
15-281 Fall 2023 Lecture Activity

Learning Objectives

• To define a classical planning problem with symbols and predicates

• To run BFS search, linear planning, and GraphPlan on the problem

A robot arm (yellow) can pick up and put down blocks to form stacks. It cannot pick up a block that has another
block on top of it. It cannot pick up more than one block at a time. Any number of blocks can sit on the table.

Q1. Problem definition

(a) Suppose we have predicates: In-Hand(block), On-Table(block), On-Block(blockOver,blockUnder), Clear(block),
and HandEmpty(). Write the instances in this problem.

Instances:
Blocks A, B, C

(b) Write the state of this configuration:

Figure 1: Block Configuration 1

State:
In-Hand(C) ∧ On-Table(B) ∧ On-Block(A,B) ∧ Clear(A) ∧ Clear(C)

(c) If instead we had the predicates: In-Hand(block), On(blockOver,loc), Clear(block), and Hand-Empty(). What
would be the instances and state of Block Configuration 1 now?

Instances and State:
Blocks A, B, C, and Table. In-Hand(C) ∧ On(B,Table) ∧ On(A,B) ∧ Clear(A) ∧ Clear(C)



2

Q2. Operators

Use the instances and state from Q1a and Q1b to answer the following questions.

Define the following operators:

Pickup Table(block):

Preconditions: HandEmpty() ∧ Clear(block) ∧ On-Table(block)

Add: In-Hand(block)

Delete: HandEmpty() ∧ On-Table(block)

Putdown Table(block):

Preconditions: In-Hand(block)

Add: HandEmpty() ∧ On-Table(block)

Delete: In-Hand(block)

(a) Use the patterns above to write the operators Pickup fromBlock(block,block) and Putdown onBlock(block,block)

Pickup fromBlock(block,fromBlock)
Pickup fromBlock(block,fromBlock):

Precondition: HandEmpty(), On-Block(block,fromBlock), block != fromBlock
Add: In-Hand(block) ∧ Clear(fromBlock)
Delete: HandEmpty() ∧ On-Block(block,fromBlock)

Putdown onBlock(block,onBlock)
Putdown onBlock(block,fromBlock):

Precondition: In-Hand(block), Clear(onBlock), block != onBlock
Add: HandEmpty() ∧ On-Block(block, onBlock)
Delete: In-Hand(block) ∧ Clear(onBlock)



3

Q3. Planning

Start State → Goal State →

(a) Write the start state and goal state.

Start and Goal states
Start state: HandEmpty() ∧ On-Table(C) ∧ On-Table(A) ∧ On-Block(B, A) ∧ Clear(B) ∧ Clear(C)
Goal state: HandEmpty() ∧ On-Table(A) ∧ On-Table(B) ∧ On-Block(C, A) ∧ Clear(B) ∧ Clear(C)

(b) Perform BFS by matching operators to the current state, and adding an edge in the search tree for each
matching operator. What is the plan found?

Plan
Pickup fromBlock(B,A), Putdown Table(B), Pickup Table(C), Putdown onBlock(C,A)

(c) Perform linear planning by solving for the goal in the following stack order (pop the rightmost item first):
HandEmpty(), On-Table(A), On-Table(B), On-Block(C, A), Clear(B), Clear(C). What is the plan found?

Plan
Clear(C) - done (no operators)
Clear(B) - done (no operators)
On-Block(C,A) - Pickup fromBlock(B,A), Putdown Table(B), Pickup Table(C), Putdown onBlock(C,A)
On-Table(B) - done (no operators)
On-Table(A) - done (no operators)
HandEmpty() - done (no operators)
Final Plan: Pickup fromBlock(B,A), Putdown Table(B), Pickup Table(C), Putdown onBlock(C,A)

(d) What if we tried to achieve our goals in the opposite order (leftmost first): HandEmpty(), On-Table(A),
On-Table(B), On-Block(C, A), Clear(B), Clear(C). What is the plan found?

Plan
HandEmpty() - done (no operators)
On-Table(A) - done (no operators)
On-Table(B) - Pickup fromBlock(B,A), Putdown Table(B)
On-Block(C,A) - Pickup Table(C), Putdown onBlock(C,A)
Clear(B) - done (no operators)
Clear(C) - done (no operators)
Final Plan: Pickup fromBlock(B,A), Putdown Table(B), Pickup Table(C), Putdown onBlock(C,A)



4

(e) Draw the first 2 layers of the GraphPlan graph.

Graphplan Graph



5

Q4. Challenge Problem: Word Puzzle

Here’s a puzzle for you. You start with a 4 letter word, and there is a goal 4 letter word. You can take one action
change one letter which transforms the word to a new valid word (cannot be made up). The goal is to determine
what sequence of transformations changes the start word to the goal word the fastest.

For example: Suppose I’m given NECK and the goal is SOAP. I can perform the following actions:

NECK −DECK −DOCK − SOCK − SOAK − SOAP

You decide to model the problem using classical planning. You’re given:

• a dictionary of words,

• a predicate one change(startword, endword) which returns true if the startword and endword are 1 letter
apart and false otherwise.

• a predicate same word(word1, word2) which returns true if the two words are exactly the same and false
otherwise.

Write an initial state and goal state that represents this problem. You might need to create other predicates.

Initial State:
Solution 1: CURR(startword) ∧(∀word ̸= startword, !CURR(word))

Solution 2: CURR(startword)

Goal State:
CURR(goalword)

Write an operator that makes use of the information above to find a sequence of words:

Operator:
If Solution 1:
change one letter:

Preconditions: CURR(word) AND one change(word,nextword)

Adds: CURR(nextword), !CURR(word)

Deletes: CURR(word)

If Solution 2:
change one letter:

Preconditions: CURR(word) AND one change(word,nextword)

Adds: CURR(nextword)

Deletes: CURR(word)


