

Types in ML
• Basic types
• int, real, bool, char, string

• Constructed types
• Product types
• Function types
• User-defined types

Products, Expressions

• Types t1 * t2 for any type t1 and t2

• Values (v1, v2) for values v1 and v2

• Expressions (e1, e2), # e1, # e2

• Example (~4 * 3, true)
 (3,5,"another example")

usually bad
style

Products, Typing

• (e1, e2) : t1 * t2 if e1 : t1 and e2 : t2
• Example

(~4 * 3, true): int * bool
(3,5,"another example"):
 int * int * string

Products, Evaluation

• (e1 , e2) (e1’ , e2) if e1 e1’

• (v1 , e2) (v1 , e2’) if e2 e2’

• (v1 , v2) (v1 , v2)

==>
1

==>
1

==>
1

==>
1

==>
1

(3*4, 1.1+7.2, true)

Evaluation:

==> (12, 1.1+7.2, true)

==> (12, 8.3, true)

We could also write:

(3*4, 1.1+7.2,true) (12, 8.3,true)↪

Exercises

(3*4, 1.1+7.2,true)

What are the type and values of the following expressions?

(5 div 0, 2+1)

(5 + "8 miles", false)

(2, (true,"a"), 3.1) int * (bool * string) * real

int * real * bool

int * int

ill-typed

Type Value

(12,8.3,true)

No value

No value

(2, (true,"a"), 3.1)

Functions
In math, one talks about a function f being a mapping
between spaces X and Y.

In SML, we do the same with X and Y being types.

Declarations,
Environments, Scope

Declaration

type valueidentifierkeyword

Introduces binding of 3.14 to pi, sometimes written as [3.14/x]

Lexically statically scoped

val pi : real = 3.14

Environment
[3/x]
[4/y]

val x : int = 8 - 5
val y : int = x + 1

Environment
[3/x]
[4/y]
[10/x]
[11/z]

Second binding of x shadows first binding. First binding has been shadowed.

val x : int = 8 - 5
val y : int = x + 1
val x : int = 10
val z : int = x + 1

Local declarations

This is an expression with type int and value 12.

let
 val m : int = 3
 val n : int = m * m
in
 m + n
end

Local declarations

Type?

Value?

val k : int = 4

let
 val k : real = 3.0
in
 k * k
end

}

Local declarations

} Type?

Value?

} Type?

Value?

val k : int = 4

let
 val k : real = 3.0
in
 k * k
end

k 4 : int

9.0 : real

Concrete Type
Definitions

type float = real
type point = float * float
val p : point = (1.0, 2.6)

Functions

Function declaration

function name function body

fun square (x : int) : int = x * x

(* square : int -> int
 REQUIRES: true
 ENSURES: square(x) evaluates to x * x
*)

Closures
Function declarations also create bindings:

fun square (x : int) : int = x * x

binds the identifier square to a closure:

[/square]

Lambda expression fn x:int => x * x
Environment (all prior bindings when square was declared)

5-step methodology

• Function name and type
• REQUIRES,
• ENSURES
• Function body
• Tests Step 6: Proof

How does ML evaluate
a function application e2

• Evaluate e2 to a function value f

• Reduce e1 to a value v

• Locally extend the environment that existed
at the time of the definition of f with a
binding of value v to the variable x

• Evaluate the body in the resulting
environment

To Do Tonight
• Canvas

• Assignments
• Set up lab

