## 15-281 Fall 2023

## Learning Objectives

- To practice computing HMM probabilities
- To run Predict and Observe steps in the forward algorithm

## Q1. Hidden Markov Models

Below is the Weather HMM from class. We want to predict the weather given both a distribution for weather today given weather yesterday (transition model) and weather today given people using umbrella today (sensor model). We want to compute the weather on day 4  $P(X_4|e_1, e_2, e_3, e_4)$  assuming that we've witnessed umbrellas each day (all the evidence is True that there is an umbrella). Note that the states are the weather  $X_i = W_i$  and the evidence is the umbrella  $e_i = U_i$ .



(a) OBSERVE! We are given the initial distribution  $P(X_1)$ . Now we need to Observe the evidence  $e_1 = True$  and compute  $P(X_1|e_1)$ . We can derive the equation for  $P(X_1|e_1)$  directly using Bayes Rule with the probabilities  $P(e_1|X_1)$  and  $P(X_1)$  or by computing the joint  $P(X_1, e_1)$  and normalizing  $Z = P(e_1)$ . Write the equation below and then compute the probability table  $P(X_1|e_1)$ .



(b) PREDICT! Now we have  $P(X_1|e_1)$ , and we want to Predict  $P(X_2|e_1)$ . We can do this by summing over  $X_1$ :  $P(X_2|e_1) = \sum_{x \in X_1} P(X_2|x)P(x|e_1)$ . Rewrite this equation below and then compute the probability table using your answer above and the HMM model tables.

| $P(X_2 e_1) =$ | <b>Table</b> $P(X_2 e_1)$ |
|----------------|---------------------------|
|                |                           |
|                |                           |
|                |                           |



(c) OBSERVE! Now that we've predicted  $X_2$ , we can update the probability given new evidence  $e_2 = True$ . Use the Observation update to write the formula for  $P(X_2|e_1, e_2)$  using  $P(X_2|e_1)$  above and then solve.

| $P(X_2 e_1, e_2) =$ | Table $P(X_2 e_1, e_2)$ |
|---------------------|-------------------------|
|                     |                         |
|                     |                         |
|                     |                         |

(d) PREDICT! Compute  $P(X_3|e_1, e_2)$  using the transition probabilities and  $P(X_2|e_1, e_2)$  above. Write this equation below and then compute the probability table.

| $P(X_3 e_1, e_2) =$ | <b>Table</b> $P(X_3 e_1, e_2)$ |
|---------------------|--------------------------------|
|                     |                                |
|                     |                                |

(e) OBSERVE! Now that we've predicted  $X_3$ , we can update the probability given new evidence  $e_3 = True$ . Use the Observation update to write the formula for  $P(X_3|e_1, e_2, e_3)$  using  $P(X_3|e_1, e_2)$  above and then solve.

| $P(X_3 e_1, e_2, e_3) =$ | <b>Table</b> $P(X_3 e_1, e_2, e_3)$ |
|--------------------------|-------------------------------------|
|                          |                                     |
|                          |                                     |
|                          |                                     |

(f) PREDICT! Compute  $P(X_4|e_1, e_2, e_3)$  using the transition probabilities and  $P(X_3|e_1, e_2, e_3)$  above. Write the equation below and then compute the probability table.

| $P(X_4 e_1, e_2, e_3) =$ | <b>Table</b> $P(X_4 e_1, e_2, e_3)$ |
|--------------------------|-------------------------------------|
|                          |                                     |
|                          |                                     |
|                          |                                     |

(g) OBSERVE! Finally, we can update the probability of  $X_4$  given new evidence  $e_4 = True$  (and the rest of the evidence). Use the Observation update rule to write the formula for  $P(X_4|e_1, e_2, e_3, e_4)$  using  $P(X_4|e_1, e_2, e_3)$  above and then solve for the new probability table.

| $P(X_4 e_1, e_2, e_3, e_4) =$ | <b>Table</b> $P(X_4 e_1, e_2, e_3, e_4)$ |
|-------------------------------|------------------------------------------|
|                               |                                          |
|                               |                                          |
|                               |                                          |