. Goo ning |
Warm-up as you walk in A oy

= For the following Bayes net, write the query P(X, | e,,,) in terms of
the conditional probability tables associated with the Bayes net.

PIX, | eyesese,) = @
® @ @




Announcements

TA applications: www.ugrad.cs.cmu.edu/ta/S24/ (see Piazza post, also
fill in Google form there by Nov 22)

Assignments

TA

= HWO9 QV 2%

= Due t>m<ght 10 pm

= HWI10
= QOut next week, due 12/5, 10 pm
" P5
= Qut tonight, due Thursday 12/7, 10 pm


http://www.ugrad.cs.cmu.edu/ta/S24/

Al: Representation and Problem Solving
Hidden Markov Models

Instructors: Vincent Conitzer and Aditi Raghunathan
Slide credits: CMU Al and http://ai.berkeley.edu



Warm-up as you walk in

= For the following Bayes net, write the query P(X, | e,,,) in terms of
the conditional probability tables associated with the Bayes net.

/\P(Xu> — /P(XL,,:X._‘,\
) 00205 C
PX Tepesese,) =
/)4 rE2=3%4 ?(*Lblg,/fz/é_>/4¢)
l (Yq /€‘/€ll£3/€4> o p(e’/ez;(s,{’u) ‘
?(ﬁ.)Qﬂ ){“\:ZP(X“/Q',Q Ly 4, T)(\( ‘f\,lee.) 34)\ a @ e 9
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- 5 ?(x'\ - Ple. IX,) -f[%z /X,)r/?(fez [<;) PU% /X/Z> -?/e}/><3> P, /XQ'P/Q/XL‘)

1% /?<~>

= ’\7(“[!\44\% ?(mlxs\P(qW)\§ Pl %7 ) Pley Ixg) & Pl 1) Ple, [x,) Pl
3 t <
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Reasoning over Time or Space

Often, we want to reason about a sequence of observations
= Speech recognition

= Robot localization

= User attention

= Medical monitoring

Need to introduce time (or space) into our models



Markov Chains

= Value of X at a given time is called the state

() --»
P(X1) P(X¢| X;—1)

= Parameters: called transition probabilities or dynamics, specify how the state evolves
over time (also, initial state probabilities)

= Stationarity assumption: transition probabilities the same at all times
= Same as MDP transition model, but no choice of action



Conditional Independence

...,.é AR

Basic conditional independence:

= Past and future independent given the present
= Each time step only depends on the previous

= This is called the (first order) Markov property

Note that the chain is just a (growable) BN

= We can always use generic BN reasoning on it if we truncate
the chain at a fixed length



Example: Markov Chain Weather

States: X = {rain, sun}

= |nitial distribution: 1.0 sun

= CPT P(X, | X,.,):

Xt-l Xt P(thxt-l)
sun | sun 0.9
sun | rain 0.1
rain | sun 0.3
rain | rain 0.7

LB

I||li]h

@y@

Two new ways of representing the same CPT

0.9
0.3

sun v sun




0.9
Example: Markov Chain Weather

0.3
Initial distribution: P(X; = sun) = 1.0 '@ @

0.7 01

What is the probability distribution after one step?

POG =sum) =7 £ ) Pl ) P ) |
T ey PGS X =y
9=



Example: Markov Chain Weather
Initial distribution: P(X; = sun) = 1.0

What is the probability distribution after one step?
P(X, =sun) =7

P(X; = sun) = ), P(X; = x;,X, = sun)
= lep(Xz =sun | X; = x1 )P(X; = x1)
= P(X, =sun| X; =sun)P(X; = sun) +
P(X, =sun| X, = rain)P(X,; = rain)
=09-1.04+0.3-0.0=0.9

0.1

0.9



0.9
0.3

Poll 1

Initial distribution: P(X, = sun) = 0.9

0.7
What is the probability distribution after the next step?

P(X3 =sun) =? % :Z?(X )T =5 LK /\\
—?()(7 ;w)?y ~c | Xy = Sio) ?{XZ m)?éﬂ S W}
A) 0.81 —~ .9 -.9 + - = 5H
B) 0.84
C) 0.9
D) 1.0
F) 1.2

0.1



0.9
0.3

Poll 1

Initial distribution: P(X, = sun) = 0.9

0.7

What is the probability distribution after the next step? o
P(X; =sun) =7

?(X :501“\3 -z P(stzm) Xz:’()
A) 0.81 2 X,
B) 0.84 — X_=sun | X, = P[X .
C) 0.9 x% P< 3 ‘ 2 A 2 z\
o) = 0909 + 0350\

E) 1.2
. O3 + 0.03 = 0.8

1



Markov Chain Inference

(O~

If you know the transition probabilities, P(X; | X;_1), and you know P (X,),
write an equation to compute P(X5s).




Markov Chain Inference

(O~

If you know the transition probabilities, P(X; | X;_;), and you know P (X,),
write an equation to compute P(X5s).

P(Xs) = Zx4P(x4,X5)
= Zx4P(X5 | x4 )P (x4)



Markov Chain Inference

(O~

If you know the transition probabilities, P(X; | X;_1), and you know P (X,),
write an equation to compute P(X5s).

P(Xs) = le,xz,xg,x4 P(x1, x5, X3, %4, Xs5)
= le,XZ,X3,X4P(X5 | x4 )P (x4 | x3)P(x3 | x2)P(x2 | 1) P(xq)
= Zx4P(X5 x4)2x1,x2,xgp(x4 | x3)P(x3 | x2)P(x2 | x1)P(xq)
= Zx4P(X5 x4)2x1,x2,x3P(xllxz'x3)x4)
= Zx4P(X5 x4 )P (x4)




Weather prediction

States {rain, sun}

= |nitial distribution P(X,)

P(X,)

sun

rain

0.5

0.5

= Transition model P(X;|X;_1)

Xi1 P(X;|X,..)
sun rain

sun 0.9 0.1

rain 0.3 0.7

D
EN

®-E 43 60D

”1

b

| 1

Two new ways of representing the same CPT

0.9
0.3

sun v sun

0.1



Weather prediction

Time 0: P(X,) = (0.5,0.5) Xeo | PX %)

sun rain

sun 0.9 0.1
What is the weather like attime 1? [T o3 0.7

P(X1) =

ZxOP(XO = Xg, X1)

=ZxOP(X1|X0 = x0)P(Xo = xo)
= 0.5(0.9,0.1) + 0.5(0.3,0.7)

= (0.6,0.4)




Weather prediction, contd.

sun rain

sun 0.9 0.1
What is the weather like at time 2? [ ain | 03 0.7

P(X,) =

lep(X1 = X1, X32)
=2x1P(X2|X1 = x1)P(X1 = x1)
= 0.6(0.9,0.1) + 0.4(0.3,0.7)

= (0.66,0.34)




Weather prediction, contd.

Time 2: P(X,) = (0.66,0.34) X | POXIX,)

sun rain
sun 0.9 0.1
What is the weather like at time 3? |rain| 03 0.7

P(X3) =

= Dix, P(X3]|X3 = x2)P (X5 = x3) _’@

= 0.66(0.9,0.1) + 0.34(0.3,0.7)
= (0.696, 0.304)




Forward algorithm (simple form)

What is the state at time t? Transition model]

P(Xt) = P(Xt—l - xt—l»X Probability from
X previous iteration
t—1

= 2 P(Xt|Xt_1 —_ xt_l)P(Xt—l — xt—l)

Xt—1

Iterate this update starting at t=0




Prediction with Markov chains

As time passes, uncertainty “accumulates”

TTTTTT
TTTTTT
TTETTT

<0.01 <0.01<0.01 <0.01{| <0.01
nn
m

(Transition model: ghosts usually go clockwise)

O

EEEEEE

DEE T

DT
=5




Observations Reduce Uncertainty

As we get observations, beliefs get reweighted, uncertainty “decreases”

uu
<0.01 <0.01/(<0.01|<0.01 <0.01|<0.01}|<0.01f|<0.01[<0.01{<0.01

Before observation After observation




Hidden Markov Models




Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)
= Underlying Markov chain over states X
= You observe evidence E at each time step

" X.is a single discrete variable; E; may be continuous and
may consist of several variables

0900
& & &




Real HMM Examples

Speech recognition HMMs:
= Observations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

= Observations are words (tens of thousands)
= States are translation options

Robot tracking:
= Observations are range readings (continuous)
= States are positions on a map (continuous)

Molecular biology:
= Observations are nucleotides ACGT
= States are coding/non-coding/start/stop/splice-site etc.



HMM as a Bayes Net Warm-up

= For the following Bayes net, write the query P(X, | e,.,) in terms of the conditional

probability tables associated with the Bayes net. i i

o

©—

P(X, | e,e,ese,) =



Example: Weather HMM

An HMM is defined by:
" |nitial distribution: P(X,)

" Transition model: P(X, | X, ;) o | PWIW
t-1 t t-1
= Sensor model: P(E, | X,) sun | rain
sun 0.9 0.1
rain 0.3 0.7
Weathert_l Weathert Weathert+1
W, P(U,|W,)

true false

sun 0.2 0.8

rain 0.9 0.1




HMM as Probability Model

= Joint distribution for Markov model:

P(Xgyeeey X7) = PXg) I Licq.7 PO, | X q)
= Joint distribution for hidden Markov model:
'D(X()) X]_IE]_I *e) XT;ET) = 'D(XO) Ht:]_;T 'D(Xt | Xt-]_) P(Et | Xt)
= Future states are independent of the past given the present

= Current evidence is independent of everything else given the current state
= Are evidence variables independent of each other?

Q?_'Q?_’Q? o Useful notation: X, = X, X
& ® ©

it 0 Xp

For example: P(X;., | e;.5) =P(X{, X5, | €1, €5, €3)



HMM Queries
Filtering: P(X,|e,.,)
D@OH®)
() () (=) (0

Smoothing: P(X,|e,.,), k<t
D OHEPE
& @ ® @

Prediction: P(X,,.|e;.,)

D O-OH®)
@ @ @

Explanation: P(X,.,|e;.,)

ofclole




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network

>

(o)

¥




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network

oles

O




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network

A4

]




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network




Filtering Algorithm

P(Xiiil€1.001) = P(et+1 |Xt+1) th P t+1| Xt) P(x, | ey.)

l Normalize I hdate Nedict ]

fl:t+1 = FORWARD(fl:t ’ et+1)




T ) = PR

Filtering Algorithm PLTIR)

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X; | eq.t) = P(X¢| er, €1:6-1) Q(D_>Q(D_>Q(-9__>

=a P(X;, er| e1.0-1) l




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X¢ | eq.r)=P(X¢| er,€1.6-1) ®_’®_+@-

=a P(X;, er| e1.0-1) l

A4 A4
Lreeielas) 1@ @ @ @

Xt—1




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X¢ | eq.r)=P(X¢| er,€1.6-1) ®_’®_+@-

=a P(X;, er| e1.0-1) l

A4 A4
Lreeielas) 1@ @ @ @

Xt—1

a z P(x¢—1| €1.t-1) P(X¢|x¢—1, €1.4—1) P(er| X, Xe—1, €1.6-1)

Xt—1



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X, | e1e) = P(X¢| e, €161 Co)—(%) @ (%)

= a P(X; et er.6-1)

azp(xt_l,xt;etlelzt—l)

Xt—1

a Z P(x¢—1| €1.0—1) P(X¢|x¢—1, €1.4—1) P(er| X, xe—1, €1.6-1)

Xt—1



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1)
=a P(X;, er| e1.0-1)

a z P(x¢—q,Xe, €] €1.6-1)

Xt—1

Xt—1

OO

%

1

@ ) PGl exeoy) P(Xelxey) PlerlX)




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1)

= a P(X; et e1.6-1)
04 z P(x¢—1,X¢, €| €1.6—1)

Xt—1

oNo

]

a z P(xe—1| e1.6—1) P(X¢|xe—q) P(es]| Xt)

Xt—1

a P(e¢|x;) Z P(xelxe—1) P(x¢—q| €1.4-1)

Xt—1




Recursion!

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1) @—»@——»@—
= a P(X;, et| e1.e—1) l

) 4 ) 4
a Z P(x¢—1, X¢, €| €1.6—1)

Xt—1

a Z P(xe—1| e1.6—1) P(X¢|xe—q) P(es]| Xt)

Xt—1

a P(e¢|x;) 2 P(xelxe—1) P(x¢—q| €1.6-1)

Xt—1

Qg



Recursion!

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1) Xy @
= a P(X;, e¢| €1.4-1)

-»Xy

A4

!
a Z P(x¢—1, Xt el €1.6-1)

Xt—1

a Z P(xe—1| e1.6—1) P(X¢|xe—q) P(es]| Xt)

Xt—1

a P(e¢|x;) 2 P(xelxe—1) P(x¢—q| €1.6-1)

Xt—1



Poll 2

P(Xp1l€1.000) = P €11 |Xt+1 th P t+1| Xt) Pixe | 1)

I Normalize I Edate ﬁedict ]

What is the runtime of the forward algorithm in terms of the number
of states |X| and time t? Assume all 3 CPTs are given.

A) O(|X]|?*1t) +—
B) O(|X] *1t)

C) O(|X|?
D) O([XI)




Filtering Algorithm

P(Xp1l€1.000) = P €11 |Xt+1 th P t+1| Xt) Pixe | 1)

I Normalize I hdate Nedict ]

fl:t+1 = FORWARD(fl:t ’ et+1)
Cost per time step: O(|X|?) where | X| is the number of states

Time and space costs are constant, independent of t
O(|X|?) is infeasible for models with many state variables
We get to invent really cool approximate filtering algorithms



In Class Activity: Weather HMM

An HMM is defined by:

" |nitial distribution: P(X))

" Transition model: P(X, | X, ,) = P(W, |W )
= Sensor model: P(E, | X,) = P(U, |W,)

Given P(X;) = {sun:0.5, rain:0.5}
Compute P(X,=sun | e,= e;= e,= e;=True)

Wi

P(W,W,_,)

sun

rain

sun

0.9

0.1

rain

0.3

0.7

W, P(U|W,)
true false
sun 0.2 0.8
rain 0.9 0.1
Wi




In Class Activity: Weather HMM
An HMM is defined by:

_— . . . Wt-1 P(thwt-l) Wt P(Ut|Wt)
" |nitial distribution: P(X)) on | ramn rue | faloe
" Transition model: P(X, | X, ;) sun | 09 | 01 sun | 02 | 08
" Sensor model: P(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X;,e;) = P(eq|X;)P(X;) #OBSERVE (chain rule)

P(X;le;) = aP(Xy,e;) > a =1/, P(eslx;)P(x;) #Don't forget to NORMALIZE

P(Xzler) = Txex, P(Xz|X)P(x|e;) #PREDICT



In Class Activity: Weather HMM
An HMM is defined by:

_— . . . Wt-1 P(thwt-l) Wt P(Ut|Wt)
" |nitial distribution: P(X)) on | ramn rue | faloe
" Transition model: P(X, | X, ;) sun | 09 | 01 sun | 02 | 08
" Sensor model: P(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X;leq) = erxl P(X;|x)P(x|e;) #PREDICT

P(X;le1,e;) = aP(X,, ezle;) = aP(e;|X3)P(Xzler); a =1/ Z P(ez|x)P(x|eq)

xEXZ

P(X3ley, e3) = Qix,€X, P(X3|x2)P(x;|eq, e;) #PREDICT



In Class Activity: Weather HMM

An HMM is defined by:

" |nitial distribution: P(X))

" Transition model: P(X, | X, ,)
= Sensor model: P(E, | X,)

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

W, 4 P(W,|W,_4) W, P(U,|W,)
sun rain true false

sun 0.9 0.1 sun 0.2 0.8

rain 0.3 0.7 rain 0.9 0.1

P(X3leqy, e3) = szexz P(X3lx3)P(x;|ey, e;) #PREDICT

P(X3lei,e5,e3) = aP(X3,e3leq, ;) = aP(e3|X3)P(X3leq, €5);

a=1/ P(es|x)P(x|eq, ez)

x€X3

P(X4ley, ez, e3) = Xxex, P(X4lx)P(x|ey, €, €3) #PREDICT




In Class Activity: Weather HMM

An HMM is defined by:

" |nitial distribution: P(X))

" Transition model: P(X, | X, ,)
= Sensor model: P(E, | X,)

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X4leq, ez, e3) = Yyex, P(X4|x)P(x|eq, €3, €3) #PREDICT

W, 4 P(W,|W,_4) W, P(U,|W,)
sun rain true false

sun 0.9 0.1 sun 0.2 0.8

rain 0.3 0.7 rain 0.9 0.1

P(X4leq,e5,e3,64) = aP(Xy, eqleq, e3,e3) = aP(e4|X4)P(X4leq, ez, €3);

a=1/ P(e4|x)P(x|ey, e, €3)

XEX4_




In Class Activity: Weather HMM
An HMM is defined by:

_— . . . Wt-1 P(thwt-l) Wt P(Ut|Wt)
" |nitial distribution: P(X)) on | ramn rue | faloe
" Transition model: P(X, | X, ;) sun | 09 | 01 sun | 02 | 08
" Sensor model: P(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X;,e;) = P(eq|X{)P(X;) #OBSERVE (chain rule)
P(e; = True|X; = sun)P(Xy =sun) =.2x.5=.1
P(e; = True|X; = rain)P(X; = rain) = 9%.5= .45

P(X,|e;) =~ S?B'Sl) = P(e1)X)P(X1)/ Yxex, P(e1]x)P(x) #NORMALIZE USING BAYES RULE
18

P(X; = sunle; = True) =

1 4445 -

P(X; =rai =T = = .82
(X, = rainje, rue) EEWT




In Class Activity: Weather HMM
An HMM is defined by:

_— . . . Wt-1 P(thwt-l) Wt P(Ut|Wt)
" |nitial distribution: P(X)) on | ramn rue | faloe
" Transition model: P(X, | X, ;) sun | 09 | 01 sun | 02 | 08
" Sensor model: P(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X;le) = erxl P(X;|x)P(x|e;) #PREDICT
P(X, = sun|e; = True) = z P(X, = sun|x)P(x|e; = True) = 9%.18+ .3 .82 = 41

X
P(X, = rain|e; = True) = i P(X, = rain|x)P(x|e; = True) = .1*.18 + .7 *.82 = .59

xEX1



In Class Activity: Weather HMM
An HMM is defined by:

_— . . . Wt-1 P(thwt-l) Wt P(Ut|Wt)
" |nitial distribution: P(X)) on | ramn rue | faloe
" Transition model: P(X, | X, ;) sun | 09 | 01 sun | 02 | 08
" Sensor model: P(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X;leq,ez) = aP(Xy, ez]le;) = aP(ez|X;)P(Xzler); a =1/ Z P(e|x)P(x|e1)

XEX
P(X, = sun|ey,e;, = True) = aP(e,|X, = sun)P(X, = sunlel)zz a(.2)(41) = .13
P(X, = rain|e;,e, = True) = aP(e,|X, = rain)P(X, = rainle;) = a(9)(.59) = .87

P(X3leq,ez2) = Yyex, P(X3|x)P(x|eq, e;) #PREDICT
P(X; = sunleq, e;) = P(X5 = sun|x = sun)P(x = sun|ey,e,) + P(X3|x = rain)P(x = rain|eq,e,) =0.38
P(X; = rainleq,e,) = P(X3 = rain|x = sun)P(x = sun|eq,e,) + P(X3|x = rain)P(x = rain|e,,e,) =0.62



In Class Activity: Weather HMM
An HMM is defined by:

_— . . . Wt-1 P(thwt-l) Wt P(Ut|Wt)
" |nitial distribution: P(X)) on | ramn rue | faloe
" Transition model: P(X, | X, ;) sun | 09 | 01 sun | 02 | 08
" Sensor model: P(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X3lei,e5,e3) = aP(X3,e3leq, ;) = aP(e3|X3)P(X3leq, €3);
a=1/ P(es|x)P(x|ey, e;)

xEX3

P(X; = sunleq,e,,e3) = aP(e3 = True|X; = sun)P(X3 = sunleq,e,) = a(.2)(.38) =.12
P(X5; = rainle;, e,,e3) = aP(e3 = True|X; = rain)P(X; = rainley, e;) = a(.9)(.62)=.88



In Class Activity: Weather HMM
An HMM is defined by:

_— . . . Wt-1 P(thwt-l) Wt P(Ut|Wt)
" |nitial distribution: P(X)) on | ramn rue | faloe
" Transition model: P(X, | X, ;) sun | 09 | 01 sun | 02 | 08
" Sensor model: P(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}
P(X4leq, ez, e3) = Yyex, P(X4|x)P(x|eq, €3, €3) #PREDICT

P(X, = sun|eq, ey, e3) = 2 P(X, = sun|x)P(x|e, e5,e3) = 9*.12+ .3%.88 = .37
X€E{s in}
P(X, =rainley, e,,e3) = P(X, = rain|x)P(x|eq,e,,e3) = 1x.12+ .7 .88 = .63

xe{sun,rain}



In Class Activity: Weather HMM

An HI\/II\/I s deflned by: T P o BT

" |nitial distribution: P(X)) wn | rain true | false
* Transition model: P(X, | X, ,) sun | 09 | 0.1 sun | 02 | 08
® Sensor model: P(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e,=True) and P(X;) = {sun:0.5, rain:0.5}

P(X,leq,e5,€3,64) = aP(Xy, e4leq,€5,63) = aP(ey|X,)P(Xyleq, €5, e3);
a=1/ P(e4|x)P(x|ey, ez, €3)

.XEX4

aP(e, = True|X, = sun)P(X, = sunleq, e,,e3) = a(.2*.37) =.115
aP(e, = True|X, = rain)P(X, = rainle, e,,e3) = a(.9*.63) = .885



Poll 3

Suppose we are given P(X4=sun | e4=e3=e2=el=True), along with the
same CPT tables as the activity example, and we want to compute
P(X5=sun | e5= e4= e3=e2=el=True).

What is the first step we would perform?

Predict
Observe
Forward
Smoothing



Other HMM Queries
Filtering: P(X,|e,.,)
D@OH®)
() () (=) (0

Smoothing: P(X,|e,.,), k<t
D OHEPE
& @ ® @

Prediction: P(X,,.|e;.,)

D O-OH®)
@ @ @

Explanation: P(X,.,|e;.,)

ofclole




Inference Tasks

Filtering: P(X;|eq.;)

= belief state—input to the decision process of a rational agent

Prediction: P(X,,|eq.;) for k>0

= evaluation of possible action sequences; like filtering without the evidence
Smoothing: P(X,|e,.;) forO <k <t

" better estimate of past states, essential for learning

Most likely explanation: argmax, (x1 + | €1.4)
= speech recognition, decoding with a n0|sy channel



Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using
multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time t can condition on those from t-1

t=1 t=2 t=3
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