Learning Objectives

- To practice computing HMM probabilities
- To run Predict and Observe steps in the forward algorithm

Q1. Hidden Markov Models

Below is the Weather HMM from class. We want to predict the weather given both a distribution for weather today given weather yesterday (transition model) and weather today given people using umbrella today (sensor model). We want to compute the weather on day $4 P\left(X_{4} \mid e_{1}, e_{2}, e_{3}, e_{4}\right)$ assuming that we've witnessed umbrellas each day (all the evidence is True that there is an umbrella). Note that the states are the weather $X_{i}=W_{i}$ and the evidence is the umbrella $e_{i}=U_{i}$.

An HMM is defined by:

- Initial distribution: $P\left(X_{1}\right)$
- Transition model: $P\left(X_{t} \mid X_{t-1}\right)$
- Sensor model: $\quad P\left(E_{t} \mid X_{t}\right)$

$\mathbf{W}_{\mathrm{t}-1}$	$\mathrm{P}\left(\mathbf{W}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Given $P\left(X_{1}\right)=\{$ sun:0.5, rain:0.5\} Compute $P\left(X_{4}=\right.$ sun | $e_{4}=e_{3}=e_{2}=e_{1}=$ True $)$

(a) OBSERVE! We are given the initial distribution $P\left(X_{1}\right)$. Now we need to Observe the evidence $e_{1}=T r u e$ and compute $P\left(X_{1} \mid e_{1}\right)$. We can derive the equation for $P\left(X_{1} \mid e_{1}\right)$ directly using Bayes Rule with the probabilities $P\left(e_{1} \mid X_{1}\right)$ and $P\left(X_{1}\right)$ or by computing the joint $P\left(X_{1}, e_{1}\right)$ and normalizing $Z=P\left(e_{1}\right)$. Write the equation below and then compute the probability table $P\left(X_{1} \mid e_{1}\right)$.
$P\left(X_{1} \mid e_{1}\right)=$
$P\left(X_{1}, e_{1}\right) / P\left(e_{1}\right)=P\left(e_{1} \mid X_{1}\right) P\left(X_{1}\right) / \sum_{x} P\left(e_{1} \mid x\right) P(x)$

Table $P\left(X_{1} \mid e_{1}\right)$

$$
\begin{array}{c|c}
\text { sun } & .1 /(.1+.45)=.18 \\
\hline \text { rain } & .45 /(.1+.45)=.82
\end{array}
$$

(b) PREDICT! Now we have $P\left(X_{1} \mid e_{1}\right)$, and we want to Predict $P\left(X_{2} \mid e_{1}\right)$. We can do this by summing over X_{1} : $P\left(X_{2} \mid e_{1}\right)=\sum_{x \in X_{1}} P\left(X_{2} \mid x\right) P\left(x \mid e_{1}\right)$. Rewrite this equation below and then compute the probability table using your answer above and the HMM model tables.

| $P\left(X_{2} \mid e_{1}\right)=$ | |
| :--- | :--- | :--- |
| $\sum_{x \in X_{1}} P\left(X_{2} \mid x\right) P\left(x \mid e_{1}\right)$ | |
| | Table $P\left(X_{2} \mid e_{1}\right)$
 sun $.9^{*} .18+.3^{*} .82=.41$
 rain $.1^{*} .18+.7^{*} .82=.59$
 |

An HMM is defined by:

- Initial distribution: $P\left(X_{1}\right)$
- Transition model: $P\left(X_{t} \mid X_{t-1}\right)$
- Sensor model: $\quad P\left(E_{t} \mid X_{t}\right)$

$\mathbf{W}_{\mathbf{t}-\mathbf{1}}$	$\mathbf{P}\left(\mathbf{W}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}-\mathbf{1}}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Given $P\left(X_{1}\right)=\{$ sun: 0.5 , rain: 0.5$\}$
Compute $P\left(X_{4}=\operatorname{sun} \mid e_{4}=e_{3}=e_{2}=e_{1}=\right.$ True $)$

(c) OBSERVE! Now that we've predicted X_{2}, we can update the probability given new evidence $e_{2}=$ True. Use the Observation update to write the formula for $P\left(X_{2} \mid e_{1}, e_{2}\right)$ using $P\left(X_{2} \mid e_{1}\right)$ above and then solve.
$P\left(X_{2} \mid e_{1}, e_{2}\right)=$
$\alpha P\left(X_{2}, e_{2} \mid e_{1}\right)=P\left(e_{2} \mid X_{2}\right) P\left(X_{2} \mid e_{1}\right) / \sum_{x \in X_{2}} P\left(e_{2} \mid x\right) P\left(x \mid e_{1}\right)$

Table $P\left(X_{2} \mid e_{1}, e_{2}\right)$

sun	$.2^{*} .41 / .613=.13$
rain	$.9^{*} .59 / .613=.87$

(d) PREDICT! Compute $P\left(X_{3} \mid e_{1}, e_{2}\right)$ using the transition probabilities and $P\left(X_{2} \mid e_{1}, e_{2}\right)$ above. Write this equation below and then compute the probability table.

$$
\begin{aligned}
& P\left(X_{3} \mid e_{1}, e_{2}\right)= \\
& \sum_{x \in X_{2}} P\left(X_{3} \mid x\right) P\left(x \mid e_{1}, e_{2}\right)
\end{aligned}
$$

Table $P\left(X_{3} \mid e_{1}, e_{2}\right)$

sun	$.9^{*} .13+.3^{*} .87=.38$

rain	$.1^{*} .13+.7^{*} .87=.62$

(e) OBSERVE! Now that we've predicted X_{3}, we can update the probability given new evidence $e_{3}=T r u e$. Use the Observation update to write the formula for $P\left(X_{3} \mid e_{1}, e_{2}, e_{3}\right)$ using $P\left(X_{3} \mid e_{1}, e_{2}\right)$ above and then solve.

```
P( (X3 |e, , e 2, e}\mp@subsup{e}{3}{})
\alphaP( X ( , e\mp@subsup{e}{3}{}|\mp@subsup{e}{1}{},\mp@subsup{e}{2}{})=\alphaP(\mp@subsup{e}{3}{}|\mp@subsup{X}{3}{})P(\mp@subsup{X}{3}{}|\mp@subsup{e}{1}{},\mp@subsup{e}{2}{})
\alpha=1/ \sum {x\in\mp@subsup{X}{3}{}
```

Table $P\left(X_{3} \mid e_{1}, e_{2}, e_{3}\right)$

sun	$.2^{*} .38 / .634=.12$
rain	$.9^{*} .62 / .634=.88$

(f) PREDICT! Compute $P\left(X_{4} \mid e_{1}, e_{2}, e_{3}\right)$ using the transition probabilities and $P\left(X_{3} \mid e_{1}, e_{2}, e_{3}\right)$ above. Write the equation below and then compute the probability table.

```
\(P\left(X_{4} \mid e_{1}, e_{2}, e_{3}\right)=\)
\(\sum_{x \in X_{3}} P\left(X_{4} \mid x\right) P\left(x \mid e_{1}, e_{2}, e_{3}\right)\)
```

Table $P\left(X_{4} \mid e_{1}, e_{2}, e_{3}\right)$

sun	$.9^{*} .12+.3^{*} .88=.37$
rain	$.1^{*} .12+.7^{*} .88=.63$

(g) OBSERVE! Finally, we can update the probability of X_{4} given new evidence $e_{4}=$ True (and the rest of the evidence). Use the Observation update rule to write the formula for $P\left(X_{4} \mid e_{1}, e_{2}, e_{3}, e_{4}\right)$ using $P\left(X_{4} \mid e_{1}, e_{2}, e_{3}\right)$ above and then solve for the new probability table.

$$
\begin{aligned}
& P\left(X_{4} \mid e_{1}, e_{2}, e_{3}, e_{4}\right)= \\
& \alpha P\left(X_{4}, e_{4} \mid e_{1}, e_{2}, e_{3}\right)=\alpha P\left(e_{4} \mid X_{4}\right) P\left(X_{4} \mid e_{1}, e_{2}, e_{3}\right) \\
& \alpha=1 / \sum_{x \in X_{4}} P\left(e_{4} \mid x\right) P\left(x \mid e_{1}, e_{2}, e_{3}\right)
\end{aligned}
$$

$\left[\begin{array}{c|c}\text { Table } P\left(X_{4} \mid e_{1}, e_{2}, e_{3}, e_{4}\right) \\ \text { sun } & .2^{*} .37 / .641=.115 \\ \hline \text { rain } & .9^{*} .63 / .641=.885\end{array}\right.$

