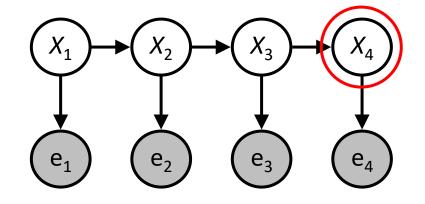
Warm-up as you walk in

- Good Morning!
- For the following Bayes net, write the query $P(X_4 | e_{1:4})$ in terms of the conditional probability tables associated with the Bayes net.

 $P(X_4 \mid e_1, e_2, e_3, e_4) =$



Announcements

TA applications: <u>www.ugrad.cs.cmu.edu/ta/S24/</u> (see Piazza post, also fill in Google form there by Nov 22)

Assignments

- HW9 //ov 28
 - Due tonight, 10 pm
- HW10
 - Out next week, due 12/5, 10 pm
- P5
 - Out tonight, due Thursday 12/7, 10 pm

AI: Representation and Problem Solving Hidden Markov Models

Instructors: Vincent Conitzer and Aditi Raghunathan

Slide credits: CMU AI and http://ai.berkeley.edu

Warm-up as you walk in

• For the following Bayes net, write the query $P(X_4 | e_{1:4})$ in terms of the conditional probability tables associated with the Bayes net.

$$F(x_{4}) = F(x_{4} = x_{4})$$

$$P(x_{4} | e_{1}e_{2}e_{3}e_{3}e_{4}) = \frac{P(x_{4}, e_{1}, e_{2}, e_{3}, e_{4})}{P(e_{1}, e_{2}, e_{3}, e_{4})} = \frac{P(x_{4}, e_{1}, e_{2}, e_{3}, e_{4})}{P(e_{1}, e_{2}, e_{3}, e_{4})} = \frac{P(x_{4}, e_{1}, e_{2}, e_{3}, e_{4})}{P(x_{4}|e_{1}, e_{2}, e_{3}, e_{4})} = \frac{P(x_{4}, e_{1}, e_{2}, e_{3}, e_{4})}{P(x_{4}|e_{1}, e_{2}, e_{3}, e_{4})} = e_{1} = e_{2} = e_{3} = e_{4}$$

$$P(x_{4}|e_{1}, e_{2}, e_{3}, e_{4}) = \sum_{x_{4}} P(x_{4}, e_{1}, e_{2}, e_{3}, e_{4}) = P(x_{4}|e_{1}, e_{2}, e_{3}, e_{4})$$

$$= \sum_{x_{1}, x_{2}, x_{3}} P(x_{1}) + P(e_{1}|x_{1}) + P(x_{2}|x_{3}) + P(e_{3}|x_{2}) + P(x_{3}|x_{2}) + P(x_{3}|x_{3}) + P(e_{4}|x_{4})$$

$$= P(e_{4}|x_{4}) \sum_{x_{3}} P(x_{4}|x_{3}) + P(e_{3}|x_{3}) \sum_{x_{2}} P(x_{3}|x_{2}) + P(e_{3}|x_{3}) \sum_{x_{1}} P(x_{1}|x_{1}) + P(e_{1}|x_{1})$$

$$= P(e_{4}|x_{4}) \sum_{x_{3}} P(x_{4}|x_{3}) + P(e_{1}|x_{1}) + P(e_{1}|x_{1}) \sum_{x_{2}} P(x_{3}|x_{2}) + P(e_{2}|x_{2}) \sum_{x_{1}} P(x_{1}|x_{1}) + P(e_{1}|x_{1}) + P(e_{1}|x_{1})$$

Reasoning over Time or Space

Often, we want to reason about a sequence of observations

- Speech recognition
- Robot localization
- User attention
- Medical monitoring

Need to introduce time (or space) into our models

Markov Chains

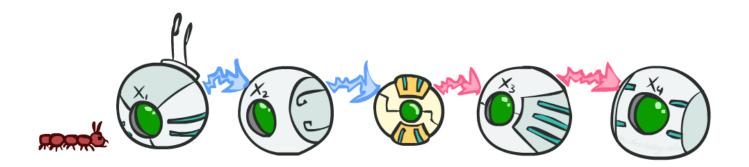
Value of X at a given time is called the state

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \cdots \rightarrow$$

$$P(X_1) \qquad P(X_t|X_{t-1})$$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Conditional Independence



Basic conditional independence:

- Past and future independent given the present
- Each time step only depends on the previous
- This is called the (first order) Markov property

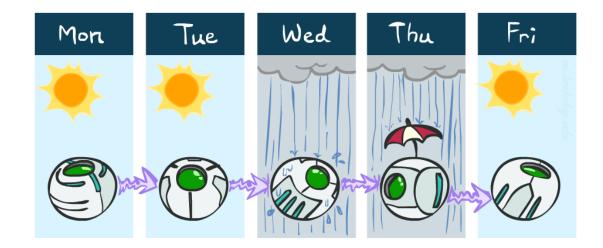
Note that the chain is just a (growable) BN

We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Example: Markov Chain Weather

States: X = {rain, sun}

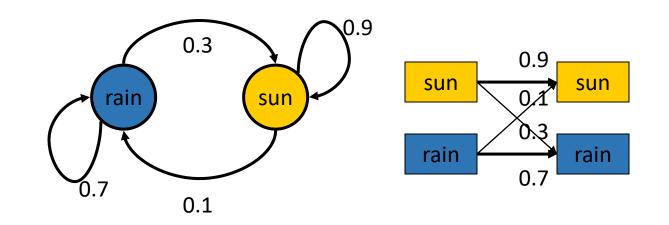
Initial distribution: 1.0 sun



• CPT P(X_t | X_{t-1}):

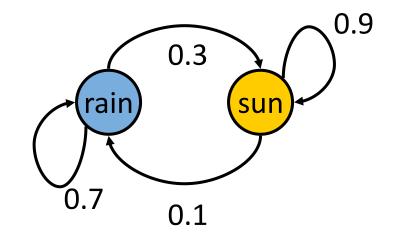
X _{t-1}	X _t	P(X _t X _{t-1})
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Two new ways of representing the same CPT



Example: Markov Chain Weather

Initial distribution: $P(X_1 = sun) = 1.0$

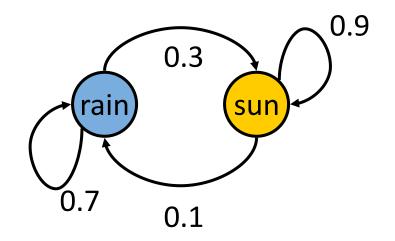


What is the probability distribution after one step?

$$P(X_{2} = sun) = ? \qquad Z_{X_{1}} P(X_{1}) \cdot P(X_{2} = sun | X_{1}) = P(X_{1} = sun) \cdot P(X_{2} = sun | X_{1} = sun) + P(X_{1} = rain) \cdot P(X_{2} = sun | X_{1} = rain) = 1 - .9 = .9$$

Example: Markov Chain Weather

Initial distribution: $P(X_1 = sun) = 1.0$



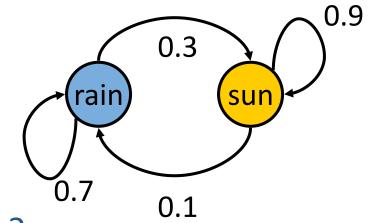
What is the probability distribution after one step? $P(X_2 = sun) = ?$

$$P(X_{2} = sun) = \sum_{x_{1}} P(X_{1} = x_{1}, X_{2} = sun)$$

= $\sum_{x_{1}} P(X_{2} = sun | X_{1} = x_{1})P(X_{1} = x_{1})$
= $P(X_{2} = sun | X_{1} = sun)P(X_{1} = sun) + P(X_{2} = sun | X_{1} = rain)P(X_{1} = rain)$
= $0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$

Poll 1

Initial distribution:
$$P(X_2 = sun) = 0.9$$



What is the probability distribution after the next step?

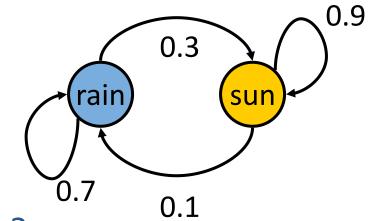
$$P(X_{3} = sun) = ? \quad = \sum_{x_{2}} P(X_{2} = x_{2}) \cdot P(X_{3} = sun | X_{2} = x_{2})$$

= $P(X_{2} = sun) P(X_{3} - sun | X_{2} = sun) + P(X_{2} = rain) P(X_{3} = sun | X_{2} = rain) P(X_{3} = sun | X_{3} = s$

- B) 0.84
- C) 0.9
- D) 1.0
- E) 1.2

Poll 1

Initial distribution: $P(X_2 = sun) = 0.9$



What is the probability distribution after the next step? $P(X_3 = sun) = ?$

A) 0.81
P(
$$X_3 = sun$$
) = $\sum_{x_2} P(X_3 = sun, X_2 = x_2)$
B) 0.84
C) 0.9
D) 1.0
E) 1.2
P($X_3 = sun | X_2 = x_2) P(X_2 = x_2)$
P($X_3 = sun | X_2 = x_2) P(X_2 = x_2)$
P($X_3 = sun | X_2 = x_2) P(X_2 = x_2)$
P($X_3 = sun | X_2 = x_2) P(X_2 = x_2)$
P($X_3 = sun | X_2 = x_2) P(X_2 = x_2)$
P($X_3 = sun | X_2 = x_2) P(X_2 = x_2)$
P($X_3 = sun | X_2 = x_2) P(X_2 = x_2)$
P($X_3 = sun | X_2 = x_2) P(X_2 = x_2)$
P($X_3 = sun | X_2 = x_2) P(X_2 = x_2)$
P($X_3 = sun | X_2 = x_2) P(X_2 = x_2) P(X_3 = sun | X_2 = x_2) P(X_2 = x_2)$
P($X_3 = sun | X_2 = x_2) P(X_3 = sun | X_2 = x_2) P(X_2 = x_2)$
P($X_3 = sun | X_2 = x_2) P(X_3 = sun | X_2 = x_2) P(X_3 =$

Markov Chain Inference

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \cdots \rightarrow$$

If you know the transition probabilities, $P(X_t | X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.



Markov Chain Inference

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \cdots \rightarrow$$

If you know the transition probabilities, $P(X_t | X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$P(X_5) = \sum_{x_4} P(x_4, X_5)$$

= $\sum_{x_4} P(X_5 \mid x_4) P(x_4)$

Markov Chain Inference

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \cdots \rightarrow$$

If you know the transition probabilities, $P(X_t | X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$P(X_5) = \sum_{x_1, x_2, x_3, x_4} P(x_1, x_2, x_3, x_4, X_5)$$

$$= \sum_{x_1, x_2, x_3, x_4} P(X_5 \mid x_4) P(x_4 \mid x_3) P(x_3 \mid x_2) P(x_2 \mid x_1) P(x_1)$$

$$= \sum_{x_4} P(X_5 \mid x_4) \sum_{x_1, x_2, x_3} P(x_4 \mid x_3) P(x_3 \mid x_2) P(x_2 \mid x_1) P(x_1)$$

$$= \sum_{x_4} P(X_5 \mid x_4) \sum_{x_1, x_2, x_3} P(x_1, x_2, x_3, x_4)$$

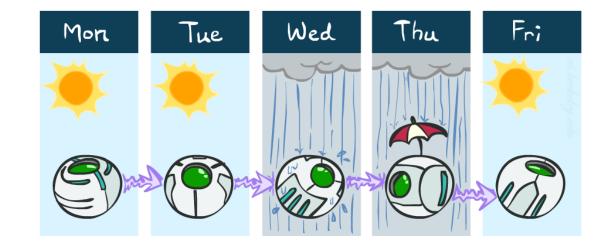
$$= \sum_{x_4} P(X_5 \mid x_4) P(x_4)$$

Weather prediction

States {rain, sun}

• Initial distribution $P(X_0)$

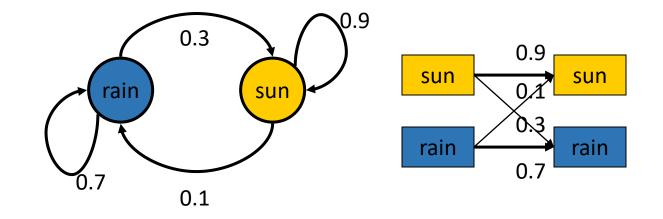
P(X ₀)					
sun rain					
0.5 0.5					



Two new ways of representing the same CPT

• Transition model $P(X_t | X_{t-1})$

X _{t-1}	P(X _t X _{t-1})			
	sun rain			
sun	0.9	0.1		
rain	0.3	0.7		



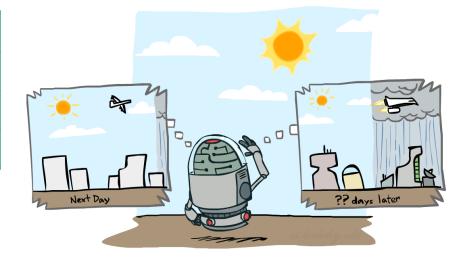
Weather prediction

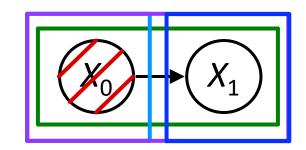
Time 0: $P(X_0) = \langle 0.5, 0.5 \rangle$

	X _{t-1}	$P(X_{t} X_{t-1})$			
		sun	rain		
	sun	0.9	0.1		
	rain	0.3	0.7		

What is the weather like at time 1? $P(X_1) =$

> $\sum_{x_0} P(X_0 = x_0, X_1)$ = $\sum_{x_0} P(X_1 | X_0 = x_0) P(X_0 = x_0)$ = $0.5 \langle 0.9, 0.1 \rangle + 0.5 \langle 0.3, 0.7 \rangle$ = $\langle 0.6, 0.4 \rangle$





Weather prediction, contd.

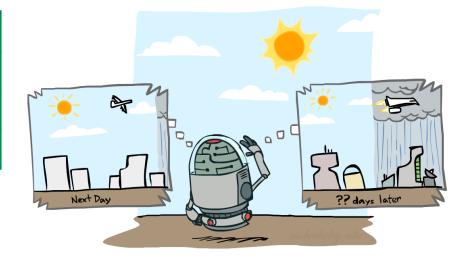
Time 1:
$$P(X_1) = \langle 0.6, 0.4 \rangle$$

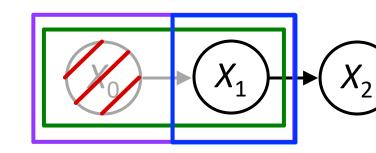
X _{t-1}	P(X _t X _{t-1})			
	sun rain			
sun	0.9	0.1		
rain	0.3 0.7			

What is the weather like at time 2? $P(X_2) =$

$$\sum_{x_1} P(X_1 = x_1, X_2)$$

= $\sum_{x_1} P(X_2 | X_1 = x_1) P(X_1 = x_1)$
= $0.6 \langle 0.9, 0.1 \rangle + 0.4 \langle 0.3, 0.7 \rangle$
= $\langle 0.66, 0.34 \rangle$

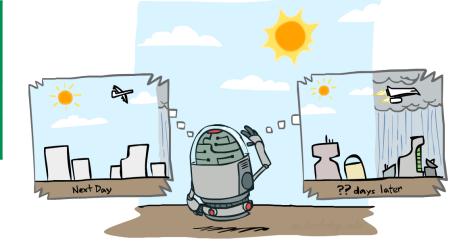




Weather prediction, contd.

Time 2: $P(X_2) = \langle 0.66, 0.34 \rangle$

X _{t-1}	P(X _t X _{t-1})			
	sun rain			
sun	0.9	0.1		
rain	0.3 0.7			



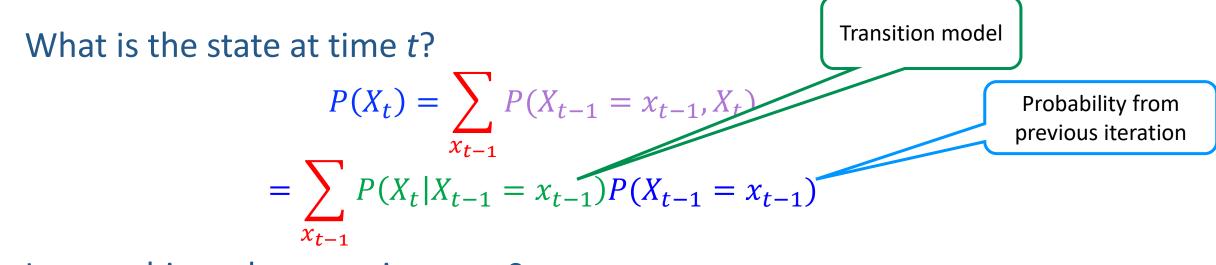
What is the weather like at time 3?
$$P(X_3) =$$

$$\sum_{x_2} P(X_2 = x_2, X_3)$$

= $\sum_{x_2} P(X_3 | X_2 = x_2) P(X_2 = x_2)$
= $0.66 \langle 0.9, 0.1 \rangle + 0.34 \langle 0.3, 0.7 \rangle$
= $\langle 0.696, 0.304 \rangle$

$$X_1$$
 X_2 X_3

Forward algorithm (simple form)



Iterate this update starting at *t*=0

Prediction with Markov chains

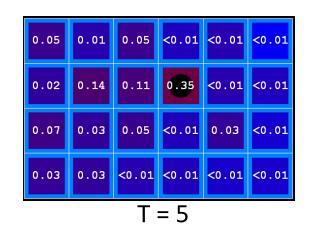
As time passes, uncertainty "accumulates"

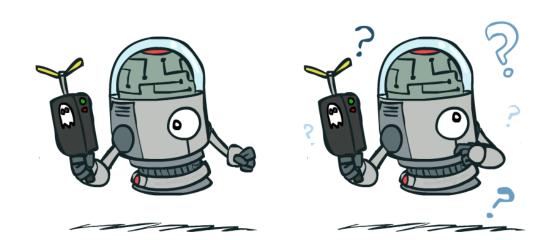
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
<0.01	<0.01	1.00	<0.01	<0.01	<0.01		
<0.01 <0.01 <0.01 <0.01 <0.01 <0.01							
T = 1							

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
T					

T = 2

(Transition model: ghosts usually go clockwise)





Observations Reduce Uncertainty

As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	0.83	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

After observation

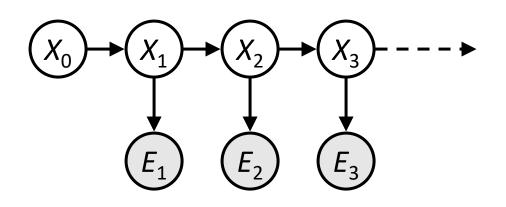
Hidden Markov Models

Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)

- Underlying Markov chain over states X
- You observe evidence *E* at each time step
- X_t is a single discrete variable; E_t may be continuous and may consist of several variables



Real HMM Examples

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

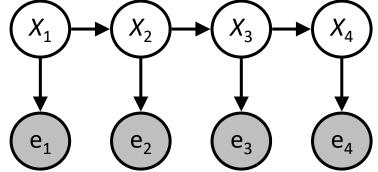
Molecular biology:

- Observations are nucleotides ACGT
- States are coding/non-coding/start/stop/splice-site etc.

HMM as a Bayes Net Warm-up

• For the following Bayes net, write the query $P(X_4 | e_{1:4})$ in terms of the conditional probability tables associated with the Bayes net.

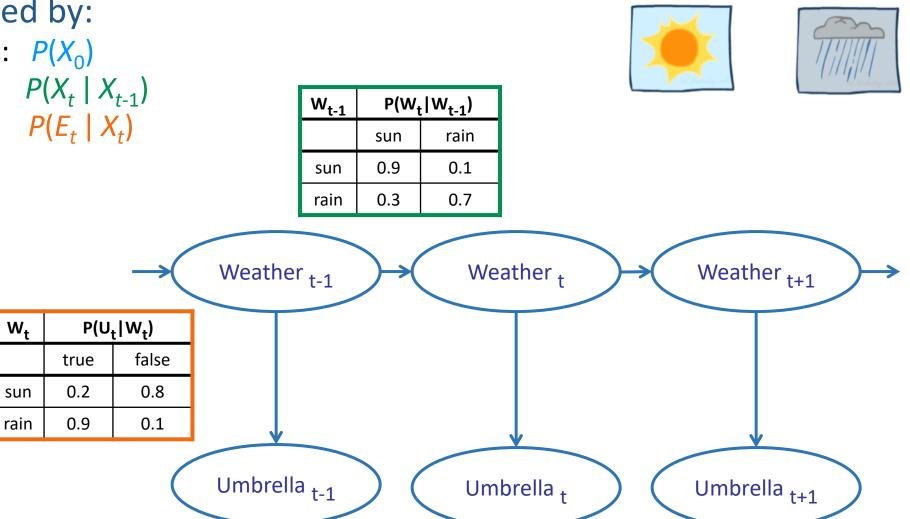
 $P(X_4 \mid e_1, e_2, e_3, e_4) =$



Example: Weather HMM

An HMM is defined by:

- Initial distribution: P(X₀)
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$



HMM as Probability Model

Joint distribution for Markov model:

$$P(X_0, \dots, X_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1})$$

Joint distribution for hidden Markov model:

$$P(X_0, X_1, E_1, \dots, X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1}) P(E_t \mid X_t)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

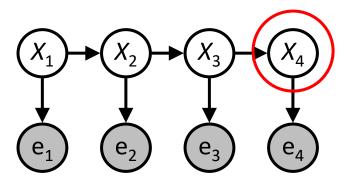
$$\begin{array}{c} X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow \cdots \rightarrow \\ F_{1} \qquad F_{2} \qquad F_{3} \qquad F$$

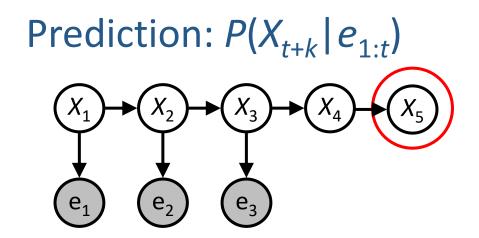
Useful notation: $X_{a:b} = X_a$, X_{a+1} , ..., X_b

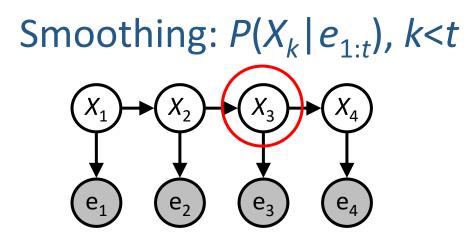
For example: $P(X_{1:2} | e_{1:3}) = P(X_1, X_2, | e_1, e_2, e_3)$

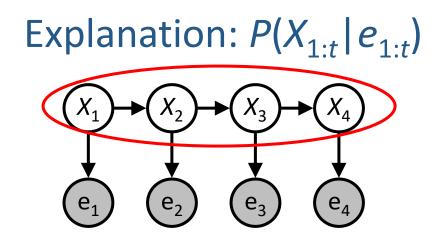
HMM Queries

Filtering: $P(X_t | e_{1:t})$

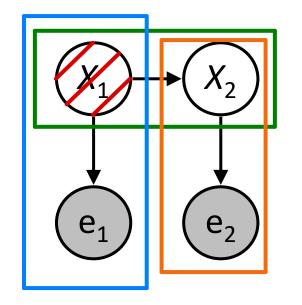




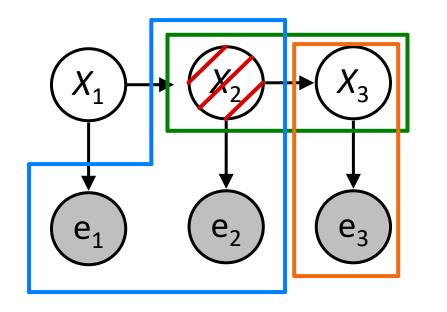




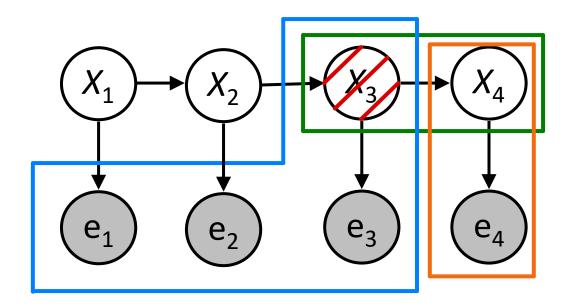
Query: What is the current state, given all of the current and past evidence?



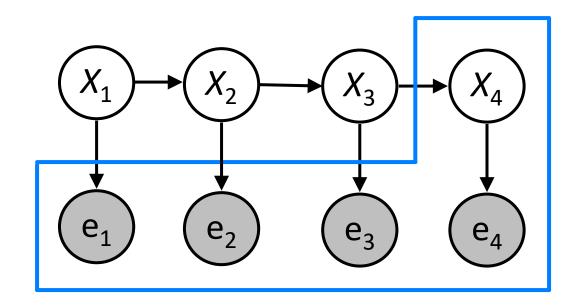
Query: What is the current state, given all of the current and past evidence?



Query: What is the current state, given all of the current and past evidence?



Query: What is the current state, given all of the current and past evidence?



Filtering Algorithm $P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_{1:t})$ Normalize Update Predict

 $f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$

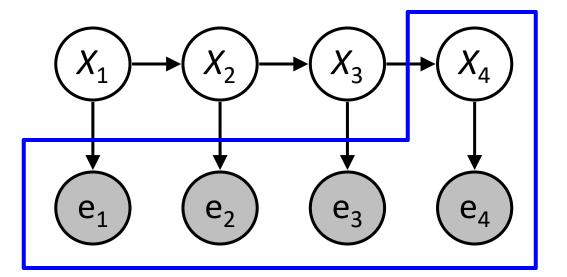
$$P(X|Y,z) = \frac{P(X,Y|z)}{P(Y|z)}$$

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$$

= $\alpha P(X_t, e_t | e_{1:t-1})$

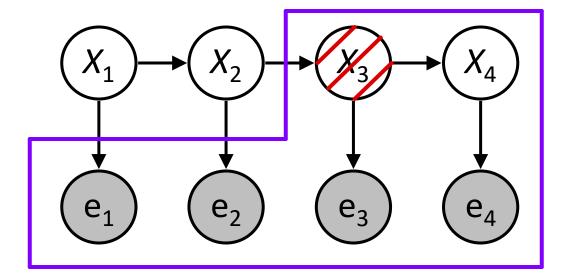


Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$$

= $\alpha P(X_t, e_t | e_{1:t-1})$
= $\alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1})$



Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}, e_{1:t-1}) P(e_{t} | X_{t}, x_{t-1}, e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}, e_{1:t-1}) P(e_{t} | X_{t}, x_{t-1}, e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$$

= $\alpha P(X_t, e_t | e_{1:t-1})$
= $\alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1})$

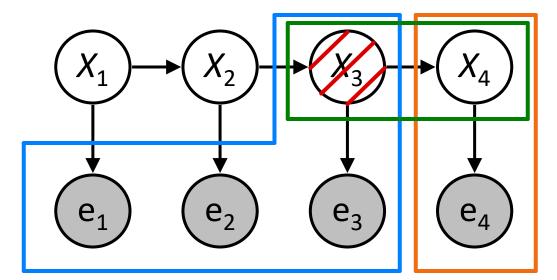


$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$$

= $\alpha P(X_t, e_t | e_{1:t-1})$
= $\alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1})$



$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)$$

$$= \alpha P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}|e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$e_{1} = \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}) P(e_{t} | X_{t})$$

$$= \alpha P(e_{t} | x_{t}) \sum_{x_{t-1}} P(x_{t} | x_{t-1}) P(x_{t-1} | e_{1:t-1})$$

Recursion

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

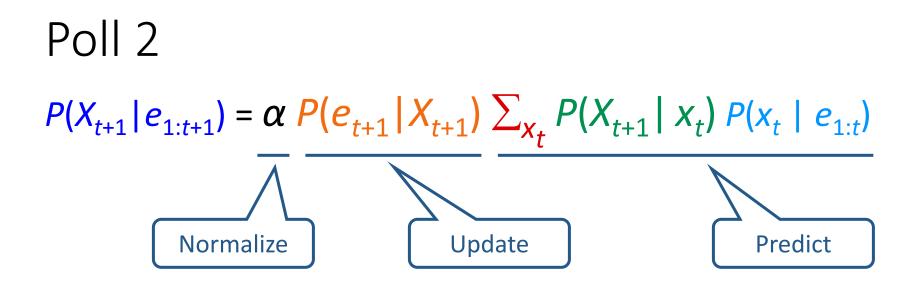
$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$e_{1} e_{2} e_{3} e_{4}$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}) P(e_{t} | X_{t})$$

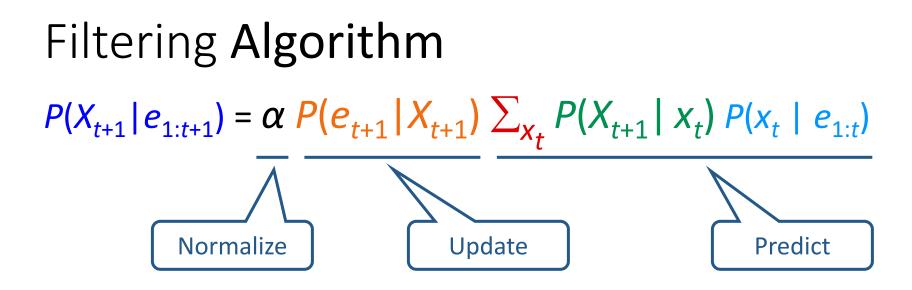
$$= \alpha P(e_{t} | x_{t}) \sum_{x_{t-1}} P(x_{t} | x_{t-1}) P(x_{t-1} | e_{1:t-1})$$

Recursion



What is the runtime of the forward algorithm in terms of the number of states |X| and time t? Assume all 3 CPTs are given.

```
A) O(|X|<sup>2</sup> * t)
B) O(|X| * t)
C) O(|X|<sup>2</sup>)
D) O(|X|)
```



 $f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$

Cost per time step: $O(|X|^2)$ where |X| is the number of states Time and space costs are **constant**, independent of t $O(|X|^2)$ is infeasible for models with many state variables We get to invent really cool approximate filtering algorithms

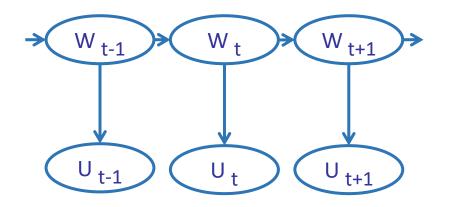
An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transition model: $P(X_t | X_{t-1}) = P(W_t | W_{t-1})$
- Sensor model: $P(E_t | X_t) = P(U_t | W_t)$

Given $P(X_1) = \{sun: 0.5, rain: 0.5\}$ Compute $P(X_4 = sun | e_4 = e_3 = e_2 = e_1 = True)$

W _{t-1}	P(W _t W _{t-1})				
	sun	rain			
sun	0.9	0.1			
rain	0.3	0.7			

w _t	P(U	_t W _t)
	true	false
sun	0.2	0.8
rain	0.9	0.1



An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W _{t-1}	$P(W_t W_{t-1})$		w _t	P(U	t Wt)
	sun	rain		true	fals
sun	0.9	0.1	sun	0.2	0.8
rain	0.3	0.7	rain	0.9	0.1

false

0.8

0.1

Compute $P(X_4 = sun | e_4 = e_3 = e_2 = e_1 = True)$ and $P(X_1) = {sun: 0.5, rain: 0.5}$

 $P(X_1, e_1) = P(e_1|X_1)P(X_1)$ #OBSERVE (chain rule)

 $P(X_1|e_1) = \alpha P(X_1, e_1) \rightarrow \alpha = 1/\sum_{x_1} P(e_1|x_1)P(x_1)$ #Don't forget to NORMALIZE

 $P(X_2|e_1) = \sum_{x \in X_1} P(X_2|x) P(x|e_1)$ #PREDICT

An HMM is defined by:

- Initial distribution: P(X₁)
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W _{t-1}	P(W _t W _{t-1})		w _t	P(U	t Wt)
	sun	rain		true	false
sun	0.9	0.1	sun	0.2	0.8
rain	0.3	0.7	rain	0.9	0.1

Compute $P(X_4 = sun | e_4 = e_3 = e_2 = e_1 = True)$ and $P(X_1) = {sun: 0.5, rain: 0.5}$

 $P(X_2|e_1) = \sum_{x \in X_1} P(X_2|x) P(x|e_1)$ #PREDICT

$$P(X_2|e_1, e_2) = \alpha P(X_2, e_2|e_1) = \alpha P(e_2|X_2) P(X_2|e_1); \ \alpha = 1/\sum_{x \in X_2} P(e_2|x) P(x|e_1)$$

 $P(X_3|e_1, e_2) = \sum_{x_2 \in X_2} P(X_3|x_2) P(x_2|e_1, e_2)$ #PREDICT

An HMM is defined by:

- Initial distribution: P(X₁)
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W _{t-1}	P(W _t W _{t-1})		w _t	P(U	t Wt)
	sun	rain		true	false
sun	0.9	0.1	sun	0.2	0.8
rain	0.3	0.7	rain	0.9	0.1

Compute $P(X_4 = sun | e_4 = e_3 = e_2 = e_1 = True)$ and $P(X_1) = {sun: 0.5, rain: 0.5}$

 $P(X_3|e_1, e_2) = \sum_{x_2 \in X_2} P(X_3|x_2) P(x_2|e_1, e_2)$ #PREDICT

$$P(X_3|e_1, e_2, e_3) = \alpha P(X_3, e_3|e_1, e_2) = \alpha P(e_3|X_3)P(X_3|e_1, e_2);$$

$$\alpha = 1/\sum_{x \in X_3} P(e_3|x)P(x|e_1, e_2)$$

$$P(X_4|e_1, e_2, e_3) = \sum_{x \in X_3} P(X_4|x) P(x|e_1, e_2, e_3)$$
#PREDICT

An HMM is defined by:

- Initial distribution: P(X₁)
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W _{t-1}	P(W _t W _{t-1})		w _t	P(U	t Wt)
	sun	rain		true	false
sun	0.9	0.1	sun	0.2	0.8
rain	0.3	0.7	rain	0.9	0.1

Compute $P(X_4 = sun | e_4 = e_3 = e_2 = e_1 = True)$ and $P(X_1) = {sun: 0.5, rain: 0.5}$

$$P(X_4|e_1, e_2, e_3) = \sum_{x \in X_3} P(X_4|x) P(x|e_1, e_2, e_3)$$
#PREDICT

$$P(X_4|e_1, e_2, e_3, e_4) = \alpha P(X_4, e_4|e_1, e_2, e_3) = \alpha P(e_4|X_4) P(X_4|e_1, e_2, e_3);$$

$$\alpha = 1/\sum_{x \in X_4} P(e_4|x) P(x|e_1, e_2, e_3)$$

An HMM is defined by:

- Initial distribution: P(X₁)
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W _{t-1}	$P(W_t W_{t-1})$		w _t	P(U	t Wt)
	sun	rain		true	false
sun	0.9	0.1	sun	0.2	0.8
rain	0.3	0.7	rain	0.9	0.1

Compute $P(X_4=sun | e_4=e_3=e_2=e_1=True)$ and $P(X_1) = {sun: 0.5, rain: 0.5}$

 $P(X_1, e_1) = P(e_1|X_1)P(X_1)$ #OBSERVE (chain rule) $P(e_1 = True|X_1 = sun)P(X_1 = sun) = .2 * .5 = .1$ $P(e_1 = True|X_1 = rain)P(X_1 = rain) = .9 * .5 = .45$

 $P(X_{1}|e_{1}) = \frac{P(X_{1},e_{1})}{P(e_{1})} = P(e_{1}|X_{1})P(X_{1}) / \sum_{x \in X_{1}} P(e_{1}|x)P(x) \text{ #NORMALIZE USING BAYES RULE}$ $P(X_{1} = sun|e_{1} = True) = \frac{.1}{.1 + 4.5} = .18$ $P(X_{1} = rain|e_{1} = True) = \frac{.1}{.1 + .45} = .82$

An HMM is defined by:

- Initial distribution: P(X₁)
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W _{t-1}	$P(W_t W_{t-1})$		w _t	P(U	t Wt)
	sun	rain		true	false
sun	0.9	0.1	sun	0.2	0.8
rain	0.3	0.7	rain	0.9	0.1

Compute $P(X_4 = sun | e_4 = e_3 = e_2 = e_1 = True)$ and $P(X_1) = {sun: 0.5, rain: 0.5}$

$$P(X_{2}|e_{1}) = \sum_{x \in X_{1}} P(X_{2}|x)P(x|e_{1}) \text{ #PREDICT}$$

$$P(X_{2} = sun|e_{1} = True) = \sum_{x \in X_{1}} P(X_{2} = sun|x)P(x|e_{1} = True) = .9 * .18 + .3 * .82 = .41$$

$$P(X_{2} = rain|e_{1} = True) = \sum_{x \in X_{1}} P(X_{2} = rain|x)P(x|e_{1} = True) = .1 * .18 + .7 * .82 = .59$$

An HMM is defined by:

- Initial distribution: P(X₁)
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W _{t-1}	P(W _t W _{t-1})		w _t	P(U	t Wt)
	sun	rain		true	false
sun	0.9	0.1	sun	0.2	0.8
rain	0.3	0.7	rain	0.9	0.1

Compute $P(X_4 = sun | e_4 = e_3 = e_2 = e_1 = True)$ and $P(X_1) = {sun: 0.5, rain: 0.5}$

$$P(X_{2}|e_{1},e_{2}) = \alpha P(X_{2},e_{2}|e_{1}) = \alpha P(e_{2}|X_{2})P(X_{2}|e_{1}); \ \alpha = 1/\sum_{x \in X_{2}} P(e_{2}|x)P(x|e_{1})$$

$$P(X_{2} = sun|e_{1},e_{2} = True) = \alpha P(e_{2}|X_{2} = sun)P(X_{2} = sun|e_{1}) = \alpha(.2)(.41) = .13$$

$$P(X_{2} = rain|e_{1},e_{2} = True) = \alpha P(e_{2}|X_{2} = rain)P(X_{2} = rain|e_{1}) = \alpha(.9)(.59) = .87$$

 $P(X_3|e_1, e_2) = \sum_{x \in X_2} P(X_3|x) P(x|e_1, e_2) \text{ #PREDICT}$ $P(X_3 = sun|e_1, e_2) = P(X_3 = sun|x = sun) P(x = sun|e_1, e_2) + P(X_3|x = rain) P(x = rain|e_1, e_2) = 0.38$ $P(X_3 = rain|e_1, e_2) = P(X_3 = rain|x = sun) P(x = sun|e_1, e_2) + P(X_3|x = rain) P(x = rain|e_1, e_2) = 0.62$

An HMM is defined by:

- Initial distribution: P(X₁)
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W _{t-1}	P(W _t W _{t-1})		w _t	P(U	t Wt)
	sun	rain		true	false
sun	0.9	0.1	sun	0.2	0.8
rain	0.3	0.7	rain	0.9	0.1

Compute $P(X_4 = sun | e_4 = e_3 = e_2 = e_1 = True)$ and $P(X_1) = {sun: 0.5, rain: 0.5}$

$$\begin{split} &P(X_3|e_1,e_2,e_3) = \alpha P(X_3,e_3|e_1,e_2) = \alpha P(e_3|X_3)P(X_3|e_1,e_2);\\ &\alpha = 1/\sum_{x \in X_3} P(e_3|x)P(x|e_1,e_2)\\ &P(X_3 = sun|e_1,e_2,e_3) = \alpha P(e_3 = True|X_3 = sun)P(X_3 = sun|e_1,e_2) = \alpha(.2)(.38) = .12\\ &P(X_3 = rain|e_1,e_2,e_3) = \alpha P(e_3 = True|X_3 = rain)P(X_3 = rain|e_1,e_2) = \alpha(.9)(.62) = .88 \end{split}$$

An HMM is defined by:

- Initial distribution: P(X₁)
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

	W _{t-1}	$P(W_t W_{t-1})$		w _t	P(U	t Wt)
		sun	rain		true	false
Γ	sun	0.9	0.1	sun	0.2	0.8
	rain	0.3	0.7	rain	0.9	0.1

Compute $P(X_4 = sun | e_4 = e_3 = e_2 = e_1 = True)$ and $P(X_1) = {sun: 0.5, rain: 0.5}$

$$P(X_{4}|e_{1}, e_{2}, e_{3}) = \sum_{x \in X_{3}} P(X_{4}|x)P(x|e_{1}, e_{2}, e_{3}) \text{ #PREDICT}$$

$$P(X_{4} = sun|e_{1}, e_{2}, e_{3}) = \sum_{x \in \{sun, rain\}} P(X_{4} = sun|x)P(x|e_{1}, e_{2}, e_{3}) = .9 * .12 + .3 * .88 = .37$$

$$P(X_{4} = rain|e_{1}, e_{2}, e_{3}) = \sum_{x \in \{sun, rain\}} P(X_{4} = rain|x)P(x|e_{1}, e_{2}, e_{3}) = .1 * .12 + .7 * .88 = .63$$

An HMM is defined by:

- Initial distribution: P(X₁)
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

W _{t-1}	P(W _t W _{t-1})		w _t	P(U	t Wt)
	sun	rain		true	false
sun	0.9	0.1	sun	0.2	0.8
rain	0.3	0.7	rain	0.9	0.1

Compute $P(X_4 = sun | e_4 = e_3 = e_2 = e_1 = True)$ and $P(X_1) = {sun: 0.5, rain: 0.5}$

$$P(X_4|e_1, e_2, e_3, e_4) = \alpha P(X_4, e_4|e_1, e_2, e_3) = \alpha P(e_4|X_4) P(X_4|e_1, e_2, e_3);$$

$$\alpha = 1/\sum_{x \in X_4} P(e_4|x) P(x|e_1, e_2, e_3)$$

 $\alpha P(e_4 = True | X_4 = sun) P(X_4 = sun | e_1, e_2, e_3) = \alpha(.2^*.37) = .115$ $\alpha P(e_4 = True | X_4 = rain) P(X_4 = rain | e_1, e_2, e_3) = \alpha(.9^*.63) = .885$

Poll 3

Suppose we are given P(X4=sun | e4= e3= e2= e1=True), along with the same CPT tables as the activity example, and we want to compute P(X5=sun | e5= e4= e3= e2= e1=True).

What is the first step we would perform?

Predict

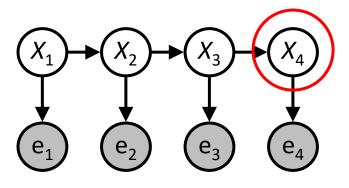
Observe

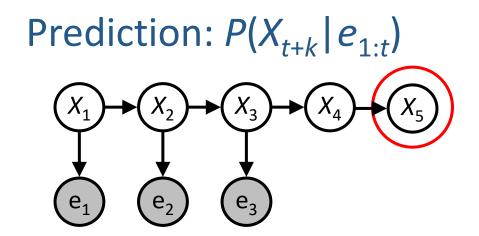
Forward

Smoothing

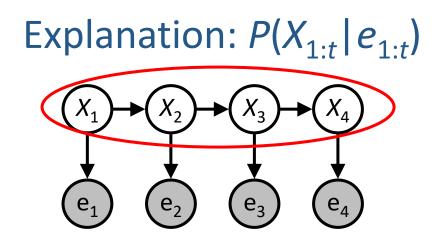
Other HMM Queries

Filtering: $P(X_t | e_{1:t})$





Smoothing: $P(X_k | e_{1:t}), k < t$ $(X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4)$ $(e_1 \quad e_2 \quad e_3 \quad e_4)$



Inference Tasks

Filtering: $P(X_t | e_{1:t})$

belief state—input to the decision process of a rational agent

Prediction: $P(X_{t+k} | e_{1:t})$ for k > 0

evaluation of possible action sequences; like filtering without the evidence

Smoothing: $P(X_k | e_{1:t})$ for $0 \le k < t$

better estimate of past states, essential for learning

Most likely explanation: $\operatorname{argmax}_{x_{1:t}} P(x_{1:t} | e_{1:t})$ • speech recognition, decoding with a noisy channel

Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time *t* can condition on those from *t*-1

