Learning Objectives

- To practice computing HMM probabilities
- To run Predict and Observe steps in the forward algorithm

Q1. Hidden Markov Models

Below is the Weather HMM from class. We want to predict the weather given both a distribution for weather today given weather yesterday (transition model) and weather today given people using umbrella today (sensor model). We want to compute the weather on day $4 P(X_4|e_1, e_2, e_3, e_4)$ assuming that we've witnessed umbrellas each day (all the evidence is True that there is an umbrella). Note that the states are the weather $X_i = W_i$ and the evidence is the umbrella $e_i = U_i$.

An HMM is defined by:

■ Initial distribution: $P(X_1)$

■ Transition model: $P(X_t \mid X_{t-1})$

■ Sensor model: $P(E_t \mid X_t)$

Given $P(X_1) = \{sun: 0.5, rain: 0.5\}$ Compute $P(X_4 = sun \mid e_4 = e_3 = e_2 = e_1 = True)$

W _{t-1}	P(W ₁	W _{t-1}
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

(a) OBSERVE! We are given the initial distribution $P(X_1)$. Now we need to Observe the evidence $e_1 = True$ and compute $P(X_1|e_1)$. We can derive the equation for $P(X_1|e_1)$ directly using Bayes Rule with the probabilities $P(e_1|X_1)$ and $P(X_1)$ or by computing the joint $P(X_1,e_1)$ and normalizing $Z = P(e_1)$. Write the equation below and then compute the probability table $P(X_1|e_1)$.

$$P(X_1|e_1) = P(X_1, e_1)/P(e_1) = P(e_1|X_1)P(X_1)/\sum_x P(e_1|x)P(x)$$

Table
$$P(X_1|e_1)$$

 $\frac{\sin | .1/(.1+.45) = .18}{ \text{rain } | .45/(.1+.45) = .82}$

(b) PREDICT! Now we have $P(X_1|e_1)$, and we want to Predict $P(X_2|e_1)$. We can do this by summing over X_1 : $P(X_2|e_1) = \sum_{x \in X_1} P(X_2|x)P(x|e_1)$. Rewrite this equation below and then compute the probability table using your answer above and the HMM model tables.

$$P(X_2|e_1) = \sum_{x \in X_1} P(X_2|x)P(x|e_1)$$

Table
$$P(X_2|e_1)$$

 $\sup | .9^*.18 + .3^*.82 = .41$
 $rain | .1^*.18 + .7^*.82 = .59$

An HMM is defined by:

Initial distribution: P(X₁)
 Transition model: P(X₁ | X₁-1)

• Sensor model: $P(E_t \mid X_t)$

Given $P(X_1) = \{sun: 0.5, rain: 0.5\}$ Compute $P(X_4=sun \mid e_4=e_3=e_2=e_1=True)$

W _{t-1}	P(W _t W _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

(c) OBSERVE! Now that we've predicted X_2 , we can update the probability given new evidence $e_2 = True$. Use the Observation update to write the formula for $P(X_2|e_1, e_2)$ using $P(X_2|e_1)$ above and then solve.

$$\begin{vmatrix} P(X_2|e_1, e_2) = \\ \alpha P(X_2, e_2|e_1) = P(e_2|X_2)P(X_2|e_1) / \sum_{x \in X_2} P(e_2|x)P(x|e_1) \end{vmatrix}$$

Table
$$P(X_2|e_1, e_2)$$

 $\sup | .2^*.41/.613 = .13$
 $rain | .9^*.59/.613 = .87$

(d) PREDICT! Compute $P(X_3|e_1,e_2)$ using the transition probabilities and $P(X_2|e_1,e_2)$ above. Write this equation below and then compute the probability table.

$$P(X_3|e_1, e_2) = \sum_{x \in X_2} P(X_3|x) P(x|e_1, e_2)$$

Table
$$P(X_3|e_1, e_2)$$

 $\begin{array}{c|c} \text{sun} & .9^*.13 + .3^*.87 = .38 \\ \hline \text{rain} & .1^*.13 + .7^*.87 = .62 \end{array}$

(e) OBSERVE! Now that we've predicted X_3 , we can update the probability given new evidence $e_3 = True$. Use the Observation update to write the formula for $P(X_3|e_1,e_2,e_3)$ using $P(X_3|e_1,e_2)$ above and then solve.

$$P(X_3|e_1, e_2, e_3) = \alpha P(X_3, e_3|e_1, e_2) = \alpha P(e_3|X_3) P(X_3|e_1, e_2)$$

$$\alpha = 1/\sum_{x \in X_3} P(e_3|x) P(x|e_1, e_2)$$

Table $P(X_3 e_1, e_2, e_3)$	
sun	.2*.38/.634 = .12
rain	.9*.62/.634 = .88

(f) PREDICT! Compute $P(X_4|e_1, e_2, e_3)$ using the transition probabilities and $P(X_3|e_1, e_2, e_3)$ above. Write the equation below and then compute the probability table.

$$P(X_4|e_1, e_2, e_3) = \sum_{x \in X_3} P(X_4|x)P(x|e_1, e_2, e_3)$$

Table
$$P(X_4|e_1, e_2, e_3)$$

 $\sup | .9^*.12 + .3^*.88 = .37$
 $rain | .1^*.12 + .7^*.88 = .63$

(g) OBSERVE! Finally, we can update the probability of X_4 given new evidence $e_4 = True$ (and the rest of the evidence). Use the Observation update rule to write the formula for $P(X_4|e_1, e_2, e_3, e_4)$ using $P(X_4|e_1, e_2, e_3)$ above and then solve for the new probability table.

$$|P(X_4|e_1, e_2, e_3, e_4) = \alpha P(X_4, e_4|e_1, e_2, e_3) = \alpha P(e_4|X_4) P(X_4|e_1, e_2, e_3)$$

$$\alpha = 1/\sum_{x \in X_4} P(e_4|x) P(x|e_1, e_2, e_3)$$

Table
$$P(X_4|e_1, e_2, e_3, e_4)$$

 $\sup | .2^*.37/.641 = .115$
 $rain | .9^*.63/.641 = .885$