Warm-up

Design an algorithm to determine the winner of three candidates a, b, c given the ranking provided by n individual voters, described by a $3 \times n$ matrix M

Example Matrix M

```
function voting(M)
```

Input: M where $M_{i j} \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ is the candidate at rank j for voter i Output: $x \in\{a, b, c\}$ describes the winner

Announcements

Feedback (please don't forget!):

- www.cmu.edu/hub/fce
- https://www.ugrad.cs.cmu.edu/ta/F23/feedback/

Assignments:

- HW10 due tonight
- P5 due Thursday night

Final Exam:

- All material is fair game, will focus disproportionately on material not yet covered on midterm exams
- Look at post on Piazza with instructions

BONUS assignment

Bonus assignment on voting (will be released tonight) so you get some practice
Relatively light assignment, instant feedback, but not due until right before final exam

AI: Representation and Problem Solving

Game Theory: Equilibrium (cont) \& Social Choice

Instructors: Vincent Conitzer and Aditi Raghunathan
Slide credits: CMU AI, Fei Fang

Normal-Form Games

A game in normal form consists of the following elements

- Set of players
- Set of actions for each player
- Payoffs / Utility functions
- Determines the utility for each player given the actions chosen by all players (referred to as action profile)
- Bimatrix game is special case: two players, finite action sets

Players move simultaneously and the game ends immediately afterwards

Practice for later

What is the Mixed Strategy Nash Equilibrium for this new problem?

		Berry	
	Football	Concert	
$\frac{\odot}{\varangle}$	Football	4,1	
	Concert	0,0	

Solution Concepts in Games

How should one player play and what should we expect all the players to play?

- Dominant strategy and dominant strategy equilibrium
- Nash Equilibrium
- Minimax strategy
- Maximin strategy
- Stackelberg Equilibrium

Power of Commitment

What are the PSNEs in this game, and the players' utilities?
What action should player 2 choose if player 1 commits to playing b ? What is player 1's utility?
What action should player 2 choose if player 1 commits to playing a and b uniformly randomly? What is player 1's expected utility?

	Player 2		
		c	d
$\stackrel{\square}{\square}$	a	2,1	4,0
줌	b	1,0	3,2

Stackelberg Equilibrium

Stackelberg Game

- Leader commits to a strategy first
- Follower responds after observing the leader's strategy

Stackelberg Equilibrium

- Follower best responds to leader's strategy
- Leader commits to a strategy that maximizes her utility assuming follower best responds

$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \frac{\pi}{2} \\ & \frac{\pi}{0} \end{aligned}$		C	d
	a	2,1	4,0
	b	1,0	3,2

Stackelberg Equilibrium

If the leader can only commit to a pure strategy, or you know that the leader's strategy in equilibrium is a pure strategy, the equilibrium can be found by enumerating the leader's pure strategies
If ties for the follower are broken by the follower such that the leader benefits, the leader can exploit this. This is the strong Stackelberg equilibrium (SSE)
In general, the leader can commit to a mixed strategy and in that case, for the leader: $u^{S S E} \geq u^{N E}$ (first-mover advantage)! \& solvable by linear programming! [Conitzer \& Sandholm 2006, von Stengel and Zamir 2010; see also Prof. Fei Fang's work here at CMU (on the following slides)]

Berry
Player 2

		c	d
	a	2,1	4,0
	b	1,0	3,2

Protecting Staten Island Ferry

Protecting Staten Island Ferry

Previous USCG Approach

Problem

Game Model and Linear Programming-based Solution

Stackelberg game: Leader - Defender, Follower - Attacker
Attacker's payoff: $u_{i}(t)$ if not protected, 0 otherwise
Zero-sum \rightarrow Strong Stackelberg Equilibrium=Nash Equilibrium =Minimax (Minimize Attacker's Maximum Expected Utility)

Evaluation: Simulation \& Real-World Feedback

Reduce potential risk by 50\%

Game Theory: Social Choice

Warm-up

Design an algorithm to determine the winner of three candidates a, b, c given the ranking provided by n individual voters, described by a $3 \times n$ matrix M

Example Matrix M

```
function voting(M)
```

Input: M where $M_{i j} \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ is the candidate at rank j for voter i Output: $x \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ describes the winner

Social Choice Theory

A mathematical theory that deal with aggregation of individual preferences
Wide applications in economics, public policy, etc.
Origins in Ancient Greece
18th century

- Formal foundations by Condorcet and Borda
19th Century
- Charles Dodgson

20th Century

- Nobel Prize in Economics

Voting Model

Model

- Set of voters $N=\{1 . . n\}$
- Set of alternatives $A(|A|=m)$
- Each voter has a ranking over the alternatives
- Preference profile: collection of all voters' rankings

Voter ID	1	2	3	4
Ranking	a	c	b	a
	b	b	c	b
	c	a	a	c

Voting Rules

Voting rule: function that maps preference profiles to alternatives that specifies the winner of the election

```
function voting(M)
Input: \(M\) where \(M_{i j} \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\) is the candidate at rank \(j\) for voter \(i\)
Output: \(x \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\) describes the winner
```

Example Matrix M

a	c	b	a
b	b	c	b
c	a	a	c

Return x

Voting Rules

Plurality (used in many political elections)

- Each voter gives one point to top alternative
- Alternative with most points wins

	Who's the winner?	a		
Voter ID	1	2	3	4
Ranking	a	c	b	a
	b	b	c	b
	c	a	a	c

Voting Rules

Borda count (used for national election in Slovenia)

- Each voter awards $m-k$ points to alternative ranked $k^{t h}$
- Alternative with most points wins

	Who's the winner?	b		
Voter ID	1	2	3	4
Ranking	a	c	b	a
	b	b	c	b
	c	a	a	c

Voting Rules

Borda count (used for national election in Slovenia)

- Each voter awards $m-k$ points to alternative ranked $k^{t h}$
- Alternative with most points wins

Voter ID	1	2	3	4	$m-k$
Ranking	a	c	b	a	2
	b	b	c	b	1
	c	a	a	c	0

Pairwise Election

Alternative x beats y in pairwise election if majority of voters prefer x to y

Voter ID	1	2	3	4
Ranking	a	c	b	a
	b	b	C	b
	c	a	a	C

b beats c

Voting Rules

Plurality with runoff

- First round: two alternatives with highest plurality scores survive
- Second round: pairwise election between the two

$$
x \text { beats } y \text { if majority of voters prefer } x \text { to } y
$$

Who's the winner?

Voter ID	1	2	3	4	5
Ranking	a	c	b	a	c
	b	b	c	b	b
	c	a	a	c	a

Voting Rules

Plurality with runoff

- First round: two alternatives with highest plurality scores survive
- Second round: pairwise election between the two

$$
x \text { beats } y \text { if majority of voters prefer } x \text { to } y
$$

Who's the winner? a and c survive, and then c beats a

Voter ID	1	2	3	4	5
Ranking	a	c	b	a	c
	b	b	c	b	b
	c	a	a	c	a

Voting Rules

Single Transferable Vote (STV)

- (used in Ireland, Australia, New Zealand, Maine, San Francisco, Cambridge)
- $m-1$ rounds: In each round, alternative with least plurality votes is eliminated
- Alternative left is the winner

Who's the winner?

Voter ID	1	2	3	4	5
Ranking	a	d	b	a	b
	b	b	c	b	d
	d	c	a	d	a
	c	a	d	c	c

Voting Rules

Single Transferable Vote (STV)

- (used in Ireland, Australia, New Zealand, Maine, San Francisco, Cambridge)
- $m-1$ rounds: In each round, alternative with least plurality votes is eliminated
- Alternative left is the winner

Who's the winner? $\quad \mathrm{c}$ is eliminated, then d , then a , leaving b as the winner.

Voter ID	1	2	3	4	5
Ranking	a	d	b	a	b
	b	b	c	b	d
	d	c	a	d	a
	c	a	d	c	c

Note: When d is eliminated, the vote from voter 2 is effectively transferred to b

Representation of Preference Profile

Identity of voters does not matter
Only record how many voters has a preference

33 voters	16 voters	3 voters	8 voters	18 voters	22 voters
a	b	c	c	d	e
b	d	d	e	e	c
c	c	b	b	c	b
d	e	a	d	b	d
e	a	e	a	a	a

Tie Breaking

Commonly used tie breaking rules include

- Borda count
- Having the most votes in the first round

Social Choice Axioms

How do we choose among different voting rules? What are the desirable properties?

Majority consistency

Majority consistency: Given a voting rule that satisfies Majority
Consistency, if a majority of voters (>50\% of voters) rank alternative x first, then x should be the final winner.

Poll 1

Which rules are NOT majority consistent?

A. Plurality: Each voter give one point to top alternative
B. Borda count: Each voter awards $m-k$ points to alternative ranked $k^{t h}$
C. Plurality with runoff: Pairwise election between two alternatives with highest plurality scores
D. STV: In each round, alternative with least plurality votes is eliminated
E. None

Condorcet Consistency

Recall: x beats y in a pairwise election if majority of voters prefer x to y Condorcet winner is an alternative that beats every other alternative in pairwise election

Does a Condorcet winner always exist?
Condorcet paradox = cycle in majority preferences

Voter ID	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Ranking over alternatives (first row is the most preferred)	a	c	b

Condorcet Consistency: a Condorcet winner should always win

If a rule satisfies majority consistency, does it satisfy Condorcet consistency? Vice versa?

Which of the introduced voting rules (Plurality, Borda count, Plurality with runoff, STV) are Condorcet consistent?

Poll 2

Which rules ARE Condorcet consistent?

A. Plurality: Each voter give one point to top alternative
B. Borda count: Each voter awards $m-k$ points to alternative ranked $k^{t h}$
C. Plurality with runoff: Pairwise election between two alternatives with highest plurality scores
D. STV: In each round, alternative with least plurality votes is eliminated
E. None

Condorcet Consistency

Winner under different voting rules in this example

- Plurality:
- Borda:
- Plurality with runoff:
- STV:
- Condorcet winner:

33 voters	16 voters	3 voter	8 voters	18 voters	22 voters
a	b	c	c	d	e
b	d	d	e	e	c
c	c	b	b	c	b
d	e	a	d	b	d
e	a	e	a	a	a

Strategy-Proofness

Using Borda Count

Who is the winner?

Voter ID	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$		$m-k$
Ranking over alternatives (first row is the most preferred)	b	b	a		3
	a	a	b		2
	c	c	c	1	
	d	d	d	0	

Who is the winner now?

Voter ID	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
Ranking over alternatives b b a R first row is the most preferred) a a c 2 c c d 1 d d b 0 $\mathbf{l n n n n}$				

Strategy-Proofness

A single voter can manipulate the outcome!

Voter ID	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$		$m-k$
Ranking over alternatives (first row is the most preferred)	b	b	a		3
	a	a	b		2
	c	c	c	1	
	d	d	d	0	

b: $2 * 3+1 * 2=8$
a: $2 * 2+1 * 3=7$
b is the winner

Voter ID	1	2	3	$m-k$
Ranking over alternatives (first row is the most preferred)	b	b	a	3
	a	a	c	2
	c	c	d	1
	d	d	b	0

b: $2 * 3+1 * 0=6$
a: $2 * 2+1 * 3=7$
a is the winner

Strategy-Proofness

A voting rule is strategyproof (SP) if a voter can never benefit from lying about his preferences (regardless of what other voters do)

- Benefit: a more preferred alternative is selected as winner

Voter ID	1	2	3
Ranking	b	b	a
	a	a	b
	c	c	C
	d	d	d

Lie: a is the winner

Voter ID	$\mathbf{1}$	$\mathbf{2}$	3
Ranking	b	b	a
	a	a	c
	c	c	d
	d	d	b

If a voter's preference is $a>b>c, c$ will be selected w / o lying, and b will be selected $w /$ lying, then the voter still benefits

Poll 3

Which of the introduced voting rules are strategyproof?

A. Plurality: Each voter give one point to top alternative
(0) B. Borda count: Each voter awards $m-k$ points to alternative ranked $k^{t h}$
C. Plurality with runoff: Pairwise election between two alternatives with highest plurality scores
D. STV: In each round, alternative with least plurality votes is eliminated
E. None

Greedy Algorithm for f-Manipulation

Given voting rule f and preference profile of $n-1$ voters, how can the last voter report preference to let a specific alternative y uniquely win (no tie breaking)?

```
Greedy algorithm for f -Manipulation
Rank y in the first place
While there are unranked alternatives
        If }\existsx\mathrm{ that can be placed in the next spot without preventing
y from winning
        place this alternative in the next spot
    else
        return false
return true (with final ranking)
```

Correctness proved (Bartholdi et al., 1989)

Greedy Algorithm for f-Manipulation

Example with Borda count voting rule

Voter ID	$\mathbf{1}$	$\mathbf{2}$	3
Ranking over alternatives (first row is the most preferred)	b	b	a
	a	a	
	c	c	
	d	d	

Other Properties

A voting rule is dictatorial if there is a voter who always gets their most preferred alternative

A voting rule is constant if the same alternative is always chosen (regardless of the stated preferences)

A voting rule is onto if any alternative can win, for some set of stated preferences

Which of the introduced voting rules (Plurality, Borda count, Plurality with runoff, STV) are dictatorial, constant or onto?

Results in Social Choice Theory

Constant functions and dictatorships are SP Why?

Theorem (Gibbard-Satterthwaite): If $m \geq 3$, then any voting rule that is SP and onto is dictatorial

- Any voting rule that is onto and nondictatorial is manipulable
- It is impossible to have a voting rule that is strategyproof, onto, and nondictatorial

Activity: Favorite topics of 15281 (by approval voting)

Learning Objectives

Understand the voting model
Find the winner under the following voting rules

- Plurality, Borda count, Plurality with runoff, Single Transferable Vote

Describe the following concepts, axioms, and properties of voting rules

- Pairwise election, Condorcet winner
- Majority consistency, Condorcet consistency, Strategyproof
- Dictatorial, constant, onto

Understand the possibility of satisfying multiple properties
Describe the greedy algorithm for voting rule manipulation

